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1. Introduction

1.1. Motivation. In the day-to-day practice of the mathematical art, one can see a

recurrent theme of reducing a complicated mathematical construct into its simpler con-

stituents, and then putting these constituents together using gluing datum that prescribes

how these pieces consistently fit each other. The (now) classical manifestation of such glu-

ing arguments in various flavours of geometry is the concept of a sheaf on a topological

space, or more generally on a topos. Another manifestation of such gluing arguments

appeared in noncommutative geometry as the description of a noncommutative space via

a finite closed covering. Here a covering is defined as a distinguished finite set of ideals

that intersect to zero and generate a distributive lattice [9].

1.2. Main result. Following [9], we express the gluing datum of a compact Hausdorff

space as a sheaf of algebras over a certain universal topological space, and extend it to

the noncommutative setting. This universal topological space is explicitly constructed

from the poset of non-empty finite subsets of the set of natural numbers. It is endowed

with the Alexandrov topology, and denoted by P∞. The advantages of our main theorem

over its predecessor [9, Corollary 4.3] are twofold. First, it considers coverings rather than

topologically unnatural ordered coverings. To this end, we need to construct more refined

morphisms between sheaves than natural transformations. Next, as P∞ is the colimit of

all finite PN ’s (the universal N -partition spaces obtained from the poset of all non-empty

subsets of {0, · · · , N}), it takes care of all finite coverings at once.

Theorem 3.13. The category of finite coverings of algebras is equivalent to the category

of finitely-supported flabby sheaves of algebras over P∞ whose morphisms are obtained

by taking a certain quotient of the usual class of morphisms enlarged by the actions of a

specific family of endofunctors.

1.3. Sheaves, patterns, and P -algebras. The idea of using lattices to study closed

coverings of noncommutative spaces has already been widely employed (see [10]). To

afford a good C*-algebraic description, one considers closed rather than open coverings.

Therefore, a natural framework for coverings uses sheaf-like objects defined on the lattice

of closed subsets of a topological space, or more generally, topoi modelled upon finite

closed coverings of topological spaces. Interestingly, the original definition of sheaves by

Leray was given in terms of the lattice of closed subspaces of a topological space [11,

p. 303]. For various reasons, this definition changed in the subsequent years into the

nowadays standard open-set formulation.

Recently, however, a closed-set approach reappeared in the form of sheaf-like objects

called patterns [13]. We show in Proposition 2.20 that for our combinatorial models based

on finite Alexandrov spaces, the distinction between sheaves and patterns is immaterial.

Another reformulation of sheaves over Alexandrov spaces is given by the concept of a P -

diagram. It is widely known among commutative algebraists (e.g. see [3, Proposition 6.6]

and [17, p. 174]) that any sheaf on an Alexandrov space P can be recovered from its

P -diagram (cf. Theorem 2.22 concerning P -algebras). See also [7] for a different approach.

1.4. Outline. Section 1 is of preliminary nature. It is focused on explaining the emer-

gence of the universal partition space P∞ as the classifying space of finite coverings. We
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show how finite closed coverings of compact Hausdorff spaces naturally yield finite uni-

versal partition spaces PN with the Alexandrov topology. Then we take the colimit of

PN ’s with N →∞. We continue with analysing in detail the topological properties of

P∞ to be ready for studying sheaves of algebras over P∞. These are the key objects of

Section 2 that is devoted to the main result of this paper.

1.5. Notation and conventions. Throughout the article we fix a ground field k of an

arbitrary characteristic. We assume that all algebras are over k and are associative and

unital but not necessarily commutative. We use N and Z to denote the set of natural

numbers (zero included) and the set of integers, respectively. The finite set {0, . . . , N}
is denoted by N for any natural number N . We use 2N to denote the set of all subsets

of N . If x is a sequence of elements from a set X, we write κ(x) to denote the underlying

set of elements of x. The symbol |X| stands for the cardinality of a set X.

2. Primer on lattices and Alexandrov topology. We first recall definitions and

simple facts about ordered sets and lattices to fix notation. Our main references on the

subject are [2, 4, 16].

A set P together with a binary relation 6 is called a partially ordered set, or a poset

in short, if the relation 6 is (i) reflexive, i.e. p 6 p for any p ∈ P , (ii) transitive, i.e.

p 6 q and q 6 r implies p 6 r for any p, q, r ∈ P , and (iii) anti-symmetric, i.e. p 6 q and

q 6 p implies p = q for any p, q ∈ P . If only the conditions (i)-(ii) are satisfied we call 6
a preorder. For every preordered set (P,6) there is an opposite preordered set (P,6)op

given by P op := P and p 6op q if and only if q 6 p for any p, q ∈ P .

A poset (P,6) is called a semi-lattice if for every p, q ∈ P there exists an element

p ∨ q such that (i) p 6 p ∨ q, (ii) q 6 p ∨ q, and (iii) if r ∈ P is an element which

satisfies p 6 r and q 6 r then p ∨ q 6 r. The binary operation ∨ is called join. A poset

is called a lattice if both (P,6) and (P,6)op are semi-lattices. The join operation in P op

is called meet, and traditionally denoted by ∧. One can equivalently define a lattice P

as a set with two binary associative commutative and idempotent operations ∨ and ∧.

These operations satisfy two absorption laws: p = p ∨ (p ∧ q) and p = p ∧ (p ∨ q) for any

p, q ∈ P . A lattice (P,∨,∧) is called distributive if one has p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)
for any p, q, r ∈ P . Note that one can prove that the distributivity of meet over join we

have here is equivalent to the distributivity of join over meet.

Let (P,6) be a preordered set, and let ↑p := {q ∈ P | p 6 q} for any p ∈ P . As a

natural extension of notation, we define ↑U :=
⋃
p∈U ↑p for all U ⊆ P . The sets U ⊆ P

that satisfy U = ↑U are called upper sets or dual order ideals. The topological space we

obtain from a preordered set using the upper sets as open sets is called an Alexandrov

space. Note that a set U is open in the Alexandrov topology if and only if for any u ∈ U
one has ↑u ⊆ U . Observe also that reversing the preorder exchanges the closed and open

sets:

Lemma 2.1. Let (P,6) be a preordered set. A subset C ⊆ P is closed in the Alexandrov

topology of P if and only if C is open in the Alexandrov topology of the opposite preordered

set (P,6)op.
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Proof. Since (P,6) = ((P,6)op)op and the statement is symmetric, we need to prove

only one implication. Assume C is closed and let x ∈ C. In order to prove that C is

open in the opposite Alexandrov topology, we need to show that y ∈ C for any y 6 x.

Suppose the contrary that y 6 x and y ∈ Cc := P \C. Since Cc is open in the Alexandrov

topology of (P,6) and y 6 x, we must have x ∈ Cc, which is a contradiction.

2.1. Universal partition spaces. In [15], Sorkin defined and investigated the order

structure on the spaces we call here partition spaces. For the lattice of subsets covering a

space, the partition spaces play a role analogous to the set of meet-irreducible elements of

an arbitrary finite distributive lattice, i.e. they are much smaller than lattices themselves

while encoding important lattice properties. Sorkin’s primary objective was to develop

finite approximations for topological spaces via their finite open coverings (see also [1, 5]).

Here we will investigate spaces with finite closed rather than open coverings. See also

[17, 18] for a more algebraic approach. We begin by analysing properties of partition

spaces.

Definition 2.2. Let X be a set and let C := {C0, . . . , CN} be a finite covering of X,

i.e. let
⋃
i Ci = X. For any x ∈ X, we define its support suppC(x) := {C ∈ C | x ∈ C}.

A preorder 4C on X is defined by x 4C y if and only if suppC(x) ⊇ suppC(y). We also

define an equivalence relation ∼C by letting x ∼C y if and only if suppC(x) = suppC(y).

