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Abstract. The Levi-Civita functional equation f(gh) =
∑n

k=1 uk(g)vk(h) (g, h ∈ G), for scalar

functions on a topological semigroup G, has as the solutions the functions which have finite-

dimensional orbits in the right regular representation of G, that is the matrix elements of G.

In considerations of some extensions of the L-C equation one encounters with other geometric

problems, for example: 1) which vectors x of the space X of a representation g 7→ Tg have orbits

O(x) that are “close” to a fixed finite-dimensional subspace? 2) for which x, O(x) is contained

in the sum of a fixed finite-dimensional subspace and a finite-dimensional invariant subspace?

3) what can be said about a pair L, M of finite-dimensional subspaces if TgL ∩M 6= {0} for all

g ∈ G? 4) which finite-dimensional subspaces L have the property that for each g ∈ G there

is 0 6= x ∈ L with Tgx = x? The problem 1) arises in the study of the Hyers–Ulam stability

of the L-C equation. It leads to the theory of covariant widths — the analogues of Kolmogorov

widths which measure the distances from a given set to n-dimensional invariant subspaces. The

problem 2) is related to multivariable extensions of the L-C equation; the study of this problem

is based on the theory of subadditive set-valued functions which was developed specially for

this aim. To problems 3) and 4) one comes via the study of the equations
∑m

i=1 ai(g)bi(hg) =∑n
j=1 uj(g)vj(h). We will finish by the consideration of “fractionally-linear version” of the L-C

equation which is very important for the theory of integrable dynamical systems.

1. Introduction. The Levi-Civita functional equation

f(x+ y) =
n∑
i=1

ai(x)bi(y) (1)
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was originally considered in the present form by Stéphanos [17], Levi-Civita [5] and
Stäkel [16] for differentiable functions on R. Its general solution (even in the class of all
measurable functions) is a quasipolynomial of n-th order:

f(x) =
n∑
k=1

Pk(x)eλkx,

where Pk are polynomials,
∑n
k=1(degPk + 1) = n.

These equations, in the form

f(gh) =
n∑
i=1

ai(g)bi(h) (2)

can be considered for functions on arbitrary semigroup G. For abelian groups this situa-
tion was considered by Székelyhidi in 1982 [18]; the general case — by the author in 1994
[10]. Such an extension is quite natural because it relates the problem with the group
representation theory, and even the equation (1) on R is much more transparent from
the point of view of this theory. Indeed, if we are looking for the solutions of (2) in some
functional space X on G we just need to consider the representation of G by the right
shifts on X and note that f satisfies (2) if and only if its orbit O(f) = {f(gh) : h ∈ G}
is contained in a subspace of dimension ≤ n. So the study of equations (2) is related to
the study of the vectors with finite-dimensional orbits in the representation spaces (finite
vectors). To formulate the general result and for further discussion we need to recall the
following notion.

Definition 1.1. A function f on a (topological) semigroup G is called a matrix element
if there is a (continuous) representation T of G on a finite-dimensional space X, a vector
ξ ∈ X and a functional η ∈ X∗ such that f(g) = 〈T (g)ξ, η〉. The dimension of X is called
the order of the matrix element f .

The set of all matrix elements of order n is denoted by Mn(G).
The following result is based on the fact that matrix elements are precisely the finite

vectors of regular representations.

Theorem 1.2 ([10, 11]). Let G be a unital topological semigroup. A continuous function
f : G → C satisfies (2) if and only if it is a matrix element of order n. If f is bounded
then the corresponding representation can be chosen to be bounded.

For many classical groups all finite-dimensional representations are described and their
matrix elements are well known. For instance, for the group of circle T the matrix elements
are trigonometrical polynomials. The matrix elements of Rn are quasi-polynomials in n

variables, that is the functions of the form
N∑
k=1

e(λk,x)Pk(x),

where all Pk are polynomials, λk ∈ Cn. This implies the classical result of Levi-Civita.

The theory developed for Levi-Civita equation extends naturally in many directions.
Dealing with such extensions we will always try to formulate and discuss the correspond-
ing problems in the setting of the representation theory.
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Before presenting the main results of the paper, we note that apart from the general
equations (2) it is important to study its specifications, that is the equations that arise
from (2) when some additional conditions on the functions f, ai, bi are imposed. Among
them are the equations of Cauchy, Pexider, Lobachevsky, Gauss, Jensen, Thielman and
many others (see [1]). The solutions of particular specifications are of course the matrix
elements of G, but it needs sometimes considerable efforts to handle them precisely even
if the (semi)group is such that its matrix elements are transparently described.

In this paper we gather some results on the representation theory approach to the
functional equations (2) and related topics. Most of them were obtained in papers of
the author; we present also some theorems of Székelyhidi, Buchstaber, Braden and other
mathematicians; a few new results are also included (with full proofs).

2. Covariant n-widths and stability of the Levi-Civita equation. The stability of
an equation in the Ulam–Hyers sense means, roughly speaking, that each function which
“almost satisfies” the equation is “close” to a precise solution of the equation. It turns
out that the Levi-Civita equation is stable when considered in various functional classes
on amenable groups [11]. The proof of such results uses some approximation technique
for subsets of a Banach space in which a representation of a topological group acts.

