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Abstract. The purpose of this paper is to give a survey on some recent results concerning

spectral analysis and spectral synthesis in the framework of vector modules and in close connec-

tion with the Levi-Civita functional equation. Further, we present some open problems in this

subject.

1. Basic concepts and example. In this paper R, resp. C, denotes the set of real,
resp. complex numbers. All topological spaces in the paper are supposed to be Hausdorff.

Let R be a ring and let X be a topological vector space. We say that X is a vector
module over R if X, as an Abelian group, is a module over R, and for each r in R the
mapping x 7→ r · x is a continuous linear operator on X. If R has a unit e, then we
require that the corresponding linear operator x 7→ e · x is the identity operator on X.
We remark that if no topology is specified on X, then we always consider it with the
discrete topology. By a vector submodule, or simply a submodule of a vector module we
mean a linear subspace, which is also a vector module over R, with the same meaning
of r · x, of course. A closed vector submodule is called a variety. The intersection of any
nonempty family of submodules, resp. varieties, is a submodule, resp. variety. For any x
in X the smallest submodule, resp. variety, is the intersection of all submodules, resp.
varieties, including x, which is called the submodule, resp. variety, generated by x.

If X is a topological vector space, then L(X) denotes the algebra of all continuous
linear mappings, that is, the linear operators on X. On L(X) one usually considers
the strong operator topology, hence all topological concepts on this space refer to that
topology. In this topology a generalized sequence (Ai)i∈I of operators converges to the
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operator A if and only if the generalized sequence
(
Ai(x)

)
i∈I converges to A(x) in X for

each x in X.
Let X be a topological vector space and R a ring. By a representation of the ring

R on X we mean a homomorphism of R into L(X). If R is a topological ring and this
homomorphism is continuous, then we call it a continuous representation. If R has a unit,
then we require that it is mapped onto the identity operator. Similarly, if an algebra A
is given, then by a representation of this algebra on X we mean a representation of the
ring on X, which is also a homomorphism of the linear space structure of A. Continuity
of an algebra representation is meant in the obvious way.

Theorem 1.1. Let X be a topological vector space and suppose that a representation of
the ring R is given on X. If at this representation the element r of R is mapped onto the
operator Ar in L(X), then, by defining r · x = Arx for each r in R and x in X, X is a
vector module over R. Every vector module uniquely arises in this way.

Proof. Let Φ : R→ L(X) denote the given representation, that is,

Φ(r) = Ar

holds for each r in R. Then we have for each x, y in X and r, s in R

r · (x+ y) = Ar(x+ y) = Arx+Ary = r · x+ r · y ,
(r + s) · x = Ar+sx = Φ(r + s)(x) = Φ(r)(x) + Φ(s)(x) = Arx+Asx = r · x+ s · x ,

(rs) · x = Arsx =
(
ArAs

)
x = Ar

(
Asx) = r · (s · x) ,

hence X, as an Abelian group, is a module over R. As Ar is continuous, X is a vector
module.

Suppose now that X is a vector module over the ring R. Then, by definition, the
mapping Ar : x 7→ r · x is a continuous linear mapping, that is, a linear operator on X,
and clearly the mapping Φ : r 7→ Ar is a representation of R on X, which induces the
given vector module structure on X.

The uniqueness statement is obvious.

This theorem shows that any vector module can be realized as an ordered pair con-
sisting of a topological vector space X and a ring of linear operators on X. This is similar
to the situation of ordinary modules: these are pairs consisting of an Abelian group and
a ring of endomorphisms of it. In the case of vector modules the submodules are exactly
those subspaces, which are invariant under the operators belonging to the given ring.
But these are exactly those linear subspaces of X which are invariant under the linear
operators belonging to the operator algebra generated by the ring of linear operators in
question. Hence, in what follows, we may always suppose that our vector modules over
rings are actually vector modules over operator algebras of linear operators on the given
topological vector space. More exactly, we shall consider vector modules over operator
algebras, by which we mean a topological vector space X together with a unital algebra
A of linear operators on X. Hence submodules of this vector module are exactly the
A-invariant subspaces of X. Here we give some simple examples.
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1. Let X be a vector space over the field F . Then scalar operators in L(X), that
means, the scalar multiples of the identity, form an operator algebra A on X and
X is a vector module over A. Submodules are exactly the linear subspaces of X.

