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Abstract. A characterization of the structure of positive maps is presented. This sheds some

more light on the old open problem studied both in Quantum Information and Operator Alge-

bras. Our arguments are based on the concept of exposed points, links between tensor products

and mapping spaces and convex analysis.

1. Introduction. Physicists are accustomed to pass freely from the Heisenberg picture

to the Schrödinger picture and vice versa. As it is well known, the Heisenberg picture deals

with observables while the Schrödinger picture concentrates on states, and both pictures

are fitted in a dual pair. Time evolutions provided by the pictures are equivalent, and to

formulate laws of dynamics within the Heisenberg picture which are compatible with the

duality, dynamical maps should be described by positive, continuous, unital maps.

Consequently, the concept of continuous, unital, positive maps is at the heart of

mathematical foundations of Quantum Theory, and therefore a characterization of the

structure of this set is of paramount importance for both Quantum Mechanics and Quan-

tum Information. The important point to note here is our assumption on continuity and

normalization of positive maps. Both assumptions are indispensable when one studies

dynamical maps (in Quantum Mechanics) or in an analysis of states (in Quantum Infor-

mations where one considers a composition of a given state with a positive map).

The intention of our lecture is twofold. First, we give a brief exposition of our recent

results on the structure of the set of positive maps. Thus we will frequently quote our

results from [15]. Second, we want to indicate that the given characterization is working

nicely, i.e. to show by examples how the general theory can be applied to very concrete

models. In that way we will get a better understanding of the dramatic difference between
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two dimensional and three dimensional cases. It is worth reminding that in 3D case, the

so called non-decomposable maps appear [9], [27]); see also [8], [7], [26], and [16].

Let us outline the plan of our lecture. Since we will use the algebraic approach to

Quantum Physics we will include, for convenient reference, the introductory Section 2.

In particular, consequences of the Grothendieck result (see [12]) for maps on algebras

will be presented. Our characterization of the set of positive maps will be reviewed in

Section 3. Section 4 contains examples indicating the origin of non-decomposable maps

in three dimensional case.

The detailed results appeared in [15], so we will frequently omit the proofs and put

emphasis on the basic ideas.

2. Preliminaries. In this section we set up notation, terminology and review some of

the standard facts on positive maps. Let A be a C∗-algebra. A+ will denote the set of all

positive elements of A. If A is a unital C∗-algebra then a state on A is a linear functional

φ : A → C such that φ(A) ≥ 0 for every A ∈ A+ and φ(I) = I where I is the unit of A.

We denote the set of all states on A by SA.

A linear map T : A1 → A2 between C∗-algebras A1 and A2 will be called positive if

T (A+
1 ) ⊂ A+

2 . If k ∈ N, then one can consider a map Tk : Mk(C) ⊗ A1 → Mk(C) ⊗ A2

whereMk(C) denotes the algebra of k×k-matrices with complex entries and Tk = IMk
⊗T .

We say that T is k-positive if the map Tk is positive. Finally, the map T is said to be

completely positive when T is k-positive for every k ∈ N. For any Hilbert space H, we

denote the C∗-algebra of all bounded linear operators acting onH by B(H). The canonical

form of any completely positive map T : A → B(K) is (see [21] and [10])

T (a) = W ∗π(a)W, a ∈ A, (1)

where π : A → B(H) is a ∗-morphism while W : K → H is a linear bounded map.

Let us fix an orthonormal basis {ei}ni=1 in the space H, where n = dimH. By τH, we

denote the transposition map on B(H), associated with the base {ei}. Let us note that for

every finite dimensional Hilbert space H the transposition τH : B(H)→ B(H) is positive

but not completely positive (in fact it is not even 2-positive). We will write τH(x) ≡ xt.
A positive map T : A → B(K) is called decomposable if it can be written in the form

(cf. [23, 22])

T (a) = W ∗π(a)W, a ∈ A, (2)

where π(·) is a Jordan morphism of A in B(H), while W : K → H is a linear bounded

map. Those positive maps, which are not decomposable, are called non-decomposable

maps.

