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Abstract. In this paper, recent results on the existence and uniqueness of (continuous and
homeomorphic) solutions ϕ of the equation ϕ ◦ f = g ◦ ϕ (f and g are given self-maps of an
interval or the circle) are surveyed. Some applications of these results as well as the outcomes
concerning systems of such equations are also presented.

1. Introduction. In the paper we survey recent (i.e., published since 2000) results on
conjugacy equation in dimension one. More precisely, we focus on the existence and
uniqueness of (continuous and homeomorphic) solutions ϕ of the functional equation

ϕ ◦ f = g ◦ ϕ, (1)

where f and g are given self-maps of a real interval or the unit circle S1. Moreover, we
give applications of the presented results to investigating iterative roots. The outcomes
on systems of such equations are also shown.

Let us recall that a homeomorphism ϕ satisfying equation (1) is said to be a topo-
logical conjugacy between f and g (f and g are then called topologically conjugate). If
the function ϕ fulfilling equation (1) is only a continuous surjection, then we say that
it is a topological semi-conjugacy between f and g, which are then called topologically
semi-conjugate. These notions as well as their applications (for example, to dynamical
systems and functional equations) are well-known; they can be found for instance in
[1, 2, 11, 13, 14].
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2. Self-maps of intervals

2.1. The equation. Consider the class M consisting of all functions f : [0, 1] → [0, 1]
for which there exists a partition 0 = t0 < t1 < . . . < tn = 1 (n ≥ 2) such that:

(i) for each j ∈ {1, . . . , n} the restriction f |(tj−1,tj) is C1 and strictly monotone,
(ii) for each j ∈ {1, . . . , n} there exist p(j), q(j) ∈ {0, . . . , n} with p(j) < q(j) such that

f((tj−1, tj)) = (tp(j), tq(j)),
(iii) there exists a λ > 1 such that |f ′(x)| ≥ λ for all x ∈ (0, 1) \ {t1, . . . , tn−1}.

In 2001, N. A. Fotiades and M. A. Boudourides proved the following result.

Theorem 2.1 (Theorem 2.7 in [8]). Let f ∈ M, 0 = t0 < t1 < . . . < tn = 1 be the
partition corresponding to f , and f be continuous from the right or from the left at tj
for j ∈ {0, . . . , n}. Assume also that T ∈ M is the map with partition 0 = s0 < s1 <

. . . < sn = 1, where sj = j
n for j ∈ {0, . . . , n}, which is affine in each interval ( j−1

n , jn )
and T (( j−1

n , jn )) = (p(j)n , q(j)n ) for j ∈ {1, . . . , n}. Furthermore, let for each j ∈ {1, . . . , n}
the restriction T |(sj−1,sj) be of the same type of monotonicity as f |(tj−1,tj), and for each
j ∈ {0, . . . , n}, T be continuous from the right (from the left) at sj, if f is continuous
from the right (from the left) at tj. Then T and f are topologically conjugate.

Let a, b ∈ R be such that a < b, let r be a positive integer and put I := [a, b].
Recall that a continuous map f : I → I is said to be r-modal if there exists a partition
a = t0 < t1 < . . . < tr+1 = b such that for each j ∈ {1, . . . , r+1} the restriction f |(tj−1,tj)

is strictly monotone and (tj−1, tj) is the maximal open interval with this property. The
intervals (tj−1, tj) are then called monotone branches. If r = 1, then we say that f is a
unimodal map.

An r-modal map f : I → I is called piecewise expanding if there exist a metric
d : I × I → R (topologically equivalent to the Euclidean one) and a constant µ > 1 such
that

d(f(x), f(y)) ≥ µd(x, y), x, y ∈ (tj−1, tj), j ∈ {1, . . . , r + 1}. (2)

Two piecewise expanding r-modal maps f, g : I → I with partitions {tj}r+1
j=0 and {sj}r+1

j=0,
respectively, are said to be combinatorially equivalent if there exists a homeomorphism
h : I → I such that

h(fm(tj)) = gm(sj), j ∈ {0, . . . , r + 1}, m ∈ N.

Using the Banach fixed point theorem, C. Kawan proved the following result.

Theorem 2.2 (Theorem 3.7 in [9]). If f, g : I → I are combinatorially equivalent piece-
wise expanding r-modal maps, then they are topologically conjugate.

In the same paper, he also gave the following sufficient condition for piecewise expan-
siveness of r-modal maps.

Theorem 2.3 (Theorem 3.6 in [9]). Let f : I → I be an r-modal map with a partition
{ti}r+1

i=0 . Denote by P the set of ti such that ti 6∈ f((tj−1, tj)) for every j ∈ {1, . . . , r+ 1}.
Assume that f is C1 on I \ P . Let µ > 1 and Φ : I → R be a non-negative continuous
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function such that Φ−1({0)} ⊂ P . If 1
Φ ∈ L

1(I) and

|f ′(x)| ≥ µ Φ(f(x))
Φ(x)

, x ∈ I \ P,

then f is piecewise expanding, where the metric d occurring in (2) is given by

d(x, y) =
∣∣∣∣∫ y

x

dz

Φ(z)

∣∣∣∣, x, y ∈ I.