2. LetX be a topological vector space and A a linear operator onX. ThenX is a vector
module over the operator algebra AA generated by A. We always suppose, unless
the contrary is explicitly stated, that this algebra includes the identity operator,
too. Submodules are exactly the A-invariant linear subspaces of X.

3. Let X = CN denote the vector space of all complex sequences with the product
topology and let τ be the shift operator defined by

(τx)n = xn+1

for each sequence (xn)n∈N in X and n in N . Then X is a vector module over the
operator algebra Aτ generated by the shift operator. Submodules are exactly the
shift invariant linear spaces of sequences.

2. Vector modules, group representations and group actions. Let X be a topo-
logical vector space and G a group. By a representation of G on X we mean a homo-
morphism of G into L(X), where the unit element of G is mapped onto the identity
operator. If G is a topological group and the homomorphism is continuous, then we call
it a continuous representation. If T denotes this homomorphism, then let AT denote the
subalgebra in L(X) generated by the image of G under T . Obviously, AT is the set of
all finite linear combinations of operators of the form T (g) with g in G. Then X is a
vector module over the operator algebra AT . We say that this vector module is induced
by the representation T . Submodules are those linear subspaces which are invariant under
all operators T (g) with g in G. We may call them G-invariant subspaces, however these
depend not just on G, but rather on T . We remark that if T is a representation of G
on X, then we may write Tg instead of T (g).

Let E be a topological space and suppose that a topological group G is given which
acts continuously on E. This means, that a continuous map π : G× E → E is given with
π
(
g1, π(g2, a)

)
= π(g1g2, a) and π(e, a) = a for each a in E and g1, g2 in G, where e

denotes the unit element of G. The map π will be referred to as an action of G and the
function x 7→ π(g, x) will be denoted by πg for each g in G.

Let X be an arbitrary topological vector space of complex valued functions on E.
Suppose that this function space is π-invariant, which means that for any f in X and g

in G the function Tπ(g)f , defined by

Tπ(g)f(a) = f
(
π(g, a)

)
(1)

whenever a is in E, belongs to X. Suppose, moreover, that f 7→ Tπ(g)f is a linear operator
on X. Then Tπ : g 7→ Tπ(g) is a representation of G on X. In this case we say that this
representation is induced by the action π.

This means that if a continuous action of G on E is given which induces the repre-
sentation Tπ of G on the π-invariant function space X, then X becomes a vector module
over the algebra ATπ

. The vector submodules of X are exactly those linear subspaces
of X which are π-invariant. If an action π of G on E is given and X is a π-invariant
function space on E, then we may call X a π-module.
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3. Spectral analysis and spectral synthesis on vector modules. Let X be a vector
module over the algebra A. We say that A-spectral analysis, or simply spectral analysis,
holds on X, if every nonzero submodule in X has a nonzero finite-dimensional submodule.
We say that A-spectral synthesis, or spectral synthesis, holds on X, if for each submodule
X0 in X the sum of all finite-dimensional vector submodules of X0 is dense in X0.
If A is of the form AA, or AT , resp. ATπ , as above, then we speak about A-spectral
analysis and A-spectral synthesis, or T -spectral analysis and T -spectral synthesis, resp.
π-spectral analysis and π-spectral synthesis. Clearly, if X is nonzero, then A-spectral
synthesis implies A-spectral analysis on X. Here we give some simple examples.

1. Obviously spectral synthesis holds for each nonzero finite-dimensional vector mod-
ule.

2. Let X be a nonzero topological vector space over a field F . Then, as we have
seen, X is a vector module over the algebra of scalar operators and submodules are
exactly the linear subspaces of X. It follows that spectral synthesis holds on X, as
every subspace is the sum of all finite-dimensional subspaces of it.