Indeed, suppose that a bounded function f on G almost satisfies (2) in the sense that

∣∣∣f(gh)−
n∑
i=1

ai(g)bi(h)
∣∣∣ < δ, (3)

for all g, h ∈ G, where δ > 0. This means that all functions g 7→ f(gh) are on the
distance < δ (in the uniform metric) from the subspace L, spanned by the functions
ai(g), i = 1, . . . , n. In other words, the orbit O(f) of f is on the distance ≤ δ from L.
On the other hand, let f be on the distance < ε from some function φ, satisfying the
equation

φ(gh) =
n∑
i=1

ui(g)vi(h).

Then the linear span L′ of O(φ) is contained in the linear span of {u1, . . . , un} and so
dimL′ ≤ n. Thus O(f) is on the distance ≤ ε from an invariant subspace of dimension
≤ n. This leads to a general problem from the representation theory: given a represen-
tation g 7→ Tg of a group G on a Banach space X, for any invariant subset K ⊂ X

to estimate its distance to n-dimensional invariant subspaces of X via the distances to
arbitrary n-dimensional subspaces.

The minimal distance of a set from n-dimensional subspaces is called its n-width. More
precisely, for each n ∈ N, let Ln(X) be the set of all subspaces L ⊂ X with dimL ≤ n.
The n-width pn(K) of a bounded subset K ⊂ X is defined by the condition

pn(K) = inf
L∈Ln

sup
x∈K

dist(x, L). (4)

The technique of n-widths is a useful tool of the approximation theory; for K = AB1(X)
where A is a bounded linear operator, B1(X) the unit ball of X, the n-widths pn(K) are
called singular numbers of A, they play an outstanding role in the operator theory.
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So let T be a representation of a group G on X. We introduce a covariant version
pGn (K) of n-widths replacing the set Ln in (4) by the subset LGn ⊂ Ln of all G-invariant
subspaces:

pGn (K) = inf
L∈LG

n

sup
x∈K

dist(x, L). (5)

Clearly, pn(K) ≤ pGn (K). The following two statements show that sometimes an opposite
type estimate holds.

Theorem 2.1 ([11]). Let Tg be a unitary representation of a group G on a Hilbert
space H, and K ⊂ H be an invariant subset. Then

pGn (K) <
√
n+ 1 pn(K).

For the general Banach spaces we have to restrict the class of groups and our estimates
are more complicated.

Theorem 2.2 ([11]). Let G be an amenable group. For any n ∈ N, C > 0 and ε > 0, there
exists δ > 0 such that, if T is an isometric dual representation and K is a G-invariant
subset with pn(K) < δ and supx∈K ‖x‖ ≤ C, then pGn (K) < ε.

This implies stability of the Levi-Civita equation for bounded functions on amenable
groups:

Theorem 2.3 ([11]). Let G be an amenable locally compact group. Then for any ε > 0,
C > 0 and n ∈ N, there is δ > 0 such that, if f ∈ L∞(G) with ‖f‖ < C satisfies the
condition ∣∣∣f(gh)−

n∑
i=1

ai(g)bi(h)
∣∣∣ < δ, (6)

for all g, h ∈ G, where ai, bi are some functions on G, then there exists φ ∈Mn(G) with
‖f − φ‖ < ε.

Using Theorem 2.1 we obtain more precise estimates for the case of compact groups.

Theorem 2.4 ([11]). Let G be a compact group. If f ∈ L2(G) satisfies (6) for almost all
g, h, then there is φ ∈Mn(G) with ‖f − φ‖2 < (n+ 1)1/2δ.

Now we turn to unbounded solutions of (2). For the general geometric background
we should consider a representation T of a group G on a topological linear space X that
contains an invariant subspace Y which is supplied with a T -invariant complete norm
‖ · ‖Y , such that the inclusion (Y, ‖ · ‖Y )→ X is continuous.

Let us say that a set E ⊂ X is on the finite ‖ · ‖Y -distance from a subset F ⊂ X if
there is C > 0 such that for any x ∈ E, there is z ∈ F with x− z ∈ Y and ‖x− z‖Y < C.

Theorem 2.5 ([11]). Suppose that G is amenable. For a vector x ∈ X, the following
conditions are equivalent :

(i) x = y + z, where y ∈ Y , z is contained in an invariant subspace of dimension ≤ n;

(ii) there is an n-dimensional subspace L of X such that the orbit of x is on the finite
‖ · ‖Y -distance from L.
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Applying this result to the regular representation of G on the space X of Haar-
measurable functions on G and the subspace Y = L∞(G) of X, we obtain

Corollary 2.6 ([11]). A measurable function f on an amenable group G satisfies the
condition

sup
g,h∈G

∣∣∣f(gh)−
n∑
i=1

ui(g)vi(h)
∣∣∣ <∞,

for some measurable functions ui, vi, if and only if f = φ + f1, where f1 ∈ Mn(G),
φ ∈ L∞(G).

As with the Levi-Civita equation itself, one can obtain some consequences for speci-
fications of (2). For example, the following result follows from Corollary 2.6.

Corollary 2.7 ([11]). A measurable function f on a locally compact group G satisfies
the condition

sup
g,h∈G

|f(gh)− f(g)f(h)| <∞

if and only if it is either bounded or multiplicative.

