
OPERATOR ALGEBRAS AND QUANTUM GROUPS
BANACH CENTER PUBLICATIONS, VOLUME 98

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2012

ON TWO POSSIBLE CONSTRUCTIONS
OF THE QUANTUM SEMIGROUP

OF ALL QUANTUM PERMUTATIONS
OF AN INFINITE COUNTABLE SET

DEBASHISH GOSWAMI

Stat-Math Unit, Indian Statistical Institute
203, B. T. Road, Kolkata 700 208, India

E-mail: goswamid@isical.ac.in

ADAM SKALSKI

Institute of Mathematics of the Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa, Poland

E-mail: a.skalski@impan.pl

Dedicated to Stanisław Lech Woronowicz
on the occasion of his 70th birthday

Abstract. Two different models for a Hopf–von Neumann algebra of bounded functions on the
quantum semigroup of all (quantum) permutations of infinitely many elements are proposed,
one based on projective limits of enveloping von Neumann algebras related to finite quantum
permutation groups, and the second on a universal property with respect to infinite magic
unitaries.

Classical groups first entered mathematics as collections of all symmetries of a given
object, be it a finite set, a polygon, a metric space or a manifold. Original definitions
of quantum groups (also in the topological context, see [Wor] and [KuV]) had rather
algebraic character. Recent years however have brought many developments in the theory
of quantum symmetry groups, i.e. quantum groups defined as universal objects acting (in
the sense of quantum group actions) on a given structure. The first examples of that type
were introduced in [Wan], where S. Wang defined the quantum group of permutations of
a finite set, Sn. It turns out that the C∗-algebra of ‘continuous functions on a quantum
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permutation group of n elements’, C(Sn), is generated by entries of a universal n by n
magic unitary, i.e. a unitary matrix whose entries are orthogonal projections. Later the
theory was extended to quantum symmetry groups of finite graphs ([Bic]), finite metric
spaces ([Ban2]), C∗-algebras equipped with orthogonal filtrations ([BaS]), and quantum
isometry groups of compact noncommutative manifolds ([Gos]). In all these cases the
structure whose (quantum) symmetries are studied has finite or compact flavour, so that
the resulting quantum symmetry group is compact.

In this paper we study possible definitions of the quantum permutation (semi)group of
an infinite countable set. Even in the classical context there is a natural choice here—we
can either consider the group of all permutations of N, Perm(N), or the group of all ‘finite
range’ permutations of N, usually denoted by S∞. From the analytic point of view the
second group arises more naturally, as it is a direct limit of finite permutation groups Sn.
Hence this will be the group whose quantum version we want to discuss here. As on
the level of groups we have embeddings Sn ↪→ Sn+1, on the level of algebras we obtain
surjective morphisms C(Sn+1) � C(Sn). Therefore it is natural to expect that the algebra
of continuous functions on the quantum version of S∞ will arise as the inverse (projective)
limit of algebras C(Sn)—note however that the situation here is more complicated than
in the classical framework, as quantum groups Sn are neither finite nor discrete for n ≥ 4.
Moreover, projective limits of C∗-algebras do not behave well, which is easy to understand
even in the commutative setting: a direct limit of locally compact spaces need not be
locally compact. Hence one either needs to consider pro-C∗-algebras, as suggested in
a slightly different context in a recent paper ([MaM]), or, as we do here, work with
von Neumann algebras. Precisely speaking, we construct in this note the algebra W∞,
a candidate for L∞(S∞), as the limit of enveloping von Neumann algebras of C(Sn) and
study its universal properties. Another possible approach to infinite quantum permutation
groups exploits the fact that the algebras C(Sn) are defined in terms of universal magic
unitaries, so by analogy one can investigate a universal von Neumann algebra generated
by entries of an infinite magic unitary. We show that such an algebra exists and contains
W∞ as a proper subalgebra. In both cases the algebras in question come equipped with
a natural comultiplication. We do not know if either of the resulting Hopf–von Neumann
algebras fits into the theory of locally compact quantum groups developed in [KuV]; they
admit (bounded) antipodes, but the existence of invariant weights is not known.

The detailed plan of the paper is as follows: in Section 1 we discuss projective limits
of von Neumann algebras; although these results are not difficult and can be deduced
from the corresponding statements for Banach spaces ([SeZ]), we could not locate a
specific reference to the von Neumann algebra setting, where the explicit structure of
the projective limit is easier to see (and will be used in Section 3 of the paper). We also
include several lemmas on extending maps to the projective limits. A short Section 2
contains applications of these results to projective limits of Hopf–von Neumann algebras.
In Section 3 we recall basic facts on Wang’s quantum permutation groups and describe the
first of two possible candidates for the algebra L∞(S∞), constructed as the projective
limit of the enveloping von Neumann algebras of C(Sn). In Section 4 we propose an
alternative approach in terms of a universal ‘infinite magic unitary’ and explain why this
leads to a different Hopf–von Neumann algebra.
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The ultraweak tensor product of von Neumann algebras will be denoted by ⊗. For
a von Neumann algebra M its lattice of projections will be denoted by P(M) and the
central carrier of p ∈ P(M) (i.e. the smallest projection in Z(M) dominating p)—by z(p).