We call the quotient space X/∼C the partition space associated to the finite covering C
of X. This space is partially ordered by the relation induced from 4C .

Definition 2.3. Let X and C be as before. We use (X,4C) to denote the set X with its

Alexandrov topology induced from the preorder relation 4C defined above.

Example 2.4. Consider a region on the 2-dimensional Euclidean plane covered by three

disks in a generic position, and the corresponding poset, as described below:

A

BC

D
E

F

G
A

F

BC

DG E
. (1)

Here an arrow → indicates the existence of an order relation between the source and the

target.

Definition 2.5. Let X be a set and C := {C0, . . . , CN} be a finite covering of X. The

covering C viewed as a subbasis for closed sets induces a topology on X. The space X

together with the topology induced from C is denoted by (X, C).
Proposition 2.6. Let X be a set and let C be a finite covering. The Alexandrov topology

defined by the preorder 4C coincides with the topology in Definition 2.5.

Proof. We need to prove that a subset L is closed in (X, C) if and only if it is closed in

(X,4C). By Lemma 2.1 and the definition of Alexandrov topology, we see that L is closed
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in (X,4C) if and only if L =
⋃
x∈L ↓x, where ↓x := {x′ ∈ X| x′ 4C x}. On the other

hand, let Cx :=
⋂
C∈suppC(x) C. We have x′ 4C x if and only if x′ is covered by the same

sets from C, or more. In other words, x′ 4C x if and only if x′ ∈ Cx, so that Cx = ↓x.

Finally, note that L is closed in (X, C) if and only if L =
⋃
x∈L Cx. The result follows.

Corollary 2.7. The canonical quotient map π : (X, C)→ (X/∼C , 4C) is a continuous

map which is both open and closed.

Proof. The above proposition allows us to replace (X, C) by (X,4C) thus converting

topological properties to preorder properties. Since π is surjective and x 4C y if and only

if π(x) 4C π(y), one easily verifies that π is continuous and open. To conclude that it is

also closed, we apply Lemma 2.1.

Lemma 2.8. Let C be a finite covering of a set X. Let X/∼C be the partition space

associated with the covering C and π : X → X/∼C be the canonical surjection on the

quotient space. Denote by ΛC the lattice of subsets of X generated by the covering C and

by Λπ(C) the lattice of subsets of X/∼C generated by π(C) := {π(C)| C ∈ C}. The following

assignments

π̂ : ΛC −→ Λπ(C), λ 7−→ π(λ),

π̂−1 : Λπ(C) −→ ΛC , λ 7−→ π−1(λ),

define mutually inverse lattice isomorphisms.

Proof. Inverse images preserve set unions and intersections. Hence π̂−1 is a lattice mor-

phism. On the other hand, though in general images preserve only unions, here we have

π(x) ∈ π(Ci) ⇔ x ∈ Ci (2)

for any i. It follows that

π(x) ∈ π(Ci1) ∩ · · · ∩ π(Cik)⇔ x ∈ Ci1 ∩ · · · ∩ Cik
⇒ π(x) ∈ π(Ci1 ∩ · · · ∩ Cik). (3)

In other words, π(Ci1)∩ · · · ∩π(Cik) is a subset of π(Ci1 ∩ · · · ∩Cik). As the containment

in the other direction always holds, it follows that π̂ is also a lattice morphism. Finally,

since π is surjective and π−1(π(Ci)) = Ci for all i, one sees that π̂−1 and π̂ are the inverse

of each other.

We are ready now to introduce the universal partition spaces as natural partition

spaces associated with projective spaces. The projective space over a field k is denoted

by PN (k). It is defined as the space kN+1 \ {0} divided by the diagonal action of the

non-zero scalars k× := k \ {0}. By [9, Example 4.2], the partition space associated to a

certain closed refinement of the affine covering of the complex projective space PN (C)

coincides with

PN := PN (Z/2) :=
{

(z0, . . . , zN ) ∈ (Z/2)N+1| ∃i ∈ N, zi = 1
}
. (4)

Since we are not interested in the natural discrete topology of the projective space

PN (Z/2) but in its poset structure inherited from the affine covering of PN (C) (or any

other projective space PN (k)), we abbreviate the notation to PN . We call PN the uni-

versal N -partition space. We topologise it with the Alexandrov topology coming from
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its poset structure, which can be easily described as follows. For any a := (ai)i∈N and

b := (bi)i∈N in PN we write a 6 b if and only if ai 6 bi for any i ∈ N . Remembering

that the affine covering of PN (C) generates a free lattice [8, Proposition 1.2], it is not

surprising that the topological space PN enjoys a property justifying calling it universal.

As a direct generalization of [9, Proposition 4.1], we obtain:

Theorem 2.9. Let C := (C0, . . . , CN ) be a finite covering of X with a fixed ordering on

the elements of the covering. Let χa be the characteristic function of a subset a ⊆ N

viewed as an element of PN . Then the map ξ : X ∈ x 7→ χs(x) ∈ PN , where s(x) :=

{i ∈ N | x ∈ Ci}, yields a morphism of preordered sets ξ : (X,4C)op → (PN , 6) and,

consequently, a continuous map between Alexandrov spaces. Moreover, ξ is both open and

closed, and it factors as ξ = ξ̂ ◦ π, where ξ̂ : (X/∼C ,4C)op → (PN , 6) is an embedding

of Alexandrov topological spaces.

2.2. Topological properties of partition spaces. Both 2N (the set of all subsets of

N) and 2N \ {∅} are posets with respect to the inclusion relation ⊆. For any non-empty

subset a ⊆ N , one has a sequence (a0, . . . , aN ) where

ai :=

{
1 if i ∈ a,
0 otherwise.

(5)

In other words, the sequence (a0, . . . , aN ) is the characteristic function χa of the subset

a ⊆ N . The assignment a 7→ χa determines a bijection between the set of non-empty

subsets of N and the universal N -partition space PN . Its inverse is defined as

ν(z) := {i ∈ N | zi = 1}, z := (zi)i∈N ∈ PN . (6)

With this bijection, one has (ai)i∈N 6 (bi)i∈N if and only if ν((ai)i∈N ) ⊆ ν((bi)i∈N ). In

other words, we have the following:

Proposition 2.10. The map ν : PN → 2N \ {∅} is an isomorphism of posets, and thus

a homeomorphism of Alexandrov spaces.

Definition 2.11. For any i ∈ N and any non-empty subset a ⊆ N , we define open sets

ANi := {(z0, . . . , zN ) ∈ PN | zi = 1} = ↑χ{i} and ANa :=
⋂
i∈a

ANi = ↑χa .

Note that the sets ANi form a subbasis for the Alexandrov topology of PN . For brevity,

when there is no risk of confusion, we omit the superscripts and write Ai and Aa instead

of ANi and ANa .

Lemma 2.12. For all N > 0, the map φN : PN −→ PN+1 defined by

φN (z0, . . . , zN ) := (z0, . . . , zN , 0)

is an embedding of topological spaces.

Proof. The fact that the maps φN are injective is obvious. They are also continuous since

we have

φ−1
N (AN+1

i ) =

{
ANi if i 6 N,

∅ if i = N + 1.
(7)
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Finally, φN ’s yield homeomorphisms between their domains and their images because

φN (PN ) ∩ AN+1
i =

{
φN (ANi ) if i ∈ N,
∅ otherwise,

(8)

for the open subsets in the subbasis of the Alexandrov topology.

The maps φN : PN → PN+1 form a direct system of continuous maps of Alexandrov

topological spaces. Hence we can define the infinite universal partition space P∞ as a

direct limit:

Definition 2.13. P∞ := lim
−→
N>0

PN .