3. A generalization of the Levi-Civita equation related to richly periodic
spaces of functions

3.1. Special subspaces in G-spaces. In this section we study the functional equation

m∑
i=1

ai(g)bi(hg) =
n∑
j=1

uj(g)vj(h), g, h ∈ G; (7)

it reduces to (2) when m = 1 and a1(g) = 1.
Considering both parts of (7) as functions of h, one can look at the equation in a

more geometrical way. Indeed, it says that for each g ∈ G the element fg =
∑m
i=1 ai(g)bi

has the property that its shift Tgfg belongs to the span of {vi}. If we assume that the
m-tuple (ai)mi=1 is linearly independent (this clearly does not reduce generality) and not
all functions bi are zero, then fg is non-zero for g in a non-void open subset of G. It is
not difficult to translate this into the terms of representations.

Let T be a representation of a group G on a linear space X. We will call a finite-
dimensional subspace L of X special (locally special), if there is a finite-dimensional sub-
space S ⊂ X such that for each g ∈ G (respectively, for each g in a non-empty open
subset of G), there is a non-zero vector x ∈ L with Tgx ∈ S.

Clearly, a finite-dimensional subspace containing a finite vector is special. Our result
on (locally) special subspaces says that the converse is true:

Theorem 3.1 ([14]). Let G be a topological group and T be a continuous representation
of G on a linear topological space X. Then each special subspace of X contains a finite
vector. If G is connected then the same is true for locally special subspaces.

In other words, a minimal (locally) special subspace is one-dimensional.
This has a flavor of stability. Let us say that two subspaces L1, L2 of X are “close”,

if their intersection is non-zero. Then the assertion is: if each element of the orbit of
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a finite-dimensional subspace L is “close” to a finite-dimensional subspace S then L is
“close” to a finite-dimensional invariant subspace.

To obtain a description of continuous solutions of equation (7) we apply the previ-
ous result to the right regular representation of G on the space C(G) of all continuous
functions on G. As we know, in this case finite vectors are just the matrix elements of G.

Corollary 3.2 ([14]). Let continuous functions ai, bi (i = 1, . . . ,m) and uj , vj (j =
1, . . . , n) on a connected topological group G satisfy the equality (7). If the functions ai
are linearly independent, then all bi are matrix elements.

Remark 3.3. The statement of Corollary 3.2 remains true if we assume that the condi-
tion (7) holds for all h ∈ G and all g ∈ U , where U is a non-void open subset of G such
that the restrictions of a1, a2, . . . , am to U form a linearly independent set.

As an example of an application of Corollary 3.2 let us consider the equation

f(z) =
n∑
k=0

(z − y)kgk(y) + (z − y)nh(z), z, y ∈ R, z 6= y, n ≥ 1. (8)

It was shown by Cross and Kannappan [4] that all solutions of (8) are polynomials. This
result can be deduced from Corollary 3.2 because the change of variables x = z − y

reduces this equation to the form

f(x+ y)− xnh(x+ y) =
n∑
k=0

xkgk(y) (9)

which is a special case of (7) with G = R. By Corollary 3.2, functions f and h (and,
therefore, all gk) are quasipolynomials. The simple analysis of coefficients of the dominant
exponent shows that all these quasipolynomials are, as a matter of fact, polynomials.

3.2. Singular spaces. Let us study the special case of equation (7)
m∑
k=1

ak(g)bk(hg) =
m∑
k=1

ak(g)bk(h). (10)

Under some additional assumptions (for example, if all ai are linearly independent and
not all bi are zero) the equality means that the linear hull of {b1, . . . , bm} in C(G) contains
non-zero functions f with any period g ∈ U , where U is a non-empty open subset of G:
f(hg) = f(h) for all h ∈ G.

In terms of representations the situation can be described as follows. Let as above T
be a continuous representation of a connected topological group G on a linear topological
space X. Let us call a finite-dimensional subspace L ⊂ X singular (locally singular) if for
each g ∈ G (respectively, for each g ∈ U , where U is a non-void open subset of G), there
is a non-zero x ∈ L with

Tgx = x. (11)

Clearly, each locally singular subspace is locally special and, therefore, it contains a
finite vector, by Theorem 3.1. Furthermore, since each locally singular subspace contains
a minimal locally singular subspace, and each subspace containing a locally singular
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subspace is locally singular, it suffices to study the structure of minimal locally singular
subspaces.

Lemma 3.4 ([14]). Let L be a locally singular subspace. Then the subspace Lf consisting
of all finite vectors in L is also locally singular.

Corollary 3.5. Each minimal locally singular subspace consists of finite vectors and,
as a consequence, is contained in a finite-dimensional invariant subspace.

Further analysis shows that the structure of minimal locally singular spaces depends
on the group. Restricting ourselves to the case of a commutative group G let us consider
two principal cases: the class of compact groups and the groups Rn.

Let us say that a vector x is fixed for a representation T of G if x 6= 0 and Tgx = x for
all g ∈ G. In this case the subspace Cx is singular. The following theorem shows that, in
the case of compact group, all minimal singular subspaces are of this form, that is, have
dimension 1.

Theorem 3.6 ([14]). If G is a compact connected abelian group, then each locally singular
subspace of X contains a fixed vector.

Note that it can be reformulated as a somewhat unusual result on fixed points.

Corollary 3.7. Let G be a compact connected abelian group of linear maps of a real
Banach space X and let W be a finite-dimensional subset of X. If each operator g ∈ G
has a fixed point in W then G has a common fixed point in W .

Proof. Let us denote by L the linear span of W and by P the projection of L onto the
subspace of all common fixed points for G,

P =
1

µ(G)

∫
G

g dµ,

where µ is the Haar measure on G. Let W1 = (1 − P )W . If 0 ∈ W1 then W ∩ PX 6= ∅
and we are done.