1. Projective limits of von Neumann algebras. In this section we define, establish
existence and prove basic properties of projective limits of von Neumann algebras. The
statements and the ideas of proofs follow the pattern established for example in [SeZ],
but the nature of the weak*-closed ideals in von Neumann algebras make it possible
to describe the resulting structures explicitly. Although the theorems remain valid for
general directed index sets, we consider only projective systems indexed by N. Note that
several categorical theorems related to von Neumann algebras (with main focus on the
abstract properties of the tensoring procedure, but also describing for example inductive
limit constructions) can be found in [Gui].

Definition 1.1. A sequence (Mn)n∈N is a projective system of von Neumann algebras
if it is a sequence of von Neumann algebras equipped with surjective normal
*-homomorphisms φn : Mn+1 → Mn (the maps φn form a part of the definition, but
we omit them from the notation). Define the following class of von Neumann algebras:
M = {M : ∀n∈N ∃ψn : M → Mn, a surjective normal *-homomorphism such that
ψn = φn ◦ ψn+1}. We say that M ∈ M is a final object (in other words a colimit)
for M if for each N ∈ M there exists a surjective normal *-homomorphism ψ : N → M

such that ψ(M)
n ◦ ψ = ψ

(N)
n for all n ∈ N.

Note that it is not clear at the moment whether even if a final object for M exists, it
is unique.

Theorem 1.2. Let (Mn)n∈N be a projective system of von Neumann algebras. Then the
class M admits a (unique) final object.

Proof. The construction is based on the properties of weak*-closed two-sided ideals in
von Neumann algebras. Let n ≥ 2 and In = Ker(φn−1). Let rn ∈ P(Z(Mn)) be the
projection such that In = rnMn (recall that rn := sup{p ∈ P(Mn−1) : φn−1(p) = 0}).
A well-known (and easy to check) fact states that the map φn−1|r⊥n Mn

: r⊥nMn → Mn−1 is
an isomorphism. Define additionally I1 = M1. Then each Mn has a natural decomposition
of the form Mn =

⊕n
k=1 Ik, and additionally this decomposition is ‘well behaved’ with

respect to the maps φn. Not surprisingly, the final object in M will be isomorphic to∏∞
n=1 Bn. Below we give a detailed proof of this fact.
Observe first that the class M is non-empty. Indeed, define M∞ = {(mn)∞n=1 ∈∏∞

n=1 Mn : φn(mn+1) = mn}. Then M∞ is a weak*-closed subalgebra of
∏∞
n=1 Mn, hence

a von Neumann algebra. It is clear that the projections on the individual coordinates are
normal *-homomorphisms; they satisfy the intertwining relation with φn by construc-
tion. Surjectivity follows from the existence of isometric lifts for selfadjoint elements in
C∗-algebras (hence bounded lifts for arbitrary elements of Mn to elements in M∞). In
fact M∞ will be (isomorphic to) the final object for M.

Let N ∈M and denote by Jn the kernel of the corresponding map ψn : N→ Mn. Let
wn ∈ P(Z(N)) be the projection such that Jn = wnN. As in the first part of the proof,
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ψn|w⊥n N : w⊥nN → Mn is an isomorphism. Write zn := w⊥n . As Jn+1 ⊂ Jn, the sequence
(zn)∞n=1 is increasing. Define additionally z∞ = limn→∞ zn, p1 = z1 and pn = zn − zn−1
for n ≥ 2, so that z∞ =

∑∞
n=1 pn. As all projections pn are central, we obtain a natural

increasing sequence of von Neumann algebras
⊕n

k=1 pkN whose union is weak*-dense in
z∞N. It is easy to see that this yields a natural isomorphism z∞N ≈

∏∞
n=1 pnN.

Note that z∞N ∈ M—indeed, the only thing to check is that the maps ψn|z∞N :

z∞N→ Mn are surjections, and this follows from the surjectivity of ψn|znN stated above.
Our claim is that z∞N is the final object of M. Indeed, it suffices to show that if W is
another von Neumann algebra in M, then z(W)

∞ W is isomorphic to z∞N and the isomor-
phism intertwines the corresponding maps into Mn. For the first statement it suffices to
describe the algebras pnN in terms of the projective sequence with which we started. Let
n ≥ 2. Consider the diagram

zn−1N⊕ pnN

ψn−1|zn−1Nzz

= znN

ψn|znN

��

Mn−1

r⊥nMn ⊕ In

φn−1|r⊥n Mn

dd

= Mn

in which all arrows are isomorphisms. It immediately implies that pnN is isomorphic to In
(note that for n = 1 this also holds). Moreover looking at the diagram above we see that
if we denote the corresponding isomorphism between pnN and In by γn, we can check
inductively that γ1 ⊕ . . . ⊕ γn : znN → Mn coincides with ψn, which assures that the
natural isomorphism between z

(W)
∞ W and z∞N intertwines the respective ψn and ψ

(W)
n

maps.
We can check that for N := M∞ we have z∞ = 1M∞ . Indeed, if (mn)∞n=1 ∈ w∞M∞

then (mn)∞n=1 ∈ Ker(ψn) for each n ∈ N, so (mn)∞n=1 = 0.
It remains to prove uniqueness. Suppose then that N is a final object in M and let

M∞ be a final object in M constructed above. Note that if ψ(M∞)
n : M∞ → Mn denote the

usual surjections, the construction above implies that
⋂∞
n=1 Ker(ψ

(M∞)
n ) = {0}. There is

a surjective map ψ : M∞ → N such that ψn = ψ
(M∞)
n ◦ ψ for all n ∈ N. Thus we must

have
⋂∞
n=1 Ker(ψn) = {0}, or equivalently z∞ = 1N, where z∞ is constructed for N as

above. Then N = Nz∞ and the arguments above show that N ≈ M∞.