We can represent the points of P∞ as infinite sequences {(zi)i∈N | zi ∈ Z/2} where

the number of non-zero terms is finite and greater than zero. We can also view P∞ as

the colimit of all finite PN ’s. The canonical morphisms of the colimit iN : PN → P∞ send

a finite sequence (z0, . . . , zN ) to the infinite sequence (z0, . . . , zN , 0, 0, . . .) obtained from

the finite sequence by padding it with countably many 0’s. The topology on the colimit

is the topology induced by the maps {iN}N∈N.

We also have a natural poset structure on P∞. Here (ai)i∈N 6 (bi)i∈N if and only if

ai 6 bi for any i ∈ N. This poset structure coincides with the poset structure of the set

of all finite subsets of N. Denote the set of all finite subsets of N by Fin. One can extend

the bijection ν : PN → 2N \ {∅} (see (6)) to a bijection ν : P∞ → Fin \ {∅}. The inverse

of ν is given by the assignment a 7→ χa := (ai)i∈N that is defined as

ai :=

{
1 if i ∈ a,
0 otherwise,

(9)

for any a ∈ Fin. The map ν : P∞ → Fin \ {∅} is an isomorphism of posets, and therefore

the Alexandrov topological spaces P∞ and Fin \ {∅} are homeomorphic.

Thus we have two possibly different topologies on P∞: one coming from the preorder

structure and the other coming from the colimit. However, we check that they coincide.

Theorem 2.14. The following statements hold:

1. The Alexandrov topology and the colimit topology on P∞ are the same.

2. The spaces PN are T0 but not T1 for any N = 1, . . . ,∞.

3. PN is a connected topological space for any N = 0, 1, . . . ,∞.

4. The topology on P∞ is compactly generated.

Proof. For any i ∈ N and a ∈ Fin \ {∅}, we define

A∞i := ↑χ{i} and A∞a :=
⋂
i∈a

A∞i = ↑χa (10)

which are open in the Alexandrov topology.

Proof of (1): Let iN : PN → P∞ be the structure maps of the colimit. We need to

prove that an open set in one topology is open in the other, and vice versa. The set

{A∞a | a ∈ Fin \ {∅}} is a basis for the Alexandrov topology since each A∞a is an upper
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set. Then

i−1
N (A∞a ) =

{
ANa if a ⊆ N,
∅ if a * N

(11)

is an open set in PN for any N > 0 and a ∈ 2N \ {∅}. Therefore every open set in the

Alexandrov topology is open in the colimit topology. Now, let U ⊆ P∞ be open in the

colimit topology. We can assume that every sequence in P∞ is of the form χa for a unique

a ∈ Fin \ {∅} since z = χν(z) for all z ∈ P∞. Next, let χa ∈ U and χa 6 χb for some

χb ∈ P∞. We need to show that χb ∈ U . Since a ⊆ b ∈ Fin \ {∅} ⊂ 2N, there is a natural

number N := max(b) > max(a). Moreover, we have the inequality

i−1
N (χa) = χa 6 χb = i−1

N (χb) (12)

in PN . As i−1
N (U) is open in the Alexandrov topology of PN , it follows that χb ∈ i−1

N (U),

which in turn implies that χb ∈ U .

Proof of (2): Let p, q ∈ PN , p 6= q. Then ν(p) 6= ν(q). Let us suppose without the loss

of generality that i ∈ ν(p) and i /∈ ν(q). Then q /∈ ↑p, which proves that PN is T0. On the

other hand, if p 6 q then for any open set U ⊆ PN such that p ∈ U also q ∈ U (as U is

an upper set). It follows that PN is not T1.

Proof of (3): Suppose there exists a non-empty subset V ( PN that is both open and

closed. Let χa ∈ V and χb ∈ PN \ V . Then, because V and PN \ V are open, we have

χa∪b ∈ V and χa∪b ∈ PN \ V , which is a contradiction.

Proof of (4): In order to prove our assertion, we need to show that for any a ∈ Fin\{∅}
the set A∞a is compact. Let a ∈ Fin \ {∅} and suppose that U := {Ui}i∈I is an open

covering of A∞a . Since χa ∈ A∞a and U is a covering, there exists j ∈ I such that χa ∈ Uj .
As Uj is open in the Alexandrov topology, we obtain ↑χa = A∞a ⊆ Uj . Consequently, for

any finite subset α of Fin \ {∅}, the set
⋃
a∈α A∞a is compact. The result follows.

2.3. Continuous maps between partition spaces. In what follows in this subsec-

tion, unless explicitly stated otherwise, N will be a natural number or ∞. Accordingly,

the set {0, . . . , N} will be a finite set or will be N if N = ∞. For example, a permuta-

tion σ : {0, . . . , N} → {0, . . . , N} is either a finite permutation or an arbitrary bijection

N→ N.

Let Op(PN ) be the lattice of open subsets of PN . It is obvious that any continuous

map f : PN → PM defines a morphism between lattices of open sets of the form

Xf : Op(PM ) 3 U 7−→ Xf (U) := f−1(U) ∈ Op(PN ). (13)

Conversely, we have the following:

Proposition 2.15. Let M and N be finite natural numbers or ∞. Let X : Op(PM ) →
Op(PN ) be a lattice morphism with the property that⋃

i∈{0,...,M}

X(AMi ) = PN , (14a)

⋂
i∈a

X(AMi ) = ∅ for all infinite a ⊆ {0, . . . ,M}. (14b)
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Then there exists a unique continuous function fX : PN → PM such that, for all open

subsets U ⊆ PM , we have X(U) = f−1
X (U).

Proof. We define a map fX : PN → PM as

fX : z 7−→ χa, where a := {i ∈ {0, . . . ,M} | z ∈ X(AMi )}. (15)

We observe that a is non-empty due to the condition (14a), and finite due to the condi-

tion (14b). By definition,

z ∈ f−1
X (AMi )⇔ fX(z) ∈ AMi ⇔ i ∈ ν(fX(z))⇔ z ∈ X(AMi ). (16)

This proves the continuity of fX because the sets AMi form a subbasis of the Alexandrov

topology. The uniqueness follows from combining (16) with the fact that knowing for all

i’s whether or not z′ ∈ AMi determines z′ ∈ PM .

Note that the conditions (14a) and (14b) are satisfied for Xf for any continuous f

because
⋂
i∈aAi = ∅ for any infinite a, and f−1 preserves infinite unions and intersections.

Finally, in order to characterize in Theorem 2.17 the homeomorphisms between the

universal N -partition spaces PN , we will need the following technical lemma.

Lemma 2.16. Let N and M be finite natural numbers or ∞. Let f : PN → PM be a

continuous map of Alexandrov spaces.

1. If f is injective, then |ν(z)| 6 |ν(f(z))| for any z ∈ PN .

2. If f is a homeomorphism, then |ν(z)| = |ν(f(z))| for any z ∈ PN .

Proof. Observe that for any z ∈ PN one can compute |ν(z)| as

|ν(z)| = max{n ∈ N | a1 < · · · < an = z, ai ∈ PN}. (17)

Here the symbol x < y means x 6 y and x 6= y. On the other hand, any map between

spaces equipped with preorders is continuous with respect to the Alexandrov topologies

induced by these preorders if and only if it is monotone, i.e. it preserves the preorders.

Therefore, if f is continuous (i.e. preorder preserving) and injective, then (17) implies

that |ν(z)| 6 |ν(f(z))| for any z ∈ PN . Finally, if f is a homeomorphism, then we also

have |ν(f(z))| 6 |ν(f−1(f(z)))| = |ν(z)|, so that |ν(z)| = |ν(f(z))| for any z ∈ PN .

Note that any continuous bijection between any two finite homeomorphic topological

spaces (not necessarily Hausdorff) is always a homeomorphism. Hence, for any finite N , a

continuous bijection from PN to PN is automatically a homeomorphism, so that it enjoys

the property (2) of the lemma above.