By P, PC and PD we will denote respectively the set of all positive, completely positive

and decomposable maps from B(H) to B(K). Note that

PC ⊂ PD ⊂ P ≡ L(B(H),B(K))+

and the inclusions are proper unless dimH ≤ 2 and dimK ≤ 3 or dimH ≤ 3 and

dimK ≤ 2.

In the sequel, we will be interested in the set of unital, continuous, positive maps,

which will be denoted by P1. Moreover, for simplicity, we will assume that dimH=n<∞.
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The set P1 is convex and compact. Consequently, due to the Krein-Milman theorem, the

subset of extreme points of P1 is a dense subset. However, the program of finding all ex-

tremal points in P1, i.e. all extremal positive normalized maps, seems to be too difficult.

Therefore, we turn to a special subset of extremal positive maps. To this end we remind

the concept of exposed points. Namely:

Definition 2.1. Let C be a convex set in a Banach space X. A point x ∈ C is an

exposed point of C (x ∈ Exp{C}) if there is f ∈ X∗ (dual of X) such that f attains its

maximum on C at x and only at x.

In other words, we wish to have 〈f, x〉 > 〈f, y〉 for y ∈ C \ {x} (where 〈f, x〉 ≡ f(x)).

Thus, the concept of exposed point is related to a variational principle. In general, one

has Ext{C} ⊇ Exp{C} but there are simple examples of 2-dimensional convex compact

sets such that the inclusion Ext{C} ⊃ Exp{C} is proper (see [11]).

Our interest in exposed points stems from the following result (see [25], [14] and [11])

Proposition 2.2. Every norm-compact convex set C in a Banach space X is the closed

convex hull of its exposed points.

To proceed with the analysis of exposed points of P1 we recall some elementary facts

from the theory of tensor product of Banach spaces. We put a special emphasis on the

Grothendieck result on the projective tensor product. Denote by B(X × Y ) the Banach

space of bounded bilinear mappings B from X×Y into the field of scalars with the norm

given by ‖B‖ = sup{|B(x, y)|; ‖x‖ ≤ 1, ‖y‖ ≤ 1}. Note (for all details see [20]) that there

is an operator LB ∈ L(X,Y ∗) associated with each bounded bilinear form B ∈ B(X×Y ).

It is defined by 〈y, LB(x)〉 = B(x, y). The mapping B 7→ LB is an isometric isomorphism

between the spaces B(X × Y ) and L(X,Y ∗). Hence, there is an identification

(X ⊗π Y )∗ = L(X,Y ∗), (3)

such that the action of an operator S : X → Y ∗ as a linear functional on X⊗π Y is given

by 〈 n∑
i=1

xi ⊗ yi, S
〉

=

n∑
i=1

〈yi, Sxi〉. (4)

Note that the identification (3) and the relation (4) determine the linear duality which

is required for the definition of exposed points of L+(B(H),B(H)).

B(H) equipped with the trace norm will be denoted by T (we have assumed that

dimH = n <∞!). Finally, we denote by B(H)� T the algebraic tensor product of B(H)

and T and B(H)⊗πT means its Banach space closure under the projective norm defined

by

π(x) = inf
{ n∑
i=1

‖ai‖ ‖bi‖1 : x =

n∑
i=1

ai ⊗ bi, ai ∈ B(H), bi ∈ T
}
, (5)

where ‖ · ‖1 stands for the trace norm. Now, we can quote (see [22]).
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Lemma 2.3. There is an isometric isomorphism φ 7→ φ̃ between L(B(H),B(H)) and

(B(H)⊗πT)∗ given by

(φ̃)
( n∑
i=1

ai ⊗ bi
)

=

n∑
i=1

Tr(φ(ai)b
t
i), (6)

where
∑n
i=1 ai⊗bi ∈ A�T. Furthermore, φ ∈ L+(B(H),B(H)) if and only if φ̃ is positive

on B(H)
+⊗πT+.