Suppose that 0 /∈ W1 and let us prove that span(W1) is a singular subspace. Indeed,
any g ∈ G has a fixed vector x ∈ W , therefore (1− P )x ∈ W1 is also fixed for g since it
is non-zero by our assumption and g(1− P )x = (1− P )gx = (1− P )x.

Therefore, by Theorem 3.6, span(W1) contains a common fixed vector for G; this
contradicts to the fact that all such vectors belong to PX while span(W1) ⊂ (1−P )X.

In the next subsection we will see that in the other special case, G = Rn, the situation
is different, so the condition of compactness cannot be dropped in Theorem 3.6. To see,
that the commutativity condition is also essential, note that the space R3 is singular
with respect to the proper orthogonal group O+

3 (each element of O+
3 is a rotation and

therefore has a fixed vector). It is easy to check that it is minimal.

3.3. Richly periodic spaces of functions on Rn. In this subsection we consider
the singular subspaces for the group G = Rn. Clearly a finite-dimensional subspace
M ⊂ C (Rn) is singular (locally singular) if, for each vector a ∈ Rn (respectively, for each
a in an open subset of Rn), M contains a non-zero function with the period a:

f(x+ a) = f(x), x ∈ Rn. (12)
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So the study of locally singular subspaces in C(Rn) is the study of finite-dimensional
subspaces of functions that have a “rich” set of periods.

Theorem 3.8 ([14]). Any (locally) singular subspace L ⊂ C(Rn) contains a (locally)
singular subspace that consists of polynomials.

Thus each minimal singular space consists of polynomials. To see an example of a
minimal singular subspace of dimension > 1 in C(Rn), for n > 1, it suffices to consider
the space of all functions of the form ax1 + bx2, where a, b ∈ R.

Theorem 3.9 ([14]). A minimal locally singular subspace M of polynomials in n variables
has dimension ≥ m+ 1 where m = max{deg(f) : f ∈M}. This estimate is strict.

Now we can (partially) describe solutions of functional equation (10) for G = Rn:

Corollary 3.10. Let continuous functions ak, bk (k = 1, . . . ,m) on Rn satisfy the equal-
ity

m∑
k=1

ak(x)bk(x+ y) =
m∑
k=1

ak(x)bk(y) (13)

for all x, y ∈ Rn. If ai are linearly independent then all bk are polynomials.

4. Multivariable versions of the Levi-Civita equation

4.1. Decomposable functions. The solutions of the Levi-Civita equation (1) are those
functions f for which f(x + y) belongs to the algebra generated by functions of one
variable. It is natural to raise the problem: to describe functions f for which f(x1+. . .+xn)
belongs to the algebra generated by functions of fewer variables.

This problem is still not solved in full generality; here we confine ourselves to a more
special condition. To formulate it maximally transparently, let us begin with the case of
functions of three (real) variables. In this case, instead of the general relation

f(x+ y + z) =
N∑
i=1

ai(x, y)bi(y, z)ci(x, z),

we study solutions of the following functional equation:

f(x+ y + z) =
n∑
i=1

ai(x)Ai(y, z) +
m∑
i=1

bi(y)Bi(x, z) +
k∑
i=1

ci(z)Ci(x, y). (14)

In general we deal with functions on arbitrary topological semigroup G and impose the
condition that f(g1g2 · · · gn) is a sum of products of functions depending on disjoint sets
of variables. We call such functions f decomposable. Clearly it suffices to consider the
products of two factors:

f(g1g2 · · · gn) =
∑
E

NE∑
j=1

uEj v
E
j , (15)

where E runs through all proper non-empty subsets of {1, 2, . . . , n}, NE ∈ N and for
each E, the functions uEj only depend on variables gi with i ∈ E, while the vEj only
depend on gi with i /∈ E (the general case is reduced to this one by joining different
groups of variables). All functions (f , uEj , vEj ) can be considered as unknown, but in fact
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we obtain only a description of f , which also gives sufficiently rich information about the
structure of uEj , vEj .

Clearly, every matrix element of G admits an addition theorem of the form (15). It
turns out that in a quite general situation the equation (15) does not have other solutions
apart from the matrix elements.

To workout a more geometric approach to the problem, let us return to equation (14).
It is not difficult to deduce from this equation that all functions Ci can be written in the
form Ci(x, y) = Di(x+ y) +

∑
k α

i
k(x)βik(y). Substituting this into (14) we obtain

f(x+ y + z)−
K∑
i=1

ci(z)Di(x+ y) =
R∑
r=1

ur(x, z)vr(y, z). (16)

Let us fix z and denote by w (= wz) the function t 7→ f(t+z)−
∑K
i=1 ci(z)Di(t). Then (16)

shows that w satisfies the Levi-Civita equation. By Theorem 2, w is a matrix element,
that is, a finite vector of the right regular representation T . Hence Tzf −

∑K
i=1 ci(z)Di is

a finite vector. Denoting by L the linear span of the functions Di we see that Tzf belongs
to the sum of L and a finite-dimensional invariant subspace. So we come to the following
problem of the representation theory:

Let T be a representation of G on X, x ∈ X, and suppose that for each h ∈ G,

Thx ∈ L+ Vh,

where L is a fixed finite-dimensional subspace and each Vh is a G-invariant subspace
of restricted dimension: dimVh ≤ N . Does it imply that G-orbit of x is contained in a
finite-dimensional subspace?