Theorem 2.17. Let N be a finite natural number or ∞. A map f : PN → PN is a

homeomorphism if and only if there exists a bijection σ : N → N such that f(χa) = χσ(a)

for any subset a ⊆ N.

Proof. We consider a bijection σ : N → N . It induces a bijection of the form

fσ : PN 3 χa 7−→ χσ(a) ∈ PN (18)

with the inverse (fσ)−1 = fσ−1 . Since fσ(Ai) = Aσ(i) for all i and the set of all Ai’s is a

subbasis for the topology of PN , we conclude that fσ is a homeomorphism.
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Conversely, assume that we have a homeomorphism f : PN → PN . Consider ` ⊆ N

and χ` ∈ PN . By Lemma 2.16, the function f satisfies |ν(z)| = |ν(f(z))| for any z ∈ PN .

Therefore, applying the support map ν to both sides of the equality f(χ{i}) = χ{σ(i)}
determines a unique map σ : N → N satisfying this equality:

ν(f(χ{i})) =: ν(χ{σ(i)}) = {σ(i)}. (19)

The inverse of the map thus defined is given by the formula {σ−1(i)} := ν(f−1(χ{i})).

Next, we proceed by induction on the cardinality of a ⊆ N . Assume that we have

already proven that f(χa) = χσ(a) for all a such that 0 < |a| 6 n. Pick a ⊆ N with

|a| = n and j ∈ N \ a. Then, since the continuity of f is equivalent to f being monotone,

we obtain χσ(a) = f(χa) 6 f(χa∪{j}) in PN . Hence f(χa∪{j}) = χσ(a)∪` for some ` ⊆ N .

On the other hand, by Lemma 2.16, we see that |ν(f(χa∪{j}))| = n+ 1, so that ` = {k}
for some k /∈ σ(a). It remains to prove that k = σ(j). By definition χσ(a)∪{k} ∈ Ak.

Therefore, χa∪{j} ∈ f−1(Ak) = Aσ−1(k), whence σ−1(k) ∈ a ∪ {j}. Combining this with

σ−1(k) /∈ a yields σ(j) = k, as needed.

We end this subsection by introducing a monoid that acts on P∞ by continuous maps

and is pivotal in our classification theorem. It is a monoid that labels all finite sequences

that can be formed from a given finite set.

Definition 2.18. A surjection α : N→ N is called tame if

1. α−1(i) is finite for any i ∈ N,

2. |α−1(i)| > 1 for finitely many i ∈ N.

We denote the monoid of all such tame surjections by M.

It is clear that the composition of any two tame surjections is again a tame surjection,

and that the monoid is generated by bijections and the following tame surjection:

∂(i) :=

{
i if i = 0,

i− 1 if i > 0.
(20)

We can view the elements of P∞ as maps from N to {0, 1}, and on such maps the

monoid M acts by pullbacks. Moreover, the tameness property ensures that such pull-

backs preserve P∞ and

fα(χa) := α∗(χa) = χα−1(a) for all a ∈ Fin \ ∅ (21)

guarantees that they are morphisms of posets. Thus we obtain an action ofM on P∞ by

maps continuous in the Alexandrov topology. Observe that this pullback representation

of the monoid M is faithful. Note also that Theorem 2.17 can be rephrased to link

the bijections from N to N with the homeomorphisms from PN to PN by the formula

f(χa) := χσ−1(a) for any subset a ⊆ N. This makes Theorem 2.17 compatible with (21).

2.4. The lattice of open subsets of P∞. In this subsection, we provide a direct

generalization of [9, Subsection 2.2] needed to upgrade the flabby-sheaf classification

of ordered N -coverings [9, Corollary 4.3] to a classification of arbitrary finite ordered

coverings we arrive at in Lemma 3.9.
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Lemma 2.19. Let (Lat(A),∩,+) denote the lattice of all ideals in an algebra A. Assume

that (Ii)i∈N is a sequence of ideals such that only finitely many of them are different

from A and that the lattice they generate is distributive. Then, for any open subset U ⊆
P∞, the map given by

R(Ii)i(U) :=
⋂

a∈ν(U)

∑
i∈a

Ii (22)

defines a morphism of lattices R(Ii)i : Op(P∞)→ Lat(A).

Proof. Since the map ν : P∞ → Fin \ {∅} given by (6) for N =∞ is a bijection, we have

ν(U1 ∩ U2) = ν(U1) ∩ ν(U2) and ν(U1 ∪ U2) = ν(U1) ∪ ν(U2) (23)

for any U1, U2 ∈ Op(P∞). In order to prove that R(Ii)i is a morphism of lattices, we need

to show that

R(Ii)i(U1∩U2) = R(Ii)i(U1)+R(Ii)i(U2), R(Ii)i(U1∪U2) = R(Ii)i(U1)∩R(Ii)i(U2), (24)

for all U1, U2 ∈ Op(P∞). Note that the latter of the above equalities is trivially satisfied.

To prove the former identity, first we observe that for all upper sets α1, α2 ⊆ Fin

α1 ∩ α2 = {a1 ∪ a2 | a1 ∈ α1, a2 ∈ α2}. (25)

Indeed, since a1 ⊆ a1 ∪ a2 and a2 ⊆ a1 ∪ a2, we see that the left hand side contains

the right hand side. The other inclusion follows from the fact that a = a ∪ a. Next, we

note that although the intersection in (22) is potentially infinite, there are only finitely

many ideals different from A. This fact allows us to use the distributivity of the lattice

generated by the ideals Ii. Furthermore, since ν is a homeomorphism (see below (9))

with respect to the Alexandrov topologies (open sets are upper sets), we can use (25) to

conclude that

∀ U1, U2 ∈ Op(P∞) : ν(U1 ∩ U2) = ν(U1) ∩ ν(U2) = {a1 ∪ a2 | a1 ∈ ν(U1), a2 ∈ ν(U2)}.

Combining all this together, we obtain:⋂
a∈ν(U1∩U2)

∑
i∈a

Ii =
⋂

a∈ν(U1)∩ν(U2)

∑
i∈a

Ii

=
⋂

a1∈ν(U1)

⋂
a2∈ν(U2)

(∑
i∈a1

Ii +
∑
j∈a2

Ij

)
=

⋂
a1∈ν(U1)

(∑
i∈a1

Ii +
⋂

a2∈ν(U2)

∑
j∈a2

Ij

)
=

⋂
a1∈ν(U1)

∑
i∈a1

Ii +
⋂

a2∈ν(U2)

∑
j∈a2

Ij . (26)

The result follows.

2.5. Sheaves and patterns on Alexandrov spaces. A pattern [13] is a sheaf-like

object defined on the category of closed subsets Cl(X) of a topological space X with

inclusions. Explicitly, a pattern of sets on a topological space X is a covariant functor

F : Cl(X)op → Set to the category of sets satisfying the property that, for any closed
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subset C of X and any given finite closed covering {Cλ}λ of C, the canonical diagram

F (C)→
∏
λ

F (Cλ)⇒
∏
λ,µ

F (Cλ ∩ Cµ) (27)

is an equalizer diagram. A pattern F on a topological space is called global if for any

inclusion of closed sets C ′ ⊆ C the restriction morphism F (C) → F (C ′) is an epimor-

phism.

We would like to note that for compact Hausdorff spaces Leray’s definition of faisceau

continu [11, p. 303] is equivalent to the definition of a sheaf. However, in this paper we

only consider sheaves over Alexandrov spaces which are of completely different nature,

and thus we cannot exchange these two concepts. On the other hand, for any finite

Alexandrov space, we show below that the category of global patterns and the category

of flabby sheaves are equivalent up to a natural duality.