Remark 2.4. As we are interested in continuous positive maps, due to the identification

(3), we are forced to consider the projective tensor product. This is the origin of the

basic difference between our and standard approaches to the characterization of positive

(continuous) maps.

3. Positive maps and exposed maps. Lemma 2.3 establishes the following isomor-

phism φ 7→ φ̃ between L(B(H),B(H)) ≡ L(B(H)) and (B(H) ⊗π T)∗ such that φ ∈
L+(B(H)) if and only if φ̃ is positive on B(H)+⊗π T+. Further, note that identifying the

real algebraic tensor product B(H)h�Th of self-adjoint parts of B(H) and T respectively,

with a real subspace of B(H)�T, one has B(H)h�Th = (B(H)�T)h. Obviously, this can

be extended for the corresponding closures. From now on, we will use these identifications

and we will study certain subsets of real tensor product spaces.

The next easy observation says that the discussed isomorphism sends the set

Exp{L+(B(H))} onto the set Exp{(B(H) ⊗π T)∗,+}, where (B(H) ⊗π T)∗,+ stands for

functionals on B(H)⊗π T which are positive on B(H)+ ⊗π T+.

Therefore, our task can be reduced to a study of exposed points of the last set. Let

us elaborate upon this point. Any (linear, bounded) functional in (B(H) ⊗π T)∗,+ is of

the form

ϕ(x⊗ y) = Tr %ϕ x⊗ y, (7)

with %ϕ being a “density” matrix satisfying the following positivity condition (frequently

called “block-positivity”, and denoted “bp” for short)

%ϕ ≥bp 0 ⇔ (f ⊗ g, %ϕf ⊗ g) ≥ 0 (8)

for any f, g ∈ H.

To take into account that the isomorphism given in Lemma 2.3 is also isometric, note

that L(B(H)) is equipped with the Banach space operator norm ‖ · ‖. On the other hand,

formula (5) defines the cross - norm, which is not smaller than max C∗-norm. To be more

precise, we need

Definition 3.1 (see [15]).

α(%ϕ) = sup
06=a∈B(H)⊗πB(H)

|Tr %ϕa|
π(a)

. (9)

Definition 3.2 (see [15]). The set of bp normalized density matrices is defined as

D = {%φ : α(%φ) = 1, %φ = %∗φ, %φ ≥bp 0, Tr %φ = n}. (10)

Our first characterization of P1 is
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Proposition 3.3 (see [15]). 1. Lemma 2.3 gives an isometric isomorphism between

the convex set of unital positive maps P1 and the set of bp normalized density

matrices D. This isomorphism sends exposed points of P1 onto exposed points of D.

2. D is a convex, compact set.

3. The convex hull of ExpD is dense in D.

Remark 3.4 (see [15]). Geometrically speaking, we are using the correspondence between

two “flat” subsets of balls in L(B(H)) and in the set of all self-adjoint bp-density matrices

on (B(H)⊗π T)h, respectively. The interest of this remark follows from the fact that the

balls considered are not so nicely shaped as the closed ball of real Euclidean 2– or 3 space

(see Chapter 5 in [18] for geometrical details).

As the next step, we wish to look more closely at the structure and properties of D

before turning to an analysis of its exposed points. We begin with the following result

which is of interest for Quantum Information:

Proposition 3.5 (see [15]). D is globally invariant with respect to the following opera-

tions:

1. local operations, LO for short, i.e. maps implemented by unitary operators U :

H⊗H → H⊗H of the form U = U1 ⊗ U2 where Ui : H → H is unitary, i = 1, 2;

2. partial transpositions τp = idH ⊗ τ : B(H)⊗ B(H)→ B(H)⊗ B(H) where τ stands

for transposition.