Setting L̃ = L + Cx one can, after some additional simplifications, reformulate the
problem as follows:

Let N ∈ N and let, for each h ∈ G, there exists an invariant subspace Wh with
dimWh ≤ N such that

ThL̃ ⊂ L̃+Wh. (17)

Is G-orbit of L̃ contained in some finite-dimensional subspace L0?

One can show that there is a smallest Wh satisfying (17).
It is natural to try to construct the subspace L0 in the form

L0 = L̃+
∑
h∈G

Wh.

We have TghL̃ ⊂ L̃+Wgh and, on the other hand,

TghL̃ ⊂ Tg
(
L̃+Wh

)
⊂ L̃+Wh +Wg.

By the minimality of Wh, we obtain that

Wgh ⊂Wg +Wh. (18)

This condition of subadditivity of a subspace-valued function on a semigroup plays a key
role in what follows. We have to deduce from (18) and the assumption

sup
h∈G

dimWh <∞ (19)
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that all Wh are contained in a common finite-dimensional invariant subspace, or, equiv-
alently,

dim
(∑
h∈G

Wh

)
<∞. (20)

4.2. Topologically finitely generated semigroups. If G is finitely generated, then
the implication

(18) ∧ (19) =⇒ (20)

is straightforward. The condition of finite generateness allows also to overcome further
obstacles and to describe decomposable functions on such semigroups as matrix elements.
We will obtain more general results related to this approach. To formulate them, let us
call a continuous function f on a topological semigroup a locally matrix element if its
restriction to any finitely generated subsemigroup H ⊂ G is a matrix element of H.

To distinguish the notions of a matrix element and a locally matrix element let us
consider the following example.

Let G = Z∞, the group of all sequences x = (x1, x2, . . . ) of integers with only finite
numbers of non-zero components. Let us set f(x) =

∑∞
k=1 x

k
k. It is not difficult to check

that the functions f(x)−f(x+ej), where {ej}∞j=1 is the standard basis in Z∞, depend on
different components of x and therefore are linearly independent. Thus the orbit of f(x)
in the regular representation of G is infinite-dimensional, f is not a matrix element of G.
On the other hand, f is a locally matrix function. To see this it suffices to consider its
restrictions to subgroups Zk, because each finitely generated subgroup of G is contained
in some Zk. Clearly f |Zk satisfies an equation of the form (1) whence it is a matrix element
of Zk.

Theorem 4.1 ([13]). Let f be a continuous function on a unital topological semigroup G.
If, for some n ≥ 2, f satisfies (15), then f is a locally matrix element of G.

Of course for topologically finitely generated semigroups the theorem establishes that
the solutions of (15) are matrix elements. This is true for a more wide class of topological
semigroups.

Let us call a topological semigroup G approximately finitely generated if there is k ∈ N
such that G is the closure of an increasing sequence of subsemigroups with k generators.

For example the semigroup Rk+ is approximately k-generated, non-being topologically
finitely generated.

Corollary 4.2. If, in the assumptions of Theorem 4.1, G is approximately finitely gen-
erated, then f is a matrix element.

As a consequence we have the following result:

Corollary 4.3. All continuous functions on Rn or Rn+ satisfying the equation (15) are
quasipolynomials.

4.3. Subadditive set-valued functions on groups. Here we describe an approach
that enables us to show that bounded decomposable functions on groups are matrix ele-
ments. It is based on the consideration of special set-valued maps.
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Given a semigroup G and a set Ω let us call a map F : G 7→ 2Ω subadditive if

F (gh) ⊂ F (g) ∪ F (h) for all g, h ∈ G. (21)

We study the following problem: suppose that each F (g) contains ≤ n elements, does
it imply that all F (g) are contained in a finite set? If yes, what can one say about its
cardinality?

We will denote the cardinality of a set A by |A|.
It is not difficult to check that for each semigroup with finite number k of generators,

all F (g) are contained in a set of the cardinality not larger than kn.
One can also show that the same is true if G is approximately k-generated semigroup.
On the other hand, the free abelian semigroup F∞ with generators {ei : i ∈ N} does

not have this property. Indeed, set Ω = N. Each g ∈ F∞ can be uniquely written in the
form g =

∑
i∈K niei, for some finite subset K of N, with ni ≥ 1, i ∈ K. Let us define

F (g) as the one-element set {ig} where ig is the maximal element in K. Clearly F is
subadditive, |F (g)| = 1 for every g ∈ G and

⋃
g∈G F (g) = N.

The following result says that for each group, the answer is positive.

Theorem 4.4 ([15]). Let F be a subadditive set-valued function on a group G and let
supg∈G |F (g)| = n ∈ N. Then |

⋃
g∈G F (g)| ≤ 4n. If, in addition, F (g−1) = F (g), for all

g ∈ G, then |
⋃
g∈G F (g)| ≤ 2n.

It can be shown that the constant 4 in Theorem 4.4 cannot be replaced by any C < 2.
There is an analogue of the theorem for the maps to the measure spaces.
Let M(Ω, µ) be the σ-algebra of measurable subsets of a measure space (Ω, µ). For

A,B ∈ M(Ω, µ), we write A ⊂ B if µ(B \ A) = 0. In this sense we understand the
subadditivity condition (21).