It follows from Lemma 2.1 that the lattice of open sets of an Alexandrov space (P,6)

is isomorphic to the lattice of closed sets of the dual Alexandrov space (P,6)op. Hence:

Proposition 2.20. Let (P,6) be a finite preordered set. The category of (flabby) sheaves

on the Alexandrov space (P,6) is isomorphic to the category of (global) patterns on the

opposite Alexandrov space (P,6)op.

Proof. Since the lattice of closed subsets of (P,6)op is isomorphic to the lattice of open

subsets of (P,6), we conclude that any (flabby) sheaf on (P,6) is a (global) pattern on

(P,6)op regardless of P being finite. Conversely, assume that F is a (global) pattern on

(P,6)op, and let U be an open cover of an open subset V of (P,6). As P is finite, the

number of open and closed subsets of P is finite, so that U is a finite open cover in (P,6).

Thus U is also a finite collection of closed subsets of (P,6)op covering the closed set V

in (P,6)op. Furthermore,

F (V )→
∏
U∈U

F (U)⇒
∏

U,U ′∈U
F (U ∩ U ′) (28)

is an equalizer diagram because F is a (global) pattern on (P,6)op. Hence F is a sheaf

on the Alexandrov space (P,6).

The restriction that P is finite comes from the definition of a pattern. A pattern is

a sheaf-like object where Diagram (28) is an equalizer only for finite closed coverings, as

opposed to a sheaf where Diagram (28) is an equalizer for every (finite or infinite) open

covering.

Next, we consider a poset (P,6) as a category by letting

Ob(P ) := P and HomP (p, q) :=

{
{p→ q} if p 6 q,
∅ otherwise.

(29)

Then a covariant functor X : P → Vectk to the category of vector spaces over k is just a

collection of vector spaces {Xp}p∈P together with linear maps Tqp : Xp → Xq such that

(i) Tpp = idXp and (ii) Trq ◦ Tqp = Trp. Any such a covariant functor will be called a

right P -module. The category of right P -modules and their morphisms will be denoted by

ModP . We will call a P -module flabby if each Tpq is an epimorphism. If X : P → Algk
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is a functor into the category of k-algebras, then it will be referred as a right P -algebra.

The category of right P -algebras and their morphisms will be denoted by AlgP .

For a topological space X and a covering O of X, we say that O is stable under finite

intersections if for any finite collection O1, . . . , On of sets from O there exists a subset

O′ ⊆ O such that n⋂
i=1

Oi =
⋃

O′∈O′
O′. (30)

The above property allows us to describe the sheaf condition in a different but equivalent

form. A standard argument shows:

Lemma 2.21. Let F be a sheaf of algebras on a topological space X. Then for any open

subset U ⊆ X and any open covering U of U that is stable under finite intersections, the

canonical morphism F (U)→ limV ∈U F (V ) is an isomorphism.

The following theorem concerning sheaves of algebras is a straightforward adaptation

of a well-known result for sheaves of modules (see [3, Proposition 6.6] for a proof).

Theorem 2.22. Let (P,6) be a poset. Then the category of sheaves of k-algebras on P

with the Alexandrov topology induced by the poset structure is equivalent to the category

of P -algebras.

3. Classification of finite coverings via the universal partition space P∞. The

aim of this section is to establish an equivalence between the category of finite coverings

of algebras and an appropriate category of finitely-supported flabby sheaves of algebras.

To this end, we first define a number of different categories of coverings and sheaves.

Then we explore their interrelations to assemble a path of functors yielding the desired

equivalence of categories.

3.1. Categories of coverings. Let X be a topological space and C be a collection of

subsets of X that cover X, i.e.
⋃
U∈C U = X. We allow ∅ ∈ C. Recall that such a set C

is called a covering of X. A covering C is called finite if the set C is finite. A covering C
of a topological space X is called closed (resp. open) if C consists of closed (resp. open)

subsets of X. Let us now consider the category of pairs of the form (X, C) where X is a

topological space and C is a closed (or open) covering. A morphism f : (X, C)→ (X ′, C′)
is a continuous map of topological spaces f : X → X ′ such that for any C ∈ C there exists

C ′ ∈ C′ with the property that C ⊆ f−1(C ′). In the spirit of the Gelfand transform, we

are going to dualize this category to the category of algebras.

Let Π := {πi : A → Ai}i be a finite set of epimorphisms of algebras. We allow the

case Ai = 0 for some i. Denote by Λ the lattice of ideals generated by kerπi, where ∩
and + denote the join and meet operations respectively. Recall from [9] that the set Π

is called a covering if the lattice Λ is distributive and
⋂
i ker(πi) = 0. Finally, an ordered

family Π := (πi : A→ Ai)i is called an ordered covering if the set κ(Π) := {πi : A→ Ai}i
is a covering. In such an ordered sequence (πi : A→ Ai)i we allow repetitions.

In [9], for each natural number N , the authors defined a category CN whose ob-

jects are pairs (A;π0, . . . , πN ), where A is a unital algebra and the ordered sequence

(π0, . . . , πN ) is an ordered covering of A. (Note that herein we begin labelling cov-
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ering elements from 0 rather than from 1 as in [9].) A morphism between two ob-

jects f : (A;π0, . . . , πN ) → (A′;π′0, . . . , π
′
N ) is a morphism of algebras f : A → A′ such

that f(ker(πi)) ⊆ ker(π′i) or, equivalently, such that ker(πi) ⊆ f−1(ker(π′i)), for any

i = 0, . . . , N . This category is called the category of ordered (N+1)-coverings of algebras.

For any natural number N , there is a functor eN : CN → CN+1 defined on the set of

objects as eN (A;π0, . . . , πN ) := (A;π0, . . . , πN , A→ 0) for all (A;π0, . . . , πN ) ∈ Ob(CN ),

and as identity on the sets of morphisms. Thus eN is a faithful functor. It is also full

because, for any (A,Π) and (A′,Π′) in Ob(CN ), we have

HomCN+1
(eN (A,Π), eN (A′,Π′)) = HomCN

((A,Π), (A′,Π′)). (31)

Our next step is to introduce the category OCovfin of pairs of the form (A,Π) where A

is again a unital algebra but Π is an infinite (rather than finite) sequence of epimorphisms

A
πi→ Ai, i ∈ N, such that: (i) all but finitely many of these epimorphisms have zero

codomain and (ii) the underlying set κ(Π) of epimorphisms is a covering of A. A morphism

f : (A;π0, π1, . . .) −→ (A′;π′0, π
′
1, . . .) (32)

is a morphism of algebras f : A → A′ with the property that ker(πi) ⊆ f−1(ker(π′i)) for

any i ∈ N. Alternatively, we can define OCovfin as a colimit:

Definition 3.1. The category OCovfin := colimN∈NCN is called the category of finite

ordered coverings of algebras.

Next, recall from the beginning of this section that, in the category of topological

spaces together with a prescribed finite covering, a covering is a collection of sets devoid

of an ordering on the covering sets. Hence it is necessary for us to replace the ordered

sequences of epimorphisms in the objects of the category OCovfin by the finite sets of

epimorphisms of algebras.

Definition 3.2. Let Covfin be a category whose objects are pairs (A,Π), where A is

a unital algebra and Π is a finite set of unital algebra epimorphisms that is a covering

of the algebra A. A morphism f : (A,Π) → (A′,Π′) in this category is a morphism of

algebras f : A → A′ satisfying the condition that for any epimorphism π′i : A
′ → A′i in

the covering Π′ there exists an epimorphism πj : A → Aj in the covering Π such that

ker(πj) ⊆ f−1(ker(π′i)). This category will be called the category of finite coverings of

algebras.

If f : (A,Π)→ (A′,Π′) is a morphism in Covfin, we will say that f is implemented by

the morphism of algebras f : A → A′. Note that the matching of the epimorphisms, or

rather the kernels, is not part of the datum defining a morphism.