Definition 1.3. Let (Mn)n∈N be a projective system of von Neumann algebras. The
final object in the class M will be called the projective limit of (Mn)n∈N and denoted
by M∞.

In the next section we will show that if (Mn)n∈N is a projective system of Hopf–von
Neumann algebras, with the normal surjections φn intertwining the respective coproducts,
then M∞ has a natural Hopf–von Neumann algebra structure. To this end we present
here several lemmas related to constructing maps acting on/to/between projective limits.
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Lemma 1.4. Let (Mn)n∈N be as in Theorem 1.2 and let us adopt the notation from the
proof of that theorem. Define additionally for each n ∈ N the map ιn : Mn → M∞ to
be the inverse of ψn|znM∞ (or more precisely the composition of that inverse with the
embedding of znM∞ into M∞). Then for each n ∈ N, x ∈ Mn+1

ιn(φn(x)) = znιn+1(x).

Proof. It is a direct consequence of the diagram above, this time interpreted as follows:

znM∞ M∞
zn·oo

Mn

ιn

;;

Mn+1

φn

ii ιn+1

OO

—note that now the maps are not necessarily isomorphisms.

Lemma 1.5. Suppose that (Nn)∞n=1, W are von Neumann algebras and that N =
∏
n∈N Nn.

For each n ∈ N denote the central projection in N corresponding to Nn by pn. Let (for
each n ∈ N) κn : W→

∏n
k=1 Nk be a normal contractive map and suppose that (for each

w ∈W, n ∈ N)

κn(w) =

n∑
k=1

pkκn+1(w). (1.1)

Then there exists a unique normal contraction κ : W→ N such that

κn(w) =

n∑
k=1

pkκ(w).

If each κn is a *-homomorphism (respectively, a *-antihomomorphism), κ is also
*-homomorphic (respectively, *-antihomomorphic).

Proof. Let w ∈W. Define

κ(w) =

∞∑
n=1

pnκn(w) = lim
n→∞

κn(w).

The equality of both expressions follows from formula (1.1) and the properties of weak*
topology in N (recall that we have a natural Banach space isomorphism N∗ ≈

⊕∞
n=1(Nn)∗,

where the last sum is of the l1-type). Similarly, normality of κ follows from the explicit
description of the predual of N and normality of each κn. The statement on algebraic
properties of κ is easy to check, and the uniqueness is clear.

The last two results have the following consequence.

Proposition 1.6. Suppose that (Mn)n∈N and (Nn)n∈N are projective systems of von
Neumann algebras, with connecting maps respectively denoted by (φ

(M)
n )n∈N and (φ

(N)
n )n∈N

and the maps from the final objects M∞ and N∞ respectively denoted by (ψ
(M)
n )n∈N and
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(ψ
(N)
n )n∈N. Let λn : Mn → Nn (n ∈ N) be normal contractive maps such that

λn ◦ φ(M)
n = φ(N)n ◦ λn+1, n ∈ N.

Then there exists a unique map λ∞ : M∞ → N∞ such that

λn ◦ ψ(M)
n = ψ(N)

n ◦ λ∞, n ∈ N.

If each λn is a *-homomorphism (respectively, a *-antihomomorphism, a unital map),
λ is also *-homomorphic (respectively, *-antihomomorphic, unital).

Proof. Use the notation of Theorem 1.2 and Lemma 1.4, adorning respective maps with
(M) and (N). Define λ̃n : M∞ → z

(N)
n N∞ (n ∈ N) as λ̃n = ι

(N)
n ◦ λn ◦ ψ(M)

n . Then

z(N)
n λ̃n+1(·) = z(N)

n (ι
(N)
n+1 ◦ λn+1 ◦ ψ(M)

n+1)(·) = ι(N)
n ◦ φ(N)n ◦ λn+1 ◦ ψ(M)

n+1

= ι(N)
n ◦ λn ◦ φ(M)

n ◦ ψ(M)
n+1 = ι(N)n ◦ λn ◦ ψ(M)

n = λ̃n,

where in the second equality we used Lemma 1.4. Apply now Lemma 1.5 for κn := λ̃n,
W := M∞ and the target algebras for maps κn equal respectively p(N)

n N∞. This yields a
map λ∞ : M∞ → N∞ such that

λ̃n = z(N)n λ∞(·).

Straightforward identifications using the commuting diagrams presented earlier end the
proof of the main statement. As before, uniqueness and algebraic properties of λ∞ follow
easily.

The above lemma provides a simple corollary describing a construction of maps acting
from M∞ into some other von Neumann algebra.

Corollary 1.7. Let (Mn)n∈N be a projective system of von Neumann algebras; adopt
the notation of Theorem 1.2. Let (for each n ∈ N) µn : Mn → W be a normal *-
homomorphism and suppose that (for each n ∈ N)

µn ◦ φn = µn+1.