Remark 3.6. It is worth pointing out that τp is an isometry with respect to the α-norm,

but τp is not an isometry with respect to the (standard) operator norm. To see this it is

enough to note that τp(W ) = n|f >< f |, where W is a “typical” symmetry (see Example

3.10. 3 for more details). In other words, α-norm seems to be more natural for description

of P1.

To provide the reader with interesting examples of elements of D we will need

Definition 3.7 (see [4]). A self-adjoint unitary operator s is called a symmetry, i.e.

s = s∗ and s2 = I.

A self-adjoint operator s is called a partial symmetry (equivalently, e-symmetry) if s2

is a (orthogonal) projector e.

It is an easy observation (see [4]) that each e-symmetry has the following canonical

form: s = p− q, where p, q are orthogonal projectors, i.e. p = 1
2 (e+ s), q = 1

2 (e− s), and

pq = 0 = qp.

To show that a certain element is in D one needs to calculate its α-norm. To do this

in an easy way, we need

Lemma 3.8 (see [15]).

α(σ) = max{|Trσ · s⊗ p | : s ∈ S(H), p ∈ Proj1(H)}

where S(H) denotes the set of all symmetries in B(H)h while Proj1(H) stands for the

set {±|f >< f | : f ∈ H, ‖f‖ = 1}.
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Corollary 3.9 (cf. [15]). 1. Let P be a projector (on H⊗H). Then α(P ) = ‖TrH P‖
where TrH stands for the partial trace.

2. Let W be a symmetry (on H⊗H). Then α(W ) = max{‖TrH(Ws⊗1)‖ : s ∈ S(H)}.

In particular, this enables us to give:

Example 3.10 (see [15]). 1. Any projector of the form P = p ⊗ I where p is a one

dimensional projector on H, I is the identity on H.

2. Let {ei} be a basis in H. Define f ∈ H ⊗H by

f =
1√
n
|e1 ⊗ e1 + e2 ⊗ e2 + ...+ en ⊗ en > (11)

Such an f is called (in Quantum Information) a fully entangled state. Obviously,

n|f >< f | ∈ D.

3. Define

W =
∑
i,j

Eij ⊗ Eji (12)

where Eij ≡ |ei >< ej |. W is a bp symmetry with TrW = n. Moreover, τp(W ) =

n|f >< f |. Hence, W ∈ D.

One of the big “mysteries” of the structure of positive maps is the appearance of

non-decomposable maps for nD (n-dimensional) cases with n ≥ 3. To understand this

phenomenon, as the first step (the rest will be given in the next section) we present

Example 3.11. 1. Assume 2D case and let s be a symmetry in D. Then s = p − q
and Tr s = 2. As p + q = I, then Tr(p + q) = 4. Hence Tr p = 3 and Tr q = 1.

Consequently, q is a one dimensional orthoprojector. This indicates that for 2D

case, symmetries should be of a very simple form. Indeed (cf. [15]), up to the

transformation implemented by U = U1⊗U2, there is room for a symmetry of type

W only. It is worth pointing out that this symmetry leads to the transposition. We

end our comments on D for 2D case with a remark that there is no “room” for any

non-trivial e-symmetry.

2. 3D case. Let s be a symmetry in D, Then s = p−q and Tr s = 3. As p+q = I, then

Tr(p+ q) = 9. Hence Tr p = 6 and Tr q = 3. Although, now symmetries seems to be

more nontrivial, one can show [17] that again up to the transformation implemented

by U = U1 ⊗ U2, there is a room for a symmetry of type W only. However, now

partial symmetries appear, i.e. there are nontrivial partial symmetries in D. In other

words, the geometry of D is more complicated. We will come back to this point in

the next section.

Having the description of D we wish to look more closely at the characterization of

its exposed points. To this end we will use the analytic approach with some emphasis

on the underlying geometry. For the reader’s convenience we begin by recalling selected

definitions appearing in the convex analysis of real Banach space X (see [1], Section II.5

in [3], Chapter 5 in [18], and Chapters 5 and 6 in [19]).