We also need the following auxiliary category.

Definition 3.3. The category Aux is a category whose objects are the same as the

objects of OCovfin. A morphism f : (A,Π) → (A′,Π′) in Aux is a morphism of alge-

bras f : A → A′ satisfying the property that for every π′j appearing in the sequence Π′

there exists an epimorphism πi appearing in the ordered sequence Π such that ker(πi) ⊆
f−1(ker(π′j)). As before, the matching of the epimorphisms is not part of the datum

defining a morphism.
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Now we want to prove that the categories Aux and Covfin are equivalent. Recall first

that a functor F : C → D is called essentially surjective if for every X ∈ Ob(D) there

exists an object CX ∈ Ob(C) and an isomorphism ωX : F (CX)→ X in D.

Theorem 3.4 ([12, IV. 4 Theorem 1]). Let F : C → D be a functor that is fully faithful

and essentially surjective. Then F is an equivalence of categories.

Lemma 3.5. For every object (A;π0, π1, . . .) and morphism f : (A,Π) → (A′,Π′) in the

category Aux consider the assignment

Z(A;π0, π1, . . .) := (A; {πi| i ∈ N}) ∈ Ob(Covfin) and Z(f) := f ∈ Mor(Covfin).

The assignment defines a functor Z : Aux → Covfin establishing the equivalence of cate-

gories.

Proof. One can see that

HomAux((A,Π), (B,Θ)) = HomCovfin((A, κ(Π)), (B, κ(Θ))). (33)

This implies that Z is fully faithful, and that it makes sense for the functor Z to act as

identity on the set of morphisms. Given an object (A,Π) in Covfin, one can choose an

ordering on the finite set Π and obtain an ordered sequence of epimorphisms

(π0 : A→ A0, π1 : A→ A1, . . . , πN : A→ AN ), (34)

where N := |Π| − 1. We can pad this sequence with A → 0 to get an infinite sequence

Π of epimorphisms where only finitely many epimorphisms are non-trivial. This infinite

sequence has the property that the corresponding finite set κ(Π) of epimorphisms is the

set Π∪ {A→ 0}. Since the identity morphism idA : A→ A implements an isomorphism

(A,Π ∪ {A→ 0}) −→ (A,Π) (35)

in Covfin, we infer that Z is essentially surjective. Now the result follows from Theo-

rem 3.4.

The category Aux sits in between the category OCovfin of ordered coverings and the

category Covfin of coverings:

OCovfin ↪→ Aux
'−−−→ Covfin. (36)

The definitions of morphisms in the categories Aux and Covfin coincide even though the

classes of objects are different. On the other hand, the categories OCovfin and Aux share

the same objects, but there are more morphisms in Aux than in OCovfin:

HomOCovfin((A,Π), (B,Π′)) ⊆ HomAux((A,Π), (B,Π′)). (37)

Explicitly, one can describe HomAux((A,Π), (B,Π′)) as the set of morphisms f : A→ B

of algebras for which there exists a sequence of epimorphisms Π′′ obtained from Π by

permutations and insertions of already existing epimorphisms, and such that f is a mor-

phism in HomOCovfin((A,Π′′), (B,Π′)). This can be elegantly expressed by introducing

another auxiliary category Ãux such that Aux comes out as the quotient of Ãux by an

equivalence relation on the morphisms (cf. Definition 3.6 and Lemma 3.7 below).

The reason why we prefer working with ordered sequences of epimorphisms in Aux
rather than the sets of epimorphisms in Covfin is that we want to interpret coverings in



230 P. M. HAJAC ET AL.

the language of sheaves. Working with sheaves inevitably introduces order on the set of

epimorphisms because of the particular nature of morphisms in the category of sheaves

(cf. Lemma 3.9). Fortunately, by Lemma 3.5, our auxiliary category Aux, where the

objects are based on ordered sequences, is equivalent to Covfin, the category of finite

coverings of algebras where the objects are based on finite sets of epimorphisms.

Let α : N→ N be a tame surjection from the monoid M (Definition 2.18). Any such

α gives rise to an endofunctor α̌ : OCovfin → OCovfin defined on objects by

α̌(A, (πi)i) := (A, (πα(i))i), (38)

and by identity on the morphisms.

Definition 3.6. The category Ãux is a category whose objects are the same as in

OCovfin and Aux, and whose morphisms are pairs (f, α) : (A,Π) → (A′,Π′) such that

α ∈M and

f : α̌(A,Π) −→ (A′,Π′)

is a morphism in OCovfin. The identity morphisms are simply (idA, idN), and the compo-

sition of morphisms is defined as

(g, β) ◦ (f, α) = (g ◦ (β̌f), α ◦ β).

Note that we have (β ◦ α)̌ = α̌β̌.

We define an equivalence relation on Ãux as follows. We say that two morphisms

(f, α), (f ′, α′) in HomÃux((A,Π), (A′,Π′)) are equivalent (here denoted by (f, α) ∼
(f ′, α′)) if f = f ′ as morphisms of algebras. By [12, Proposition II.8.1], we know the

quotient category Ãux/∼ exists. Moreover, it is easy to see that the relation ∼ preserves

the compositions of morphisms. Hence, by the proof of [12, Proposition II.8.1], we do not

need to extend the relation ∼ to form a quotient category. We are now ready for:

Lemma 3.7. The category Aux and the quotient category Ãux/∼ are isomorphic.

Proof. We implement the isomorphism with two functors

F : Ãux/∼ −→ Aux, G : Aux −→ Ãux/∼ , (39)

defined as identities on objects. For any equivalence class [f, α]∼ of morphisms in Ãux/∼,

we define F ([f, α]∼) := f . On the other hand, for any morphism f : (A, (πi)i∈N) →
(A′, (π′i)i∈N) in Aux, we set G(f) := [f, α]∼, where α is any element of M satisfying:

α(i) =

{
i−N for i > N,

j, where j is such that kerπj ⊆ f−1(kerπ′i), for i 6 N.
(40)

Here N ∈ N is a number such that for any i > N we have π′i := A′ → 0. It is obvious

that F ◦G = idAux and G ◦F = idÃux/∼. One can easily see that F and G are functorial

— it is enough to note that α̌f = f as morphisms of algebras.

3.2. Sheaf picture for coverings. Let Sh(P∞) be the category of flabby sheaves of

algebras over P∞. A morphism f : F → G in Sh(P∞) is a collection {fU : F (U) →
G(U)}U∈Op(P∞) of morphisms of algebras (indexed by the open subsets of P∞) that fit
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into the following commutative diagram

F (U)

ResUV (F )

��

fU // G(U)

ResUV (G)

��
F (V )

fV

// G(V )

(41)

for any chain V ⊆ U of open subsets of P∞.

Definition 3.8. A flabby sheaf F ∈ Ob(Sh(P∞)) is said to have finite support if there

exists N ∈ N such that F (An) = 0 for any n > N . The full subcategory of flabby sheaves

with finite support will be denoted by Shfin(P∞).

Here is an alternative way of seeing sheaves with finite support on P∞. Any sheaf

of algebras on PN can be extended to a sheaf of algebras on PN+1 by the direct image

functor

Sh(PN ) 3 F 7−→ (φN )∗(F ) ∈ Sh(PN+1) (42)

with respect to the canonical embedding φN : PN → PN+1 defined in Lemma 2.12. Then

we obtain an injective system of categories (Sh(PN ), jN ) whose colimit can be identified

with Shfin(P∞).

For a flabby sheaf F in Ob(Shfin(P∞)), we will use Resi(F ) to denote the restric-

tion epimorphism F (P∞) → F (Ai) for any i ∈ N. Note that, since F is a sheaf with

finite support, all but finitely many morphisms Resi(F ) are of the form F (P∞) → 0.