Then there exists a unique normal *-homomorphism µ : M∞ →W such that

µ = µn ◦ ψn.

Proof. It suffices to apply Proposition 1.6 to the projective systems (Mn)n∈N and
(Nn)n∈N, where Nn := W and φ(N)

n = idW for all n ∈ N.

2. Projective limits of Hopf–von Neumann algebras. Here we apply the results of
Section 1 to construct the projective limit of a projective sequence of Hopf–von Neumann
algebras.

Definition 2.1. A Hopf–von Neumann algebra is a von Neumann algebra equipped
with a coproduct, i.e. a unital normal *-homomorphism ∆ : M → M ⊗ M which is
coassociative:

(idM⊗∆)∆ = (∆⊗ idM)∆.
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Definition 2.2. A sequence (Mn)n∈N is called a projective system of Hopf–von Neumann
algebras if it is a projective system of von Neumann algebras, each Mn is a Hopf–von
Neumann algebra (with the coproduct ∆n : Mn → Mn ⊗Mn) and the surjective normal
homomorphisms φn : Mn+1 → Mn satisfy the conditions

(φn ⊗ φn)∆n+1 = ∆nφn.

Theorem 2.3. Let (Mn)n∈N be a projective system of Hopf–von Neumann algebras. Then
M∞ is also a Hopf–von Neumann algebra: there exists a unique coproduct ∆ : M∞ →
M∞ ⊗ M∞ such that

∆nψn = (ψn ⊗ ψn)∆, n ∈ N. (2.1)

In addition if each ∆n is injective, so is ∆.

Proof. Observe that the sequence (Mn ⊗ Mn)n∈N, together with surjective connecting
maps φn ⊗ φn : Mn+1 ⊗ Mn+1 → Mn ⊗ Mn, forms a projective limit of von Neu-
mann algebras; moreover, a projective limit of this sequence can be easily identified with
M∞ ⊗ M∞. Hence an application of Proposition 1.6 yields the existence and uniqueness
of a unital normal *-homomorphism ∆ : M∞ → M∞ ⊗ M∞ satisfying (2.1).

Coassociativity of ∆ can be proved in an analogous way, exploiting the uniqueness
part of Proposition 1.6.

If each ∆n is injective, x ∈ M∞ and ∆(x) = 0, then by (2.1) we have (for each n ∈ N)
ψn(x) = 0. Via identifications in Theorem 1.2 we see that znx = 0 for all n ∈ N, which
implies that x = 0.

We could also consider Hopf–von Neumann algebras with a counit, i.e. a normal
character ε : M→ C such that

(ε⊗ idM)∆ = (idM⊗ε)∆ = idM .

Then for (Mn)n∈N to be a projective system of Hopf–von Neumann algebras we addition-
ally require that

εn ◦ φn = εn+1, n ∈ N.

Corollary 1.7 and a simple calculation imply that if the above conditions are satisfied,
then M∞ admits a natural counit.

We finish this section with a short discussion of projective limits of actions of Hopf–von
Neumann algebras.

Definition 2.4. Let W be a von Neumann algebra and (M,∆) be a Hopf–von Neumann
algebra. We say that α : W → W ⊗ M is a (Hopf–von Neumann algebraic) action of M
on W if it is a normal unital injective *-homomorphism such that

(idW⊗∆)α = (α⊗ idM)α.

A combination of Theorem 2.3 and Lemma 1.5 yields the following result, which says
that the Hopf–von Neumann algebraic actions behave well under passing to projective
limits.
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Theorem 2.5. Let W be a von Neumann algebra and let (Mn)n∈N be a projective system
of Hopf–von Neumann algebras. Denote by M∞ the Hopf–von Neumann algebra arising
as the projective limit in the sense of Theorem 2.3. Let (αn)n∈N be a sequence of actions
of Mn on W such that for each n ∈ N

(idW⊗φn)αn+1 = αn,

where φn are connecting maps defining the system (Mn)n∈N. Then there exists a unique
action α of M∞ on W such that for each n ∈ N

(idW⊗ψn)α = αn.

Proof. Similar to that of Theorem 2.3, using the fact that the von Neumann algebra
W ⊗ M∞ is the projective limit of the system (W ⊗ Mn)n∈N, with the connecting maps
idW⊗φn, and then applying Proposition 1.6.

3. The Hopf–von Neumann algebra of ‘all finite quantum permutations of
an infinite set’ as a projective limit. Let C(Sn) denote the algebra of continuous
functions on the quantum permutation group of the n-point set. Recall ([Wan]) that it
is the universal C∗-algebra generated by the collection of orthogonal projections {q(n)ij :

i, j = 1, . . . , n} such that for each i = 1, . . . , n there is
∑n
j=1 q

(n)
ij =

∑n
j=1 q

(n)
ji = 1. The

coproduct, counit and (bounded, *-antihomomorphic) antipode are defined on C(Sn) by
the formulas (i, j = 1, . . . , n)

∆n(q
(n)
ij ) =

n∑
k=1

q
(n)
ik ⊗ q

(n)
kj ,

εn(q
(n)
ij ) = δij , κn(q

(n)
ij ) = q

(n)
ji .