3. This example shows the connection between spectral analysis and the invariant
subspace problem (see e.g. [1], [26]). Let X be a topological vector space and A a
linear operator in L(X). As we have seen, X is a vector module over the algebra
AA and the submodules are exactly the A-invariant linear subspaces of X. Hence
A-spectral analysis for X is equivalent to the existence of a nonzero finite-dimen-
sional invariant subspace of A.

4. Suppose that X is a Banach space and A is a compact operator on X. By the spec-
tral theory of compact operators, X is the sum of A-invariant subspaces and each
eigensubspace corresponding to a nonzero element of the spectrum of A is finite-
dimensional. It follows that A-spectral analysis holds on X. Moreover, A-spectral
synthesis holds on X if and only if the kernel of A is finite-dimensional.

The purpose of this paper is to give a survey on some recent results concerning spectral
analysis and spectral synthesis in the framework of vector modules. Further, we present
some open problems in this subject.

4. The Levi-Civita functional equation. The following theorem is of fundamental
importance.

Theorem 4.1. Let X be a vector module over the algebra A. Spectral analysis holds on X
if and only if for each submodule X0 there is a positive integer n and there are linearly
independent vectors x1, x2, . . . , xn in X0 such that

Axi =
n∑
j=1

λi,j(A)xj (2)

holds for i = 1, 2, . . . , n and for each A in A with some functions λi,j : A → C. In
particular, they satisfy the system of functional equations

λi,j(AB) =
n∑
k=1

λk,j(A)λi,k(B) (3)

for each A,B in A and for i, j = 1, 2, . . . , n.
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Proof. Suppose that spectral analysis holds on X and X0 a nonzero submodule. Let
{x1, x2, . . . , xn} be a basis of a finite-dimensional submodule of X0. Then for each i, j =
1, 2, . . . , n there exist complex numbers λi,j such that (2) holds for i = 1, 2, . . . , n and for
each A in A. Putting AB for A in (2) we get

ABxi =
n∑
j=1

λi,j(AB)xj . (4)

On the other hand, we have

A(Bxi) = A
( n∑
k=1

λi,k(B)(xk)
)

=
n∑
k=1

n∑
j=1

λi,k(B)λk,j(A)xj . (5)

By the linear independence of the xj ’s we get

λi,j(AB) =
n∑
k=1

λk,j(A)λi,k(B) (6)

and the necessity of the conditions of the theorem is proved.
Conversely, suppose that the conditions in the theorem are satisfied with some ele-

ments x1, x2, . . . , xn in X0 and functions λi,j : G → C (i, j = 1, 2, . . . , n). Then, by (2),
the subspace in X0 spanned by x1, x2, . . . , xn is nonzero and A-invariant, hence spectral
analysis holds on X.

The functional equation in (3) is called Levi-Civita equation. Clearly, the functions
λi,j define a representation Λ of the algebra A on the Hilbert space Cn in the following
way: let {e1, e2, . . . , en} denote the standard orthonormal basis in Cn, where the j-th
component of ei is δi,j , the Kronecker’s symbol and we use the Euclidean inner product
〈ei, ej〉 = δi,j for i, j = 1, 2, . . . , n. Then, for each A in A we let

〈Λ(A)ei, ej〉 = λi,j(A) ,

whenever i, j = 1, 2, . . . , n. By (3) it follows

Λ(AB) = Λ(A)Λ(B)

for each A,B in A, which proves our statement. Obviously, Λ(A) can be realized as an
n × n matrix. If A is unital, then Λ(I) is the identity matrix and if A is closed under
taking inverses, then for each invertible operator A in A the matrix Λ(A) is regular:

Λ(I) = Λ(AA−1) = Λ(A)Λ(A−1) ,

which implies
Λ(A)−1 = Λ(A−1) .

Hence, in this case Λ : A → GLn(C) is a representation of the group of invertible
operators in A.

According to our remarks and to the terminology in [19], vectors satisfying a system
of equations of the form (2) are called matrix elements. More exactly, an element x in X
is called a matrix element if it is contained in a finite-dimensional submodule. Clearly,
an element of a vector module is a matrix element if and only if it generates a finite-
dimensional variety. Using this terminology we can formulate the following theorem.
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Theorem 4.2. Let X be a vector module over the algebra A. Spectral analysis holds on X
if and only if each nonzero submodule of X contains a matrix element. Spectral synthesis
holds on X if and only if in each submodule X0 the matrix elements in X0 span a dense
subspace in X0.