We denote by SX (X1) the unit sphere (ball) of X.
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Definition 3.12. A point x of SX is said to be

1. an exposed point of X1 if {x} is an exposed face of X1,

2. a rotund point of X1 if every y ∈ SX with ‖x+y2 ‖ = 1 satisfies x = y.

3. a smooth point of X1 if there is exactly one element f of SX∗ such that f(x) = 1.

The sets of rotund points (smooth points) ofX1 will be denoted by rot(X1) (smo(X1)).

If each point of SX is smooth (rotund) then the space X is said to be smooth (ro-

tund). The following classic result says that these two concepts are dual to each other

(see [18]): A reflexive Banach space is rotund (smooth) if and only if its dual space is

smooth (rotund).

To present a characterization of exposed points of SX we need one more definition.

Definition 3.13 (see [2]). A point x ∈ SX is defined to be a strongly non-smooth point

of X1 if for every y ∈ SX\{x} with [x, y] ⊆ SX , x is not a smooth point of Y1, where

Y = span{x, y} and [x, y] = {v = λx+ (1− λ)y, λ ∈ [0, 1]}.

Obviously, Y1 stands for the unit ball in Y . The set of all strongly non-smooth points

of X1 will be denoted by nsmo(X1).

The general characterization of exposed points of a unit ball of a real Banach space

was obtained by Aizupuru and Garcia-Pacheco. They proved

Theorem 3.14 (see [2]). Let X be a real, separable Banach space. Then one has

Exp(X1) = rot(X1) ∪ nsmo(X1)

Using this result we have proved

Theorem 3.15 ([15]). An exposed point of B
(+)
1 is also an exposed point of B1. Con-

versely, a bp positive, strongly non-smooth, non-rotund % ∈ B1 is an exposed point of

B
(+)
1 , where B1 ≡ {σ ∈ B(H) ⊗α B(H); σ∗ = σ, α(σ) ≤ 1}, and B

(+)
1 ≡ {%ϕ : %ϕ ∈

B1, %ϕ ≥bp 0}.

Corollary 3.16. Strongly non-smooth, non-rotund, bp-positive points σ of unit sphere

(with respect to the norm α) having the normalization Trσ = n are exposed points of D.

Remark 3.17 (see [15]). We recall that for any linear positive map φ from a C∗-algebra

A to C∗-algebra B one has ‖φ‖ = ‖φ(1)‖ (cf. [13], Lemma 8.2.2). Further, note that a

“density matrix” σ in B0 = {σ ∈ B
(+)
1 ;α(σ) = 1} corresponds to a linear positive map

of norm one (cf. Lemma 2.3). Therefore, Theorem 3.15 gives the full characterization of

exposed positive linear maps of norm one, exposed both for the set B1 as well as for B
(+)
1 .

For additional comments see [15].

4. Examples; 2D and 3D cases. Having a characterization of D, so equivalently, a

characterization of P1 we wish to investigate the difference between maps on M2(C) and

M3(C) in more detail. Our motivation is again twofold. First, we want to show that our

characterization is working in concrete models. Second, it is natural to investigate what

is an essential difference between 2D and 3D cases.

We begin with the following result:
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Proposition 4.1 (see [17]). The bp-density matrix ρφ ∈ D corresponding to the regular

extreme normalised unital map (i.e. maps with the property that their restriction to the

diagonal subalgebra is still extreme) φ ∈ P1 can be written in one of the following block

forms in some matrix representation:

ρφ =

(
|y1 >< y1| c0|y1 >< y2|+ c|y1 >< y1|

c0|y2 >< y1|+ c̄|y1 >< y2| |y2 >< y2|

)
or ρφ =

(
I 0

0 0

)
,

where c0 ≥ 0, c ∈ C and {y1, y2} is some basis in C2.