For more properties of C(Sn) and its connections to combinatorics, free probability,
Hadamard matrices and other problematics we refer to the surveys [BBC] and [Ban3].
Denote the enveloping von Neumann algebra of C(Sn) by Wn. Standard arguments show
that the maps ∆n, εn and κn have unique normal extensions to Wn, which will be denoted
by the same symbols—so that for example ∆n : Wn →Wn ⊗Wn.

For each n ∈ N we denote by ωn the natural surjection (and a compact quantum
group morphism) from C(Sn+1) to C(Sn), which corresponds to the mapping [ P 0

0 1 ] 7→ P

and whose existence follows from the universal properties. This induces in a standard
way the surjection on the level of universal enveloping von Neumann algebras (it is
enough to define φn = ω∗∗n : C(Sn+1)∗∗ → C(Sn)∗∗—the fact that φn is multiplicative
is the standard consequence of the definition of the Arens multiplication, surjectivity
follows from the fact that images of normal representations of von Neumann algebras are
ultraweakly closed). Hence the sequence of algebras (Wn)∞n=1 forms a projective system
of von Neumann algebras. As ωn intertwined the respective coproducts on the level of
C∗-algebras, so does φn on the level of von Neumann algebras; similarly εn+1◦φn = εn for
all n ∈ N. Hence Theorem 2.3 implies that the projective limit of (Wn)n∈N is a Hopf–von
Neumann algebra, denoted further by W∞. We formulate it as a theorem:
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Theorem 3.1. The sequence (Wn := C(Sn)∗∗)∞n=1 is a projective system of Hopf–von
Neumann algebras with counits. Hence its projective limit denoted by W∞ is also a Hopf–
von Neumann algebra with a counit.

Proof. A direct consequence of Theorem 2.3 and the discussion before the theorem.

In general we cannot expect Hopf–von Neumann algebras to possess antipodes. Here
we have however the following fact.

Theorem 3.2. The Hopf–von Neumann algebra W∞ admits a unique *-antihomomorphic
involutive map κ : W∞ →W∞ such that

κn ◦ ψn = ψn ◦ κ, n ∈ N,

where ψn : W∞ →Wn are the canonical surjections.

Proof. As ωn◦κn+1 = κn◦ωn, we also have a similar relation on the level of maps between
the enveloping von Neumann algebras, with ωn replaced by φn. Hence Proposition 1.6
implies the existence of the *-antihomomorphic map κ as above; the fact it is involutive
is a consequence of the analogous property of all κn.

It would be of course more natural to use for the projective limit construction instead
of C(Sn)∗∗ the algebras L∞(Sn), the von Neumann completions of C(Sn) in the GNS
representation with respect to the respective Haar states. The problem lies in the fact
that the maps ωn cannot extend to ‘reduced’ versions of the algebras of C(Sn), so also not
to normal continuous maps L∞(Sn+1) → L∞(Sn). The first statement is a consequence
of the fact that C(Sn) is not coamenable for n ≥ 5, as follows from the quantum version
of the Kesten criterion for amenability ([Ban1]).

The fact that we can only construct the projective limit using the universal comple-
tions is related to the problem described in the next remark.

Remark 3.3. Recently C. Köstler and R. Speicher introduced a notion of quantum ex-
changeability or invariance under quantum permutations for a family of quantum random
variables (see Definition 2.4 in [KSp]). This notion was later studied by S. Curran in [Cur]
and extended to finite sequences; the basic idea is that a sequence of random variables
is quantum exchangeable if its distribution (understood as a state on a von Neumann
algebra generated by the variables in question) is invariant under natural actions of all
Wang’s quantum permutation groups Sn. Classically exchangeability can be defined as
the invariance of the distribution under the action of the infinite permutation group;
it would be natural to expect a similar result in the quantum context. It is not clear
whether our definition would allow such a formulation; although Theorem 2.5 offers a
way of constructing actions of the projective limit, the natural actions of quantum per-
mutation groups considered in [KSp] are defined only on the Hopf algebraic level. As
shown in Theorem 3.3 of [Cur] (see also Section 5.6 of that paper), in the presence of
quantum exchangeability the actions can be extended to the reduced von Neumann al-
gebraic completions L∞(Sn), but to apply Theorem 2.5 to obtain the action of W∞ on
the von Neumann algebra in question we would need to be able to extend the original
actions to C(Sn)∗∗.
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4. Universal von Neumann algebra generated by an infinite magic unitary.
In this section we shall define a quantum analogue of the algebra of functions on the
permutation group of a countably infinite set as the universal von Neumann algebra
generated by the entries of an ‘infinite magic unitary’.

We begin with a C∗-algebraic construction.

Definition 4.1. Let C denote the category with objects (C, {qij : i, j = 1, . . . ,∞}),
where C is a (possibly nonunital) C∗-algebra generated by a family of orthogonal projec-
tions {qij : i, j ∈ N} and such that there exists a faithful (and nondegenerate) represen-
tation (π,H) of C such that for each i ∈ N

∞∑
j=1

π(qij) =

∞∑
j=1

π(qji) = 1B(H), (4.1)

with the convergence understood in the strong operator topology. A morphism from
(C, {qij}) to (C′, {q′ij}) is given by a (necessarily nondegenerate) C∗-homomorphism from
C to C′ which maps qij to q′ij for all i, j ∈ N.