In the case of commutative A we have the following theorem.

Theorem 4.3. Let X be a vector module over the commutative algebra A. Spectral analy-
sis holds on X if and only if in each nonzero submodule there exists a common eigenvector
for A.

Proof. Clearly, if x 6= 0 is a common eigenvector for all operators in A, then the one-
dimensional subspace spanned by x is an invariant subspace of all operators in A, hence
it is a one-dimensional submodule. Conversely, if spectral analysis holds on X and X0 is
a nonzero finite-dimensional submodule, then, by commutativity, there exists a common
eigenvector in X0 of all operators in A.

5. Spectral synthesis and group actions. Concerning spectral analysis and synthesis
with respect to group actions we use the concept of matrix elements, as well. Obviously,
we have the corresponding theorems 4.2 and 4.3, too.

Here we give a simple example for spectral analysis and synthesis with respect to
a group action. Let E 6= {0} be a complex vector space, let X denote the set of all
complex valued functions on E equipped with the topology of pointwise convergence and
with the linear operations. Then X is a locally convex topological vector space. Let G
be the multiplicative group {1,−1}. We define the action π of G on E by π(ε, x) = εx

for ε in G and x in E. Obviously X is π-invariant. By (1), we have Tπ(1)f = f and
Tπ(−1)f(a) = f(−a) = f̌(a) for each a in E. It follows that a subspace X0 of X is
π-invariant if and only if it contains f̌ for each f in X0. On the other hand, common
eigenfunctions of Tπ(1) and Tπ(−1) are exactly the nonzero even functions:

f̌ = f

and the nonzero odd functions:
f̌ = −f.

Hence spectral analysis holds for X if and only if every nonzero submodule X0 contains
either an even or an odd function. But if X0 is nonzero, then for any nonzero f in X0

we have that the function f̌ , consequently, also the even function 2fe = f + f̌ and the
odd function 2fo = f − f̌ belong to X0. As f = fe + fo, it follows that either fe or fo
is nonzero, hence spectral analysis holds on X. Finally, by f = fe + fo, we have that
actually spectral synthesis holds on X, too.

6. Decomposition of vector modules. Let X be a vector module over the algebra A.
The family (Xi)i∈I of nondense submodules of X is called a decomposition of X if the
sum of the Xi’s is dense in X. Clearly, if the family (Xi)i∈I is a decomposition of X, then
so is the family (Xcl

i )i∈I . This implies that we can always suppose that the members of
a decomposition are closed, that is, they are varieties. It follows that a decomposition
has at least two different nonzero members. We say that X is decomposable if it has a
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decomposition. It is obvious that X is decomposable if and only if it is the closure of the
sum of two proper subvarieties. If X is not decomposable, then we call it indecomposable.
A matrix element is called indecomposable if it generates an indecomposable variety,
which is—by definition—finite-dimensional.

Theorem 6.1. Let X be a vector module over the algebra A. Every finite-dimensional
variety can be expressed uniquely as the sum of finitely many indecomposable varieties.
Every matrix element can be expressed uniquely as the sum of finitely many indecompos-
able matrix elements.

Proof. If X0 is an indecomposable variety, then we are ready. If not, then X0 is the closure
of the sum of two submodules A,B ⊆ X0, which are not dense inX0. As finite-dimensional
subspaces of X0 are closed, it follows that X0 is the sum of the two proper nonzero
subspaces A,B. If both are indecomposable, then the proof is finished. Otherwise we
can repeat this argument and decompose either A or B, or both into proper subvarieties.
Continuing this process the dimensions decrease, hence after finitely many steps we arrive
at a finite decomposition of X0 into indecomposable submodules and the proof of the first
statement is complete. The second statement is just a reformulation of the first one.

As a consequence we get the following theorem.