Theorem 4.5 ([15]). Let G be a group, F : G → M(Ω, µ) a subadditive map. If
µ(F (g)) ≤ a, for some a > 0 and all g ∈ G, then there is an A ∈ M(Ω, µ) such
that µ(A) ≤ 4a and F (g) ⊂ A for all g ∈ G.

Now we will formulate a result on the Hyers–Ulam stability of the condition (21).
Let δ > 0; for A,B ∈M(Ω, µ), we write A ⊂δ B if µ(A \B) < δ.
A map F : G→M(Ω, µ) is called δ-subadditive if

F (gh) ⊂δ F (g) ∪ F (h) for all g, h ∈ G. (22)

It is natural to consider such maps for sufficiently small δ; in the following theorem we
impose the corresponding restriction.

Theorem 4.6 ([15]). Let F : G → M(Ω, µ) be a δ-subadditive function on a group G

and µ(F (g)) < a for all g ∈ G. Assume that δ < a/3. Then there is a set K ⊂ Ω such
that µ(K) ≤ 6a and F (g) ⊂8δ K.

4.4. Subadditive subspace-valued maps. Let S(X) be the lattice of all closed sub-
spaces of a Banach space X; by the sum of a finite or infinite family of subspaces we
mean the closure of the linear span of their union. The subspace-valued map on a group
G is just a map F : G→ S(X). A subspace-valued map F is called subadditive if

F (gh) ⊂ F (g) + F (h) for all g, h ∈ G. (23)
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Clearly (18) means that the map g 7→Wg is subadditive; this shows that subadditive
subspace-valued maps naturally arise in the theory of functional equations.

Subadditive subspace-valued maps can be considered as “noncommutative analogue”
of subadditive set-valued maps; the counterpart of the cardinality of the set F (g) is the
dimension dimF (g) of the subspace F (g). Our aim is to establish a non-commutative
analogue of Theorem 4.4, that is to prove that the image of F is contained in a subspace
of restricted dimension if dimensions of all F (g) are bounded by a common constant.

Assume that all subspaces F (g), for g ∈ G, are finite-dimensional, and set

n(F ) = sup
g∈G

dimF (g), N(F ) = dim
∑
g∈G

F (g). (24)

In general, the inequality N(F ) < Cn(F ) and even the implication n(F ) < ∞ =⇒
N(F ) <∞ do not hold, as the following example shows.

Example 4.7. Let G = X be considered as a group with respect to the addition. For
each 0 6= x ∈ G, let F (x) = Cx, the one-dimensional subspace of X containing x. Let also
F (0) = {0}. Then clearly F is a subadditive map of G to S(X), n(F ) = 1, N(F ) =∞.

We obtain a positive result assuming that all F (g) are invariant subspaces of a uni-
formly bounded representation of finite multiplicity in a Banach space.

Let T be a representation of a group Γ on X, and let π be an irreducible representation
of Γ. Let us say that π occurs in T if there is an invariant subspace Y ⊂ X such that
the restriction T |Y of T to Y is equivalent to π. In this case we call Y a π-subspace.
Furthermore π occurs with finite multiplicity in T if the linear span Yπ of all π-subspaces
in X is finite-dimensional (equivalently, the number of elements in any family of linearly
independent π-subspaces does not exceed some number m = m(π, T )).

Let us say that T is an fm-representation if each irreducible representation of Γ which
occurs in T occurs with finite multiplicity. Moreover if the multiplicity m(π, T ) of each
occurring in T irreducible representation π can be evaluated via the dimension of this
representation:

m(π, T ) ≤ φ(dimπ),

where φ : R→ R is an increasing function, then we say that T has uniform multiplicity φ.
We will consider representations by bounded operators on Banach spaces; a represen-

tation T is uniformly bounded if supg∈G ‖Tg‖ <∞.

Theorem 4.8 ([15]). Let T be a uniformly bounded fm-representation of a group Γ and
E be the structure of all finite-dimensional T -invariant subspaces. Let G be a group and
F : G→ E be a map such that

F (g1g2) ⊂ F (g1) + F (g2)

and dimF (g) ≤ n for each g ∈ G. Then
∑
g∈G F (g) is finite-dimensional. Moreover if T

has uniform multiplicity φ then

dim
(∑
g∈G

F (g)
)
≤ (4n− 1)nφ(n).
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The main idea of the proof is to relate to F the set-valued function f : G→ 2Ω, where
Ω is the set of all (equivalence classes of) bounded irreducible representations of G, by
setting

f(g) = {π ∈ Ω : π occurs in T |F (g)}.

The condition of finite multiplicity provides that Theorem 4.4 can be applied.

If T is the left regular representation of Γ on the space Cb(Γ) of all bounded continuous
functions on Γ, then each Yπi is the space of all matrix elements of πi, therefore

φ(dim(π)) = dim(π) ≤ n.

Thus T is a bounded fm-representation of Γ of uniform multiplicity φ(t) = t, and we get
the estimate

dim
∑
g∈G

F (g) ≤ (4n− 1)n2.

Arguing as in Section 4.1 we deduce from Theorem 4.8 the following result which is also
in spirit of stability, because it establishes that, to prove that a finite-dimensional subspace
L is contained in a finite-dimensional invariant subspace, it is sometimes sufficient to know
that the image of L under each operator Tg is close to L in some sense.