Theorem 4.2. The category C has a universal (initial) object.

Proof. Consider the (formal) *-algebra B generated by symbols {bij : i, j ∈ N} which are
selfadjoint idempotents

bij = b∗ij = b2ij , (4.2)

and satisfy the orthogonality relations

bijbik = 0, bjibki = 0 for k ∈ N such that j 6= k. (4.3)

It is easy to see that this *-algebra admits many nontrivial representations on Hilbert
spaces. For example, for any n ∈ N, we can recall the canonical generators of C(Sn),
{q(n)ij : i, j = 1, . . . , n} and put b(n)ij = q

(n)
ij for i, j ≤ n, b(n)ij = 0 otherwise. Clearly,

b
(n)
ij satisfy the required relations, so that we get a *-homomorphism ρn : B → C(Sn)

sending bij to b
(n)
ij and we can compose it with any faithful representation of C(Sn). Since

each bij is a self-adjoint projection, the norm of its image under any representation on
a Hilbert space must be less than or equal to 1. This implies that the universal norm
defined by ‖b‖ := supπ ‖π(b)‖, where π varies over all representations of B on a Hilbert
space, is finite. The completion of B under this norm will be denoted by B. It is the
universal C∗-algebra generated by {bij : i, j ∈ N} satisfying relations (4.2)–(4.3). We
shall denote the universal enveloping von Neumann algebra of B by B∗∗ and identify B

as a C∗-subalgebra of B∗∗.
Observe that for fixed i ∈ N, p(n)i :=

∑n
j=1 bij is an increasing family of projections in

B ⊂ B∗∗, so it will converge in the ultraweak topology of B∗∗ to some projection, say, pi.
Similarly, for fixed j ∈ N, we write rj := limn→∞

∑n
i=1 bij in B∗∗. Let w be the smallest

central projection in B∗∗ which dominates 1− pi, 1− rj for all i, j ∈ N and let z = 1−w.
Consider the C∗-algebra A := zB ⊂ B∗∗. Clearly, A is generated as a C∗-algebra by
projections {qij := zbij : i, j ∈ N}. We claim that (A, {qij : i, j ∈ N}) is in C and is indeed
the universal C∗-algebra in this category.
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First of all, it follows from the definition of z that for each i ∈ N we have
∑∞
j=1 qij =

1 =
∑∞
j=1 qji in the ultraweak topology inherited from the inclusion zB∗∗ ⊆ B∗∗, i.e. the

ultraweak topology of B(zHu) where Hu denotes the universal Hilbert space on which
B∗∗ acts. We complete the proof of the lemma by showing the universality of A. To this
end, let D be a C∗-algebra generated by elements {tij : i, j ∈ N} satisfying the relations
(4.1), where the infinite series in (4.1) converge in the ultraweak topology of the von
Neumann algebra π(D)

′′ for a fixed faithful representation (π,H) of D. By the definition
of B, we get a *-homomorphism from B onto D which sends bij to tij (for each i, j ∈ N).
This composed with π extends to a unital, normal *-homomorphism, say ρ, from B∗∗

onto π(D)
′′. In particular, ρ(pi) =

∑∞
j=1 π(tij) = 1, and ρ(ri) =

∑∞
j=1 π(tji) = 1 for all

i ∈ N, so 1 − pi, 1 − ri belong to the ultraweakly closed two-sided ideal I := Ker(ρ) of
B∗∗. Thus, if we denote by w0 the central projection in B∗∗ such that I = w0B

∗∗, then
w0 dominates 1 − pi and 1 − ri for all i ∈ N, and hence by the definition of w, we have
w0 ≥ w. It follows that w ∈ I, i.e. ρ(w) = 0, or in other words, ρ(z) = 1. This implies
ρ(b) = ρ(zb) for all b ∈ B, so that we get a *-homomorphism ρ1 := ρ|A from A to D which
satisfies ρ1(qij) = π(tij) for all i, j ∈ N. This completes the proof of the universality of A,
as π being faithful implies that π−1 is a *-isomorphism from π(D) onto D and therefore
π−1 ◦ ρ1 is a desired *-homomorphism mapping qij to tij for all i, j ∈ N.

Denote the von Neumann algebra zB∗∗ by A∞, and note that it should not be confused
with the universal enveloping von Neumann algebra of A, which may be bigger. Note
that the proof of the above theorem indeed provides also a universal property of the von
Neumann algebra A∞, as stated in the next corollary.

Corollary 4.3. The von Neumann algebra A∞ is the (unique up to an isomorphism of
von Neumann algebras) universal object in the category of all von Neumann algebras N

which are generated (in the ultraweak topology) by projections {nij : i, j ∈ N} satisfying∑∞
j=1 nij =

∑∞
j=1 nji = 1N (convergence in the ultraweak topology).

Using the von Neumann algebraic universality we have the following result.

Proposition 4.4. The von Neumann algebra A∞ admits a natural coproduct ∆A : A∞ →
A∞ ⊗ A∞ and a counit εA : A∞ → C.