Theorem 6.2. Let X be a vector module over the algebra A. Spectral analysis holds on X
if and only if each nonzero submodule in X contains a nonzero finite-dimensional inde-
composable variety, or, equivalently, contains a nonzero indecomposable matrix element.
Spectral synthesis holds on X if and only if in each submodule the indecomposable matrix
elements span a dense subspace.

Let G be a topological group. Then G acts continuously on C(G), the space of con-
tinuous complex valued functions on G equipped with the pointwise linear operations
and the uniform convergence on compact sets. Two natural actions are induced by the
left translation τy defined by τyf(x) = f(y−1x) and by the right translation ρy defined
by ρyf(x) = f(xy) for each f in C(G), x, y in G. In this paper we call these actions the
left regular action and the right regular action of G, respectively. If G is commutative,
then we call them regular action. Closed subspaces in C(G) invariant with respect to both
the left and the right regular actions are called two-sided varieties. In the commutative
case we may omit the adjective “two-sided”. In particular, if G is a topological group
and spectral analysis, respectively spectral synthesis, holds on every two-sided variety in
C(G), then we say that spectral analysis, respectively spectral synthesis, holds on G. Ac-
tually, spectral synthesis and spectral analysis in this situation is the classical setting of
these spectral problems. Results in this respect can be found in the discrete Abelian case
in [11], [3], [20], [21], [22], [2], [9], [23], [10], in the case G = R in [18], in the case G = Rn
in [4] and in the case of nondiscrete Abelian or compact nonabelian groups in [25].

If G is a commutative topological group, then matrix elements have a more explicit
description. We call the continuous function m : G→ C an exponential if it is a homomor-
phism of G into the multiplicative group of nonzero complex numbers. The continuous
function a : G → C is called an additive function if it is a homomorphism of G into
the additive group of complex numbers. The continuous function p : G → C is called a
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polynomial if it has the form

p(x) = P
(
a1(x), a2(x), . . . , an(x)

)
(7)

for each x in G, where n is a positive integer, P is a complex polynomial in n variables
and a1, a2, . . . , an : G → C are additive functions. The function ϕ : G → C is called an
exponential monomial if it is the product of an exponential and a polynomial. Finally, lin-
ear combinations of exponential monomials are called exponential polynomials. For more
about polynomials and exponential polynomials on groups see e.g. [20]. By Theorem 3.4.8
on p. 45 in [20] it follows that exponential monomials, hence also exponential polyno-
mials, in particular polynomials are matrix elements with respect to the regular action.
Moreover, by Theorem 5.2.1 on p. 76, the converse is also true: every matrix element is
an exponential polynomial. The following theorem gives further information on matrix
elements.

Theorem 6.3. Let G be a commutative topological group. Then the indecomposable ma-
trix elements with respect to the regular action are exactly the exponential monomials.

Proof. Suppose that ϕ 6= 0 is an exponential monomial of the form

ϕ(x) = p(x)m(x) = P
(
a1(x), a2(x), . . . , an(x)

)
m(x)

for each x in G, where m is an exponential and p is a nonzero polynomial. Suppose that
τ(ϕ), the variety generated by ϕ, is the closure of the sum of two subvarieties, none of
them being dense in τ(ϕ). As τ(ϕ) is of finite dimension, it follows that

τ(ϕ) = A+B ,

where A,B are proper subvarieties of τ(ϕ). This means that

p(x)m(x) = ϕ1(x) + ϕ2(x) (8)

holds for each x in G with some exponential polynomials ϕ1 in A and ϕ2 in B. By
Theorem 3.4.3 on p. 42 in [20] the representation of exponential polynomials as a sum
of different nonzero exponential monomials is unique, hence in (8) we have ϕ1 = 0 or
ϕ2 = 0, which implies either B = τ(ϕ) or A = τ(ϕ). This is a contradiction and ϕ is
indecomposable.

Conversely, suppose that ϕ is an indecomposable exponential monomial. If there ap-
pear at least two different exponential monomials in the canonical representation of ϕ
as a sum of exponential monomials, then clearly τ(ϕ) is a sum of at least two proper
subvarieties, which is impossible. Hence ϕ is an exponential monomial and the theorem
is proved.