Theorem 4.9 ([15]). Let T be the left regular representation of a group G on the space
X = Cb(G), and let n ∈ N. Suppose that a finite-dimensional subspace L ⊂ X has the
property that for any g ∈ G, there is an invariant subspace L(g) ⊂ X with dimL(g) ≤ n
and the condition

TgL ⊂ L+ L(g)

holds. Then L is contained in a finite-dimensional invariant subspace L̃ of X such that

dim L̃ ≤ dimL+ (4n− 1)n2.

This gives us the possibility to obtain the following description of bounded decom-
posable functions.

Theorem 4.10 ([15]). A bounded continuous function f on a topological group G satisfies
(15) if and only if it is a matrix element of G.

5. Addition theorems of rational type

5.1. Functional equations and integrable Hamiltonian systems. Here we discuss
functional equations of the type

f(t+ s) =
∑n
i=1 yi(t)ui(s)∑m
j=1 zj(t)vj(s)

. (25)

Again, by a solution of (25) we mean a function f for which there exist functions
yi, ui, zj , vj satisfying (25); thus we actually speak about functions that admit an ad-
dition theorem of rational type. Obviously, we may assume that the functions yi (as well
as ui, zj , vj) are linearly independent.

It should be noted that equations (25) arise in a wide variety of situations. Let us
consider how they occur in the context of integrable systems of particles on the line
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(see, e.g., [2]). Let q1(t), q2(t), . . . , qn(t) be the coordinates of N particles on the line,
interacting with the integrable potential

∑N
k=1 U(qj − qk). Then the dynamics of the

system is described by the system of ODE

q̈ =
N∑
k=1

U(qj − qk), j = 1, 2, . . . , n. (26)

Such a dynamical system is said to admit a Lax representation if it is equivalent to the
matrix equation L̇ = [L,M ], where L and M are matrix-valued functions of qi and pi.
It follows from this representation that the functions Jk = 1

k tr{Lk} (k = 1, 2, . . . , n) are
integrals of the system (26). If it is proved that they are independent and in involution,
then the system is completely integrable.

Since it is difficult to find a Lax pair for a given equation, usually one operates
in reverse order: postulates a form of matrices L and M and then seeks restrictions
necessary to obtain a given equations (26). These restrictions typically involve the study
of functional equations.

For example, starting with the ansatz{
Ljk = pjδjk + g(1− δjk)A(qj − qk),

Mjk = g
[
δjk
∑
l 6=k B(qj − ql)− (1− δjk)C(qj − qk)

]
one finds that L̇ = [L,M ] yields the equations of motion (26) for the Hamiltonian system

H =
1
2

N∑
j=1

p2
j + g2

∑
j<k

U(qj − qk), U(x) = A(x)A(−x) + const,

provided that C(x) = −A′(x) and the functions A(x) and B(x) satisfy the functional
equation

A(x+ y) =
A(x)A′(y)−A′(x)A(y)

B(x)−B(y)
. (27)

In the same sense the functional equation

φ(t+ s) =
α(t)α′(s)− α′(t)α(s)
β(t)β′(s)− β′(t)β(s)

(28)

is associated with the relativistic Calogero–Moser systems.
We will not concentrate on other examples, but note that in all works only analytic

solutions of (25) were sought.

5.2. Reduction to the system of ODEs. Our approach to analysis of such functional
equations is based on the reduction of (25) to an overdetermined system of ordinary
differential equations. We assume that all functions yi and zj are continuously differen-
tiable on some interval I1 ∈ R, all functions ui and vj are continuously differentiable on
some interval I2 ∈ R, and the function f is continuously differentiable on some interval
I ⊃ (I1 + I2). Let us introduce two notions.

Definition 5.1. We say that the families {yi}ni=1 and {zj}mj=1 are jointly linearly inde-
pendent if the family {yizj}i,j is linearly independent.
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The failure of the joint linear independence for families {yi}ni=1 and {zj}mj=1 partici-
pating in (25) often leads to an excessive simplification of the equation; for example (27)
in this case reduces to the Levi-Civita equation and therefore its solutions, satisfying this
conditions are quasipolynomials. So we restrict ourselves to the study of solutions with
jointly linearly independent {yi}ni=1 and {zj}mj=1 as well as {ui}ni=1 and {vj}mj=1.

Theorem 5.2 ([12]). In the assumption of the joint linear independence, the functional
equation (25) holds for some differentiable function f if and only if there exist constants
Cijlk such that {

y′izj − yiz′j =
∑
l,k C

ij
lkylzk, i ≤ n; j ≤ m,

u′ivj − uiv′j =
∑
l,k C

lk
ij ulvk, i ≤ n; j ≤ m.

(29)

Basing on Theorem 5.2 one can obtain a description of a “generic” class of functions
admitting addition theorem (25).

Definition 5.3. We say that the families {yi}ni=1 and {zj}mj=1 are jointly quadratically
dependent if they satisfy the nontrivial relation

n∑
i,l=1

m∑
j,k=1

Cijlkyi(t)zj(t)yl(t)zk(t) = 0

where Cijlk are constants.

Theorem 5.4 ([12]). Let f be a function satisfying (25). Then, either the families {yi}
and {zj} are jointly quadratically dependent, or f is a ratio of quasipolynomials.

5.3. The case of quadratically dependent families. Theorem 5.4 shows that the
“degenerated” cases are the most interesting ones. Moreover, in specifications of (25) that
arise in the theory of Hamiltonian systems, the quadratic dependence of families {yi}ni=1

and {zj}mj=1 (as well as {ui}ni=1 and {vj}mj=1) holds automatically. Here we discuss the
solutions in this case, restricting ourselves to the very important for applications case
m = n = 2.