Proof. Consider for each i, j ∈ N

xij :=

∞∑
k=1

qik ⊗ qkj

as an element of A∞ ⊗ A∞. We note that the series converges in the ultraweak topology
of the von Neumann algebra A∞ ⊗ A∞, the summands being mutually orthogonal pro-
jections. It is easy to check using the defining properties of qij that for each i, j ∈ N there
is x2ij = xij = x∗ij , and

∑∞
k=1 xik =

∑∞
k=1 xki = 1A∞⊗A∞ . By the universality of the von

Neumann algebra stated in Corollary 4.3, we obtain a normal unital *-homomorphism
∆A : A∞ → A∞ ⊗ A∞ given by ∆A(qij) = xij , i, j ∈ N, which is easily seen to be coasso-
ciative. Similarly, we have a normal *-homomorphism εA : A∞ → C given on generators
by εA(qij) = δij . Note that the existence of the counit implies in particular that ∆A is
injective.
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The algebra A∞ is also equipped with a kind of an antipode.

Proposition 4.5. The prescription

κA(qij) = qji, i, j ∈ N

extends to a normal involutive *-antihomomorphism of A∞.

Proof. View generators qij as the elements of the opposite von Neumann algebra A∞
op

and denote them by {qoij : i, j ∈ N}. Once again using the universality as in Corol-
lary 4.3, it is easy to see that the map qij 7→ qoji canonically induces a normal unital
*-homomorphism from A∞ to A∞

op, which can be viewed as a *-antihomomorphism
on A∞.

Let us now compare the construction above with that from the previous section. Recall
the projective system (Wn)∞n=1 of Hopf–von Neumann algebras introduced in Section 3.
Let W denote the corresponding category of von Neumann algebras (as in Definition 1.1).

Proposition 4.6. The algebra A∞ of Corollary 4.3 is an element of W. Therefore W∞
is a direct summand of A∞.

Proof. Recall that A∞ ≈ zB∗∗ in the notation of Theorem 4.2. The universal property of
B implies that for each n ∈ N there is a surjection γn : B→ C(Sn) defined by the formula

γn(bij) =

{
q
(n)
ij i, j ≤ n

0 otherwise.

Let ψn = γ∗∗n —it again becomes a surjection, this time onto Wn = C(Sn)∗∗, and it is
easy to check that ψn = φn ◦ ψn+1 for all n ∈ N. Hence B∗∗ is in the class W associated
with the sequence (Wn)n∈N according to Definition 1.1.

Define wn to be the smallest central projection in B∗∗ dominating all projections
(p

(n)
j )⊥ and (r

(n)
j )⊥, where

p
(n)
j =

n∑
i=1

bij , r
(n)
j =

n∑
i=1

bji.

Note that we can describe wn in terms of the central supports of (p
(n)
j )⊥ and (r

(n)
j )⊥:

wn =
∨
j∈N

z
(
(p

(n)
j )⊥

)
∨
∨
j∈N

z
(
(r

(n)
j )⊥

)
. (4.4)

For that it suffices to note that a central projection dominates another, not necessarily
central, projection if and only if it dominates its central carrier.

The argument similar to that of the proof of Theorem 4.2, exploiting the fact that
C(Sn)∗∗ can be described as the universal von Neumann algebra generated by an n by
n magic unitary implies that ψn : w⊥n B

∗∗ → C(Sn)∗∗ is an isomorphism. Indeed, it is
easy to see that for each j ∈ N there is ψn(p

(n)
j ) = ψn(r

(n)
j ) = 1C(Sn)∗∗ , so that the

projection determining the kernel of ψn dominates wn and if we denote zn := w⊥n then
ψn(x) = ψn(znx) for all x ∈ B∗∗. Thus we obtain a surjective map ψn|znB∗∗ → C(Sn)∗∗

which preserves the natural magic unitaries in both algebras (observe that
∑n
i=1 znbij =
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i=1 znbji = zn). The afore-mentioned universality of C(Sn)∗∗ implies that it is an

isomorphism.
Hence Ker(ψn) is equal to wnB

∗∗ and the intersection
⋂
n∈N Ker(ψn) is equal to

w∞B∗∗, where w∞ = limn∈N wn. Together with the proof of Theorem 1.2 it implies
that W∞, the universal object in the category W, can be identified with w⊥∞B∗∗.

Recall that the central projection w = z⊥ ∈ B∗∗ was defined in the proof of Theorem
4.2 as the smallest central projection in B∗∗ dominating all projections p⊥j and r⊥j , where
pj = limn∈N p

(n)
j and rj = limn∈N r

(n)
j . Hence it is easy to check that z ≥ z∞ := w⊥∞ and

in particular we can view zB∗∗ as an element of W and identify W∞ with z∞A∞.

The inclusionW∞ ⊂ A∞ is close to being an inclusion of Hopf–von Neumann algebras.
This is formulated in the next proposition.

Proposition 4.7. View W∞ as a subalgebra of A∞, so that W∞ = z∞A∞. The nor-
mal *-homomorphism ∆̂ : W∞ → W∞ ⊗ W∞ defined by: ∆̂(x) = (z∞ ⊗ z∞)(∆A(x))

(x ∈W∞) is unital and coassociative. It in fact coincides with the coproduct on W∞
constructed as a projective limit in Theorem 2.3.

Proof. We use the notation of the last proposition. As W∞ = z∞A∞, it is enough to
show that ∆A(z∞) ≥ z∞ ⊗ z∞, so that ∆̂ : W∞ → W∞ ⊗ W∞ satisfies the required
conditions.