7. Duals and annihilators. Let X be a vector module over the algebra A. Then A∗,
the set of the adjoints of the operators in A, is an algebra of operators on the space X∗,
hence we can naturally consider X∗ as a vector module over the algebra A. This vector
module will be called the dual module of the vector module X over A. Clearly

A∗ϕ(x) = ϕ(Ax) (9)

holds for each ϕ in X∗, A in A and x in X.
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We recall that if V is a subset of X, then the annihilator V ⊥ of V in X∗ is defined by

V ⊥ = {ϕ : ϕ ∈ X∗, ϕ(x) = 0 for x ∈ V }

and similarly, if I is a subset of X∗, then its annihilator I⊥ in X is defined by

I⊥ = {x : x ∈ X, ϕ(x) = 0 for ϕ ∈ I} .

Then V ⊥ and I⊥ are closed subspaces in X∗ and in X, respectively. If X is locally convex,
then so is X∗ and if V , respectively I is a closed subspace in X, respectively in X∗, then
we have

V ⊥⊥ = V, and I ⊆ I⊥⊥ .

Nevertheless, the second inclusion may be proper (see [10], p. 4). In addition, the closed
subspace V is a variety in X if and only if V ⊥ is an ideal in X∗.

The following statement is well-known.

Lemma 7.1. Let X be a locally convex topological vector space and V ⊆ X a closed
subspace. Then X∗/V ⊥ is isomorphic to V ∗.

Actually, the natural homomorphism Φ on X∗ mapping each ϕ in X∗ onto its restric-
tion to V is a topological isomorphism between X∗/V ⊥ and V ∗.

Let G be a locally compact topological group and consider the left regular action of G.
It is well-known that the dual of X = C(G) can be identified with the space X∗ =Mc(G)
of compactly supported complex Borel measures on G. The space Mc(G) is an algebra
with unit under convolution. Actually, the algebra A generated by the operators T ∗y in
L(X∗) is a dense subalgebra of Mc(G). Indeed, for each y in G and µ in M(G) we have

T ∗y µ(f) = µ(Tyf) =
∫
f(yx) dµ(x) =

∫ ∫
f(zx) dµ(x) dµy(z) = (µy ∗ µ)(f) ,

where µy is the Dirac measure supported by the point y in G. All the convolution oper-
ators of the form µ 7→ µy ∗ µ form a weak*-dense subalgebra in Mc(G). It follows that
G-invariant subspaces, resp. G-varieties, inMc(G) are exactly the subspaces, resp. closed
subspaces, of Mc(G), which are invariant under all convolution operators corresponding
to elements in Mc(G). In other words, submodules, resp. varieties, in the vector module
Mc(G) over the left regular action of G are exactly the left ideals, resp. the closed left
ideals, of the ring Mc(G).

8. Noetherian modules. We recall that a ring is called a Noetherian ring, if the set
of its ideals satisfies the ascending chain condition, that is, any ascending chain of ideals
must stop after finite number of steps. Similarly, a module is called a Noetherian module,
if the set of its submodules satisfies the ascending chain condition.

Theorem 8.1. Suppose that G is a discrete Abelian group and spectral analysis holds
on G. Then spectral synthesis holds on G if and only if the dual of every variety in C(G),
which has a unique minimal subvariety, is a Noetherian ring.

Proof. Suppose first that spectral synthesis fails to hold for G. Then, by the results
in [10], the torsion free rank of G is infinite. It follows that G has a subgroup H, which
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is isomorphic to the direct product of ℵ0 copies of Z, say H =
∏
n∈N Zn, where Zn = Z

for each n = 0, 1, . . . . Let pn denote the projection of H onto Zn, that is

pn(x) = x(n)

for each x : N → Z in H and n in N . Then pn : H → C is a homomorphism of H into
the additive group of C, that is

pn(x+ y) = pn(x) + pn(y)