The proof relies on α-normalization, the Arveson characterization of extreme points

of the set of unital completely positive maps from an abelian C∗-algebra C(X) to Mn(C)

(see [6]), and uses bp-positivity condition. Having this, one can reproduce, for regular

maps, the well known Størmer result on characterization of positive maps in 2D case

(see [24]). In other words, the subset of D corresponding to regular maps is generated by

bp-symmetries, projectors of the type: 2|f >< f | with f being a fully entangled vector (2

since we are considering 2D case!), p⊗ I, where p is a 1-dimensional projector in C2. The

important point to note here is that ρ ∈ D corresponding to a homomorphism is of the

form n|f >< f | (n stands for the dimensionality of the model) while a symmetry W ∈ D

corresponds to an antihomomorphism. Moreover, W , τp(W ) as well as U1⊗U2WU1⊗U2,

(Ui are unitaries) are exposed points in D (cf. [15]). Note that this indicates the important

role of Example 3.10.

Passing to 3D case, partial symmetries are appearing. This destroys the simple picture

we had for 2D case. To give examples of bp-partial symmetries we observe

s =

2∑
i,j=1

|ei >< ej | ⊗ |ej >< ei|+ |e3 >< e3| ⊗ |e3 >< e3|

and

s0 =

2∑
i,j=1

|ei >< ej | ⊗ |ej >< ei|+
1

2
|e1 ⊗ e3 + e2 ⊗ e3 >< e1 ⊗ e3 + e2 ⊗ e3|

are in D, where {e1, e2, e3} is a basis in C3. The map φ corresponding to s has the form

φ(Ei,j) = Ej,i for i, j ∈ {1, 2}, φ(E3,3) = E3,3, 0 otherwise

while

φ(Ei,j) = Ej,i +
1

4
E3,3 for i, j ∈ {1, 2}, φ(E3,3) =

1

2
E3,3, 0 otherwise

corresponds to s0.

The last map seems to be of special interest as its restriction to “diagonal” variables

Ei,i does not satisfy the Arveson criterion. The existence of such elements of D (so also

the corresponding maps) is an obstacle to get a version of Proposition 4.1 for 3D case. It

is worth pointing out that the famous generalization of Choi map, see [26] and [7], has

the same property, i.e. also this map does not satisfy the Arveson criterion. Further, in
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4D case, one can provide an even more suggestive example of an element in D:

s′ =

2∑
i,j=1

|ei >< ej | ⊗ |ej >< ei|+ 2|e3 ⊗ e3 + e4 ⊗ e4 >< e3 ⊗ e3 + e4 ⊗ e4|,

where {e1, e2, e3, e4} is a basis in C4. Note that neither s′ nor τp(s
′) are positive (they

are only bp-positive).

Although it would be desirable to get an explicit characterization of all exposed points

of D for low dimensional case, we have not been able to do this. We were able to show

only (cf. [15]) that symmetries, e-symmetries, certain projectors are exposed points of

D ∩B
‖.‖
1 , where B

‖.‖
1 is the unit ball with respect to the operator norm.

We wish to close this section with a remark that a more detailed analysis of low

dimensional cases will be presented in [17].

5. Final remarks. The given characterization of normalized bp density matrices D, so

also the description of positive normalized maps, utilizes the concepts of exposed faces,

exposed points, certain projections, symmetries, and partial symmetries. But, it is to be

expected. Namely, these concepts proved to be very useful in the analysis of the question

which compact convex sets can arise as the state space of unital C∗or W ∗ algebras (see

[4] and [5]). The answer to this question, in “physical” terms, gives the proof of the

statement that Schrödinger and Heisenberg pictures are fully equivalent. On the other

hand, the concept of positive, continuous, unital maps stems from the duality of these

pictures. Therefore, it is natural to expect that essential ingredients of the description of

the duality are also important for the characterization of P1.

Finally, we would like to say that although finite dimensional case was assumed,

sometimes, we deliberately used more sophisticated notation—the purpose of that is to

indicate a possibility for generalizations.
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