The following lemma is a reformulation of [9, Corollary 4.3] in our new setting. (Cf. [17,

Proposition 1.10] for a commutative version.) The proof uses Lemma 2.19 and is essen-

tially the same as in [9, Proposition 2.2]. Note that we can apply the generalized Chinese

Remainder Theorem (e.g. see [14, Theorem 18 on p. 280] and [13]) as there is always only

a finite number of non-trivial congruences.

Lemma 3.9. For any (A,Π) ∈ Ob(OCovfin) and F ∈ Shfin(P∞), the following assign-

ments

Ψ(A,Π) :=
{
U 7→ A/RΠ(U)

}
U∈Op(P∞)

∈ Shfin(P∞),

Φ(F ) := (F (P∞); Res0(F ), Res1(F ), . . . , Resn(F ), . . .) ∈ OCovfin,

yield functors establishing an equivalence between the category OCovfin of ordered cover-

ings and the category Shfin(P∞) of finitely-supported flabby sheaves of algebras over P∞.

We would like to extend the equivalence we constructed in Lemma 3.9 to an equiva-

lence of categories between Aux (and therefore Covfin) and a suitable category of sheaves

filling the following diagram:

OCovfin

Ψ '
��

// Aux

'
��

Z

'
// Covfin

Shfin(P∞) // Sh???
fin (P∞).

(43)
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As Aux is isomorphic to a quotient category, we expect Sh???
fin (P∞) to be a quotient of

the following category of sheaves with extended morphisms:

Definition 3.10. The objects of S̃hfin(P∞) are finitely-supported flabby sheaves of al-

gebras over P∞. A morphism [f̃ , α∗] : P → Q in S̃hfin(P∞) is a pair consisting of a

continuous map (see (21))

α∗ : P∞ −→ P∞, χa 7−→ χα−1(a),

where M3 α : N→ N is a tame surjection (Definition 2.18), and a morphism of sheaves

f̃ : α∗∗P → Q.

Composition of morphisms is given by

[g̃, β∗] ◦ [f̃ , α∗] := [g̃ ◦ (β∗∗ f̃), β∗ ◦ α∗].

To define Sh???
fin (P∞) as a quotient category equivalent to Aux ∼= Ãux/∼, we proceed

by first proving the equivalence of S̃hfin(P∞) and Ãux.

Lemma 3.11. Let Ψ : OCovfin → Shfin(P∞) and Φ : Shfin(P∞) → OCovfin be functors

defined in Lemma 3.9. Then the functors

Ψ̃ : Ãux −→ S̃hfin(P∞), Φ̃ : S̃hfin(P∞) −→ Ãux,

defined on objects by

Ψ̃(A,Π) := Ψ(A,Π), Φ̃(P ) := Φ(P ),

and on morphisms by

Ψ̃(f, α) := [Ψf, α∗], Φ̃[f̃ , α∗] := (Φf̃ , α),

establish an equivalence of categories between Ãux and S̃hfin(P∞).

Proof. We divide the proof into several steps.

1. (α∗)−1(Ai) = Aα(i) for all i ∈ N. Indeed,

(α∗)−1(Ai) = (α∗)−1({χa | i ∈ a ⊂ N})
= {χb | α∗(χb) = χa and i ∈ a ⊂ N}
= {χb | χα−1(b) = χa and i ∈ a ⊂ N}
= {χb | i ∈ α−1(b)}
= {χb | α(i) ∈ b ⊂ N}
= Aα(i).

2. As α is tame by assumption, α−1(a) is finite for any finite a ⊆ N. Hence α∗ is well

defined.

3. Equality α∗ = β∗ implies that α = β for any surjective maps α, β : N → N. Hence

the functor Φ̃ is well defined.

4. α∗∗Ψ = Ψα̌. Indeed, for any (A, (πi)i) ∈ Ãux, we see that

(α∗∗Ψ)((A, (πi)i)) = α∗∗(U 7→ A/R(πi)i(U))

= U 7→ A/R(πi)i((α∗)−1(U)),
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(Ψα̌)((A, (πi)i)) = Ψ̃((A, (πα(i))i))

= U 7→ A/R(πα(i))i(U).

On the other hand, the observation that for any open U ⊆ P∞ we have U =⋃
a s.t. χa∈U

⋂
i∈a

Ai combined with the result from Step (1) yield:

R(πi)i((α∗)−1(U)) = R(πi)i
(

(α∗)−1(
⋃
a s.t.
χa∈U

⋂
i∈a

Ai)
)

= R(πi)i
( ⋃

a s.t.
χa∈U

⋂
i∈a

(α∗)−1(Ai)
)

= R(πi)i
( ⋃

a s.t.
χa∈U

⋂
i∈a

Aα(i)

)
=
⋂
a s.t.
χa∈U

(∑
i∈a

kerπα(i)

)
= R(πα(i))i

( ⋃
a s.t.
χa∈U

⋂
i∈a

Ai
)

= R(πα(i))i(U).

5. Let α, β : N → N be maps from M. Then (α ◦ β)∗ = β∗ ◦ α∗. Indeed, for any

χa ∈ P∞, we obtain:

(β∗ ◦ α∗)(χa) = β∗(χα−1(a)) = χ(β−1◦α−1)(a) = χ(α◦β)−1(a) = (α ◦ β)∗(χa).

6. Ψ̃ is functorial. Indeed, take any composable morphisms (f, α) and (g, β) in Ãux.

Then the previous two steps and the functoriality of Ψ yield

Ψ̃((g, β) ◦ (f, α)) = Ψ̃((g ◦ (β̌f), α ◦ β))

= (Ψ(g ◦ (β̌f)), (α ◦ β)∗)

= (Ψ(g) ◦Ψ(β̌f)), β∗ ◦ α∗)

= ((Ψg) ◦ (β∗∗Ψf), β∗ ◦ α∗)

= [Ψg, β∗] ◦ [Ψf, α∗]

= Ψ̃((g, β)) ◦ Ψ̃((f, α)).

7. Φα∗∗ = α̌Φ. Indeed, take any P ∈ S̃hfin(P∞). Using the result of Step (1), we obtain:

(Φα∗∗)(P ) = Φ(U 7→ P (α−1(U)))

= (P (P∞), (P (P∞) 7→ P ((α∗)−1(Ai)))i)

= (P (P∞), (P (P∞) 7→ P (Aα(i)))i)

= α̌((P (P∞), (P (P∞) 7→ P (Ai))i))

= (α̌Φ)(P ).
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8. Φ̃ is functorial. The proof uses the result from the previous step, and is analogous

to the proof of Step (6).

9. The natural isomorphism η : ΨΦ→ idShfin(P∞) comes from a family of isomorphisms

of sheaves ηP : ΨΦP → P . The latter are given by the canonical isomorphisms

between the image of an epimorphism and the quotient of its domain by its kernel

(cf. [9, Proposition 2.2]): ηP,U : P (P∞)/ ker(P (P∞) → P (U)) −→ P (U). To see

that α∗∗ηP = ηα∗∗P for any sheaf P , note that α∗∗ηP : α∗∗ΨΦP = ΨΦα∗∗P −→ α∗∗P

and

(α∗∗ηP )U := ηP,(α∗)−1(U)

= P (P∞)/ker(P (P∞)→ P ((α∗)−1(U))) → P ((α∗)−1(U))

= ηα∗∗P,U .

Here the first equality is just the definition of the action of the direct image functor

on morphisms.

10. The family of maps η̃P := [ηP , id
∗
N] : Ψ̃Φ̃P → P establishes a natural isomorphism

between Ψ̃Φ̃ and id
S̃hfin(P∞)

. It is clear that η̃P ’s are isomorphisms. We know that

η is a natural isomorphism. In particular, for any α ∈ M and any morphism

f̃ : α∗∗P → Q in Shfin(P∞), the following diagram is commutative:

ΨΦα∗∗P
ηα∗∗P //

ΨΦf̃

��

α∗∗P

f̃

��
ΨΦQ

ηQ
// Q .