holds for all x, y in H and n in N. It is well-known that any homomorphism of a subgroup
of an Abelian group into a divisible Abelian group can be extended to a homomorphism
of the whole group. As the additive group of complex numbers is obviously divisible,
the homomorphisms pn of H can be extended to complex homomorphisms of the whole
group G. We shall denote the extensions by pn, too. Let Vn denote the smallest variety in
C(G) containing pm for all m = n, n+ 1, . . . . Clearly the constant functions belong to the
variety V = V0, and they form a one-dimensional variety, which is minimal. Obviously
Vn ⊇ Vn+1 for all n. We show that pn is not in Vn+1. Clearly, the linear hull Wn of the
translates of the set {pm : m = n, n + 1, . . . } is generated by the functions 1, pm with
m = n, n + 1, . . . . On the other hand, Vn is the closure of Wn. Hence, if pn is in Vn+1,
then it is the limit of a net in Wn+1, that is

pn(x) = lim
α

[
λα +

∞∑
m=n+1

λα,mpm(x)
]

holds for each x in G. Here (λα), (λα,m) are nets of complex numbers, where λα,m 6= 0
holds for at most a finite number of m’s. Putting x = 0 we get

lim
α
λα = 0 ,

hence

pn(x) = lim
α

∞∑
m=n+1

λα,mpm(x) (10)

holds for each x in G. Let x(m) denote the element of H for which x(m)(k) = 1 for k = m

and x(m)(k) = 0 for k 6= m (m, k ∈ N). Then putting x = x(n) in (10) we have

1 = pn(x(n)) = lim
α

∞∑
m=n+1

λα,mpm(x(n)) = 0 ,

a contradiction. This means that the varieties Vn form a descending chain of cardinality
ℵ0 of proper varieties in V , hence, their annihilators in V ∗ form an ascending chain of
proper ideals, which does not terminate after finitely many steps. Now we show that V has
no other minimal subvariety than the one formed by the constant functions. Supposing
that V has a nonzero subvariety V0, which does not contain the constant functions, then
V0, by spectral analysis on G, contains an exponential m 6= 1. Hence m is in V and, as
above, m is the limit of a net in W0, that is

m(x) = lim
α

[
λα +

∞∑
m=0

λα,mpm(x)
]
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holds for each x in G. Here (λα), (λα,m) are nets of complex numbers, where λα,m 6= 0
holds for at most a finite number of m’s. Putting x = 0 we get

lim
α
λα = 1 ,

hence

m(x) = 1 + lim
α

∞∑
m=0

λα,mpm(x) (11)

holds for each x in G. Putting x + y for x in (11) and subtracting (11) from the new
equation we get

m(x)
(
m(y)− 1

)
= lim

α

∞∑
m=0

λα,mpm(y) (12)

for all x, y in G. Repeating this with (12) instead of (11) we have

m(x)
(
m(y)− 1

)2 = 0 (13)

for all x, y in G. As m 6= 1 there is a y in G for which m(y) 6= 1, and we have a contradic-
tion. This means that V has a unique minimal subvariety, and an infinite descending chain
of proper subvarieties. The annihilators of these subvarieties form an ascending chain of
ideals in V ∗, which does not terminate after finitely many steps. This contradicts to the
fact that V ∗ is a Noetherian ring.

To prove the converse we suppose that spectral synthesis holds on G. Then, by the
results in [23], the torsion free rank of G is finite, say n ≥ 0. By the results in [24] there
are linearly independent complex homomorphisms αi : G→ C for i = 1, 2, . . . , n such
that each complex homomorphism of G is a linear combination of these functions. By
the linear independence of the α’s there exist elements xj , j = 1, 2, . . . , n, such that the
matrix (αi(xj))ni,j=1 is regular. Let e(i) denote the element in Cn whose i-th component
is 1, all the others being 0 (i = 1, 2, . . . , n). For each k = 1, 2, . . . , n we consider the
system of linear equations

e
(k)
i =

n∑
j=1

λk,jαj(xi)

where i = 1, 2, . . . , n for the unknowns λk,1, λk,2, . . . , λk,n. This has a unique solution,
and we let

ak =
n∑
j=1

λk,jαj .