The system of ODEs (29) in this case can be after some change of variables reduced
to a system, containing as a main part the following:

(z′ − P2(z))2 = P4(z)(
y′ − P̃2(y)

)2 = P̃4(y)

R(y, z) = 0.

Here P2 and P̃2 are polynomials of degree 2, P4 and P̃4 are polynomials of degree 4 while
R(y, z) is a polynomial in two variables of degree 2 in each of them; it can written in the
form:

R(y, z) = (x2, x, 1)A(y2, y, 1)T , (30)

where A is an arbitrary 3×3 matrix.
The first two equations in the above system lead to the important conclusion that

y and z are the inversion of some elliptic integrals [12]. Their implicit expressions were
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obtained in the same work for the equations of “symmetric” class

f(t+ s) =
y(t)u(s)− u(t)y(s)
z(t)v(s)− v(t)z(s)

, (31)

which includes many “physical” equations, e.g. (28) and (27). Namely all differentiable
solutions of (31) are given by the formula

f(x) = Ceλx
Φ(x; ν1)
Φ(x; ν2)

, where Φ(x; ν) =
σ(ν − x)
σ(ν)σ(x)

eζ(ν)x.

Here σ(x) and ζ(x) are the Weierstrass sigma and zeta functions, Φ(x; ν) is called the
Baker–Akhiezer function. For the same class of equations, all analytic solutions were
earlier found by Braden and Buchstaber [2]. Thus the approach in [12], based on the
study of the system (29)), shows that removing the assumption of analyticity does not
change the form of solution.

Lundberg [7] have managed to obtain the general solution of (25) (for m = n = 2) in
the class of continuous real-valued functions. This was done in two stages: all meromorphic
solutions were found in [6], then all continuous ones — in [7]. The results of [6] were
based on the classification of all polynomials R(y, z) defined by (30), up to the special
equivalence of matrices A induced by all admissible changes of variables in (29); this
classification was obtained in [6] by means of complicated calculations using computer
math-programs. For the step “from meromorphic to continuous solutions”, a very elegant
technique of “sequential derivatives” was developed and applied.

5.4. A related equation. We will finish by the study of the functional equation

f(x+ y)
f(x− y)

=
g(x) + g(y)
g(x)− g(y)

(32)

which was introduced by P. McGill in his work [8] on Brownian motion. In [9] he found
all meromorphic solutions (f, g). They are divided into the following six classes (we list
only the components g because the corresponding functions f can be found with the aid
of the formula g′(z)/g(z) = 2f ′(0)/f(2z)):

(a) g(z) = Az,
(b) g(z) = A sinπz,
(c) g(z) = A tanπz,
(d) g(z) = A sn(z; k),
(e) g(z) = A sd(z; k),
(f) g(z) = A sc(z; k).

Here and below we use the standard notation for the Jacobi elliptic functions. The func-
tions in the list are normalized by rotation and dilation in such a way that the periods
are 2 and 4ωi (ω > 0); the parameter k only depends on ω.

Now we will see that the approach based on the system (29) allows one to find easily
all solutions of (32) in a wider class of all functions having two derivatives on some
interval of the real axis.
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Theorem 5.5. All solutions of the equation (32) in C2(a, b) are described by the formulas
(a)–(f) above.

Proof. By differentiating and some transformations, equation (32) can be reduced to the
form (25):

f ′(x+ y)
f(x+ y)

=
g(x)g′(y)− g′(x)g(y)

g2(x)− g2(y)
. (33)

It follows from (32) that g(0) = 0, which implies, in particular, the joint linear inde-
pendence for families {g, g′} and {g2, 1}. Further, since f is not a constant function and
f ′(x)/f(x) = g′(0)/g(x), we have g′(0) 6= 0. Writing the system of differential equations
(29) for (33) we conclude that

c11
21 = 1, c12

22 = −1, c22
12 = −c21

11

and all other coefficients are equal to zero. Thus, the system (29) has the form{
g′′ = ag + cg3,

g′′g2 − 2g(g′)2 = bg − ag3,

where a = c21
11, b = c21

12, c = c21
11. The last system is equivalent to the equation

(g′)2 =
c

2
g4 + ag2 − b

2
.

Note that b 6= 0 since g′(0) 6= 0 and g(0) = 0. So, for y = g
√
−2/b we obtain the

differential equation

(y′)2 = 1 + ay2 − bc

4
y4. (34)

The degenerated case c = 0 gives us, respectively, g = Ax when a = 0, and
g = sinAx , when a 6= 0. (This corresponds to points (a) and (b) from McGill’s list
of solutions.)

If c 6= 0 the solution of (34) is y(x) = sn(εx; k)/ε, with (1+k2)ε2 = −a, k2ε4 = −bc/4
(see, e.g., [3]). Thus,

g(x) =

√
− b

2
sn(εx; k)

ε
. (35)

The parameter k2 takes values in C \ {0, 1}. The exceptional case k2 = 1 leads to g(x) =
A tanx, while the case k = 0 corresponds to c = 0 and was already considered. The
equalities i sc(u; k) = sn(iu; k′), k′ sd(u; k) = sn(k′u;−ik/k′) (see, e.g., [19]) show that
we obtain exactly the list (a)–(f).
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