On the other hand, we need to establish the commutativity of the diagrams

Ψ̃Φ̃P
η̃P //

Ψ̃Φ̃[f̃ ,α∗]
��

P

[f̃ ,α∗]

��
Ψ̃Φ̃Q

η̃Q

// Q .

Using the commutativity of the first of the preceding two diagrams and the displayed

formula in Step (9), we obtain the desired:

η̃Q ◦ (Ψ̃Φ̃[f̃ , α∗]) = [ηQ, id
∗
N] ◦ [ΨΦf̃ , α∗]

= [ηQ ◦ (ΨΦf̃), α∗]

= [f̃ ◦ ηα∗∗P , α
∗]

= [f̃ ◦ (α∗∗ηP ), α∗]

= [f̃ , α∗] ◦ [ηP , id
∗
N]

= [f̃ , α∗] ◦ η̃P .
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11. By [9, Proposition 2.2]), we have ΦΨ = idOCovfin . Hence, it is easy to see that the

family of identity morphisms (idA, idN) in Ãux establishes a natural isomorphism

between Φ̃Ψ̃ and idÃux.

Our next step is to define an equivalence relation on S̃hfin(P∞). Let [f̃ , α∗], [g̃, β∗] :

P → Q be morphisms in S̃hfin(P∞). We say that they are equivalent ([f̃ , α∗] ∼ [g̃, β∗]) if

f̃P∞ = g̃P∞ as morphisms of algebras (cf. the equivalence relation on Ãux, Lemma 3.7). As

before, by [12, Proposition II.8.1], we know that the quotient category S̃hfin(P∞)/∼ exists.

Moreover, it is easy to see that the relation ∼ preserves the compositions of morphisms.

Hence, by the proof of [12, Proposition II.8.1], we do not need to extend the relation

∼ to form a quotient category. Note that the equivalence class of the morphism [f̃ , α∗]

in S̃hfin(P∞) can be represented by f̃P∞ . Therefore the quotient functor S̃hfin(P∞) →
S̃hfin(P∞)/∼ is defined on morphisms as

[f̃ , α∗] 7−→ f̃P∞ . (44)

In other words,

[f̃ , α∗]∼ := f̃P∞ . (45)

The final step to arrive at our classification of finite coverings by finitely-supported

flabby sheaves is as follows:

Lemma 3.12. The functors Ψ̃ : Ãux → S̃hfin(P∞) and Φ̃ : S̃hfin(P∞) → Ãux send

equivalent morphisms to equivalent morphisms. They descend to functors between quotient

categories

S̃hfin(P∞)
Ψ̃ //

��

Ãux

��
S̃hfin(P∞)/∼

Ψ

// Ãux/∼,

Ãux Φ̃ //

��

S̃hfin(P∞)

��
Ãux/∼

Φ

// S̃hfin(P∞)/∼ ,

(46)

establishing the equivalence of S̃hfin(P∞)/∼ and Ãux/∼.

Proof. Note that for any morphism f in OCovfin and any morphism f̃ in Shfin(P∞), we

have the following equalities of algebra maps:

(Ψf)P∞ = f, Φf̃ = f̃P∞ . (47)

It follows that, if (f, α) ∼ (g, β) in Ãux, then

Ψ̃(f, α) = [Ψf, α∗] ∼ [Ψg, β∗] = Ψ̃(g, β) (48)

in S̃hfin(P∞). Similarly, if [f̃ , α∗] ∼ [g̃, β∗] in S̃hfin(P∞), then

Φ̃[f̃ , α∗] = (Φf̃ , α) ∼ (Φg̃, β) = Φ̃[g̃, β∗]. (49)

This ends the proof.

Summarizing the foregoing results, we obtain the following commutative diagram of

functors:



236 P. M. HAJAC ET AL.

Covfin
// S̃hfin(P∞)/∼

Aux

Z
88

∼ // Ãux/∼

Ψ
77

Shfin(P∞)

OO

// S̃hfin(P∞).

OO

OCovfin

OO

Ψ
77

// Ãux

OO

Ψ̃

77

(50)

Using the above diagram, we immediately conclude the main result of this article:

Theorem 3.13. The assignments given for any (A,Π)∈Ob(Covfin), F ∈Ob(S̃hfin(P∞)/∼),

f ∈ Mor(Covfin), [f̃ , α∗]∼ ∈ Mor(S̃hfin(P∞)/∼), by the formulae

(A,Π) 7−→
{
U 7→ A/RΠ(U)

}
U∈Op(P∞)

∈ Ob(S̃hfin(P∞)/∼),

F 7−→ (F (P∞), {Res0(F ), Res1(F ), . . . , Resn(F ), . . .}) ∈ Ob(Covfin),

f 7−→ [Ψ(f), α∗f ]∼ ∈ Mor(S̃hfin(P∞)/∼),

[f̃ , α∗]∼ 7−→ f̃P∞ ∈ Mor(Covfin),

are equivalence functors between the category Covfin of finite coverings of algebras and

the quotient category S̃hfin(P∞)/∼ of the category of finitely-supported flabby sheaves of

algebras over P∞ with extended morphisms. Here (A,Π) is the image of (A,Π) under an

equivalence functor inverse to Z, and αf is a tame surjection defined as in (40).

Observe that the equivalence functors of the above theorem are, essentially, identity

on morphisms. This is because, on both sides of the equivalence, morphisms considered

as input data are only algebra homomorhisms (see (45) and Definition 3.2). They do,

however, satisfy quite different conditions to be considered morphisms in an appropriate

category. Thus the essence of the theorem is to re-interpret the natural defining conditions

for an algebra homomorphism to be a morphism of coverings to more refined conditions

that make it a morphism between sheaves. What we gain this way is a functorial de-

scription of coverings by the more potent concept of a sheaf. We know now that lattice

operations applied to a covering will again yield a covering.

We end this section by stating Theorem 3.13 in the classical setting of the Gelfand-

Neumark equivalence [6, Lemma 1] between the category of compact Hausdorff spaces and

the opposite category of commutative unital C*-algebras. Since the intersection of closed

ideals in a C*-algebra equals their product, the lattices of closed ideals in C*-algebras are

always distributive. Therefore, remembering that the epimorphisms of commutative uni-

tal C*-algebras can be equivalently presented as the pullbacks of embeddings of compact

Hausdorff spaces, we obtain:

Corollary 3.14. The category of finite closed coverings of compact Hausdorff spaces

(see the beginning of this section) is equivalent to the opposite of the quotient category

S̃hfin(P∞)/∼ of finitely-supported flabby sheaves of commutative unital C*-algebras over

P∞ with extended morphisms.



FINITE CLOSED COVERINGS OF COMPACT QUANTUM SPACES 237

Acknowledgements. This work was partially supported by the Polish Government

grants N201 1770 33 (PMH, BZ), 189/6.PRUE/2007/7 (PMH), and the Argentinian

grant PICT 2006-00836 (AK). Part of this article was finished during a visit of AK at

the Max Planck Institute in Bonn. The Institute support and hospitality are gratefully

acknowledged. We are very happy to thank the following people for discussions and advice:

Paul F. Baum, Pierre Cartier, George Janelidze, Tomasz Maszczyk, and Jan Rudnik. We

are also grateful to the referee for his/her suggestions to improve the paper. Finally, we

would like to extend our deepest gratitude to Chiara Pagani for all her work at the initial

and final stages of this paper.

References

[1] A. P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano and P. Teoto-

nio-Sobrinho, Noncommutative lattices as finite approximations, J. Geom. Phys. 18 (1996),

163–194.

[2] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, R.I., 3rd edition,

1967.
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