Then ak : G→ C is a homomorphism and

ak(xi) =
n∑
j=1

λk,jαj(xi) = e
(k)
i ,

in particular, a1, a2, . . . , an are linearly independent complex homomorphisms of G. Let-
ting a = (a1, a2, . . . , an) we have that a : G → Cn is a homomorphism of G onto
a subgroup a(G) of Cn. If H denotes the subgroup of G generated by the elements
x1, x2, . . . , xn, then a(H) is isomorphic to Zn. Moreover, the ring of polynomials on G is
isomorphic to the ring of polynomials C[z1, z2, . . . , zn].
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Suppose that V is a variety in C(G) which has a unique minimal subvariety. As
spectral analysis holds on G, V contains an exponential m, hence this minimal subvariety
consists of the constant multiples of m. It is easy to see that by multiplying all elements
of V by the function 1/m we get another variety, which has a minimal subvariety, too,
namely, the set of all constant functions. In other words, with no loss of generality we
may assume that the unique minimal subvariety in V is the set of constant functions.
Then, by spectral synthesis, V is spanned by all polynomials contained in V . We have to
show that V ∗ is Noetherian. Supposing the contrary there is an infinite strictly ascending
chain of ideals in V ∗, hence their annihilators in V form an infinite strictly descending
chain V = V0 ⊃ V1 ⊃ . . . ⊃ Vn ⊃ . . . of varieties in V . If Pn denote the set of all
polynomials in Vn, then Pn is a translation invariant linear space of polynomials. By
spectral synthesis, the closure of Pn is Vn, hence (Pn)n∈N is a strictly descending chain
of translation invariant subspaces of polynomials. But this contradicts Lemma 8 in [10]
and our theorem is proved.

Theorem 8.2. Suppose that G is a discrete Abelian group and in the ring Mc(G) the
cardinality of every strictly ascending chain of ideals is less than the continuum. Then
spectral analysis holds on G.

Proof. Suppose the contrary, that is, spectral analysis fails to hold for G. Then, by the
results in [9], the torsion free rank of G is at least continuum. It follows that G has
a subgroup H which is isomorphic to the direct product of continuum copies of Z, say
H =

∏
t∈R+

Zt, where Zt = Z for each t in R+. Let pt denote the projection of H onto Zt,
that is

pt(x) = x(t)

for each x : R+ → Z in H and t in R+. Then pt : H → C is a homomorphism of H into
the additive group of C, that is

pt(x+ y) = pt(x) + pt(y)

holds for all x, y in H and for t in R+. It is well-known that any homomorphism of
a subgroup of an Abelian group into a divisible Abelian group can be extended to a
homomorphism of the whole group. As the additive group of complex numbers is obviously
divisible, the homomorphisms pt of H can be extended to complex homomorphisms of
the whole group G. We shall denote the extensions by pt, too. Let Vt denote the smallest
variety in C(G) containing ps for all s > t. Obviously Vt ⊇ Vs for t < s. We show that pt
is not in Vt. Clearly, the linear hull Wt of the translates of the set {ps : s > t} is generated
by the functions 1, ps with s > t. On the other hand, Vt is the closure of Wt. Hence, if pt
is in Vt, then it is the limit of a net in Wt, that is

pt(x) = lim
α

[
λα +

∑
s>t

λα,sps(x)
]

holds for each x in G. Here (λα), (λα,s) are nets of complex numbers, where λα,s 6= 0
holds for at most a finite number of s’s. Putting x = 0 we get

lim
α
λα = 0 ,
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hence
pt(x) = lim

α

∑
s>t

λα,sps(x) (14)

holds for each x in G. Let x(s) denote the element of H for which x(s)(u) = 1 for u = s

and x(s)(u) = 0 for u 6= s (s, u ∈ R+). Then putting x = x(t) in (14) we have

1 = pt(x(t)) = lim
α

∑
s>t

λα,sps(x(t)) = 0 ,

a contradiction. This means that the varieties Vt form a descending chain of continuum
cardinality of proper varieties, hence, their annihilators in Mc(G) form an ascending
chain of continuum cardinality of proper ideals, which is impossible. The theorem is
proved.
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[22] L. Székelyhidi, On discrete spectral synthesis, in: Functional Equations–Results and Ad-

vances, Adv. Math. (Dordr.) 3, Kluwer Acad. Publ., Dordrecht, 2002, 263–274.
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