Write ψ̃n for ψn|A∞ . Then Ker(ψ̃n) = z⊥n A∞, we can check that

Ker(ψ̃n ⊗ ψ̃n) = (zn ⊗ zn)⊥(A∞ ⊗ A∞).

The construction of the coproduct on A∞ implies that the maps ψ̃n : A∞ → C(Sn)∗∗

intertwine the respective coproducts (recall that C(Sn)∗∗ has a canonical Hopf–von
Neumann algebra structure induced from C(Sn)). As we have (ψ̃n ⊗ ψ̃n)(∆A(zwn)) =

∆n(ψn(zwn)) = 0, the formula displayed above implies that the projection ∆A(zwn)

is dominated by (zn ⊗ zn)⊥(z ⊗ z). Passing to the limit (exploiting normality of the
coproduct) we obtain that

∆A(zw∞) ≤ (z∞ ⊗ z∞)⊥(z ⊗ z).

Recall however that the unitality of ∆A can be written as ∆A(z) = z ⊗ z, so that

∆A(z∞) = ∆A(z)−∆A(zw∞) ≥ z ⊗ z − (z∞ ⊗ z∞)⊥(z ⊗ z) = z∞ ⊗ z∞.

Thus the proof of the first statement of the lemma is finished.
To show the second part, by the uniqueness in Theorem 2.3 it suffices to show that

for each n ∈ N we have

∆nψn|W∞ = (ψn|W∞ ⊗ ψn|W∞)∆̂.

In fact we can even show that

∆nψ̃n = (ψ̃n ⊗ ψ̃n)∆A. (4.5)

Indeed, as maps on both sides of the last equation are normal, it suffices to check they
take the same values on each zbij (where z is now a central projection in B∗∗ defined in
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Theorem 4.2). Fix then i, j ∈ N:

(ψn ⊗ ψn)(∆A(zbij)) = (ψn ⊗ ψn)
(

lim
k→∞

k∑
l=1

zbil ⊗ zblj
)

= lim
k→∞

(ψn ⊗ ψn)
( k∑
l=1

zbil ⊗ zblj
)

=

n∑
l=1

ψn(zbil)⊗ ψn(zblj).

Now it is easy to check that ∆n(ψn(zbij)) = (ψn⊗ψn)(∆A(zbij)), considering separately
two cases: first i, j ≤ n and then max{i, j} > n. Thus (4.5) is proved.

Proposition 4.6 does not exclude the possibility of A∞ actually coinciding with W∞,
i.e. z = z∞. Below we show that this is not the case.

Lemma 4.8. Let z, z∞ ∈ P(B∗∗) be the projections introduced in the proof of Proposition
4.6. Then z 6= z∞.

Proof. Observe that another application of the argument used in Proposition 4.6 implies
that

z⊥ =
∨
j∈N

z(p⊥j ) ∨
∨
j∈N

z(r⊥j ), (4.6)

so the comparison of the formulas (4.4) and (4.6) shows that the problem of deciding
whether z = z∞ is related to the fact that for a decreasing sequence of projections in a
von Neumann algebra, say (qn)∞n=1, we can have z(limn∈N qn) 6= limn∈N z(qn).

Suppose for a moment that there exists a non-zero normal representation π : B∗∗ →
B(h) such that π(z) = 1B(h), N := π(B∗∗) is a factor, and if we write dij = π(bij) (i, j ∈ N)
then we have qk :=

∑k
j=1 d1j 6= 1B(h) for all k ∈ N. Then z(q⊥k ) = 1N = 1B(h) (central

carrier understood in N). As π : B∗∗ → N is onto (so in particular it maps Z(B∗∗) into
Z(N)), we have for each p ∈ P(B∗∗) the inequality z(π(p)) ≤ π(z(p)). As q⊥k = π((r

(k)
1 )⊥),

we have therefore (recall (4.4))

π(z⊥k ) ≥ π(z((r
(k)
1 )⊥)) ≥ z(q⊥k ) = 1B(h).

Hence π(zk) = 0 and thus also π(z∞) = 0, so z cannot be equal to z∞.
It remains to show that such a representation exists. It suffices to exhibit a concrete

magic unitary (dij)
∞
i,j=1 built of projections on a Hilbert space h such that each row and

column sum to 1B(h),
∑k
j=1 d1j < 1B(h) for each k ∈ N (in other words the first row is not

‘finitely supported’) and the entries generate B(h) as a von Neumann algebra. Let then
(dn)∞n=1 be a sequence of non-zero mutually orthogonal projections summing to 1B(h) and
consider the matrix 

d1 0 d2 d3 d4 · · ·
d⊥1 d1 0 0 0 · · ·
0 d2 d⊥2 0 0 · · ·
0 d3 0 d⊥3 0 · · ·
0 d4 0 0 d⊥4 · · ·
...

...
...

...
...

. . .


.
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It is easy to see it gives a magic unitary with the first row ‘infinitely supported’. The gen-
eration condition can be achieved by considering a finite sequence of projections (tn)kn=1

generating the whole B(h) and adding to a given magic unitary two by two blocks of the
form

[
tn t⊥n
t⊥n tn

]
(with respective rows and columns completed by zeros).

Corollary 4.9. W∞ is a proper von Neumann subalgebra of A∞.
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