Next, Kawan proved that the unimodal maps fα : [−1, 1] → [−1, 1] given, for any
α > 1, by

fα(x) = 1− 2|x|α

are piecewise expanding. To do this he used Theorem 2.3 for Φα(x) = (1−x2)(α−1)/α and
µα = α1/α. Therefore, by Theorem 2.2, the maps fα are pairwise topologically conjugate.

Moreover, he applied the Banach fixed point theorem once more to show that for any
α > 4 the logistic map gα : R→ R, given by

gα(x) = αx(1− x),

is topologically conjugate to the tent map g : R→ R of the form

g(x) =
3
2

(1− |2x− 1|).

Let us point out that the maps gα are not piecewise expanding, so Theorem 2.2 cannot
be used in this case.

Let us next recall (see [4]) that a continuous function f : I → I is said to be a
horseshoe map if there exists a partition a = t0 < t1 < . . . < tn = b (n ≥ 2) such that
for each j ∈ {1, . . . , n}, f|[tj−1,tj ] is a homeomorphism of the interval [tj−1, tj ] (which is
called a lap of f) onto I. If for each j ∈ {1, . . . , n}, f|[tj−1,tj ] : [tj−1, tj ]→ I is a monotone
surjection, then f is called a weak horseshoe map. Moreover, we say that two horseshoe
maps f : I → I and g : J → J (here and subsequently, J := [c, d] with some c, d ∈ R
such that c < d) having the same number of laps are of the same type if f and g are of
the same type of monotonicity on their leftmost laps.

Let (X, d) be a metric space. A function T : X → X is called weakly contractive if

d(T (x), T (y)) < d(x, y), x, y ∈ X, x 6= y.

Furthermore, given an increasing function γ : [0,∞)→ [0,∞) such that limn→∞ γn(t) = 0
for t ∈ (0,∞), we say that T : X → X is γ-contractive if

d(T (x), T (y)) ≤ γ(d(x, y)), x, y ∈ X.

Given two horseshoe maps f : I → I and g : J → J having laps

[tj−1, tj ], [sj−1, sj ], j ∈ {1, . . . , n},

respectively, for each j ∈ {0, . . . , n− 1} put

Ij := [tj , tj+1], Jj := [sj , sj+1] and fj := f|Ij , gj := g|Jj .

The horseshoe map f is called piecewise weakly expanding (respectively, piecewise
γ-expanding) if for each j ∈ {0, . . . , n − 1}, f−1

j is weakly contractive (respectively,
γ-contractive for a γ : [0,∞)→ [0,∞)).
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Proposition 2.4 (Proposition 2.2 in [6]). Assume that

(H) f : I → I and g : J → J are horseshoe maps of the same type and having n laps
[tj−1, tj ] and [sj−1, sj ], respectively,

and g is piecewise weakly expanding. If ϕ : I → J is a continuous and non-constant
solution of equation (1), then ϕ is a topological semi-conjugacy. If, moreover, n is even
and ϕ is injective, then ϕ is an increasing topological conjugacy.

In the proofs of the following two theorems a fixed point principle from [12] plays a
crucial role.

Theorem 2.5 (Theorem 3.1 in [6]). If assumption (H) holds and g is piecewise
γ-expanding, then there exists a unique function ϕ : I → J satisfying equation (1) and
the condition

ϕ[Ij ] ⊂ Jj , j ∈ {0, . . . , n− 1}. (3)

This function is an increasing topological semi-conjugacy. If, moreover, f is piecewise
weakly expanding, then ϕ is also a topological conjugacy.

Theorem 2.6 (Theorem 3.2 in [6]). If n is odd, assumption (H) holds and g is piecewise
γ-expanding, then there exists a unique function ϕ : I → J satisfying equation (1) and
the condition

ϕ[Ii] ⊂ Jn−i−1, i ∈ {0, . . . , n− 1}. (4)

This function is a decreasing topological semi-conjugacy. If, moreover, f is piecewise
weakly expanding, then ϕ is also a topological conjugacy.

Corollary 2.7 (Corollary 3.3 in [6]). If assumption (H) holds, n is odd and g is piecewise
γ-expanding, then equation (1) has exactly two monotone and surjective solutions. One
of them is increasing, while the other is decreasing.

The next theorem gives some conditions guaranteeing the existence of topological
conjugacies.

Theorem 2.8 (Theorem 3.5 in [6]). If assumption (H) holds, and f and g are piecewise
weakly expanding, then there exists a unique function ϕ : I → J satisfying equation (1)
and condition (3). This function is an increasing topological conjugacy. If, moreover,
n is odd, then there is also exactly one mapping ϕ : I → J fulfilling equation (1) and
condition (4). This mapping is a decreasing topological conjugacy.

On the other hand, we have the following fact.

Remark 2.9 (Remark 3.4 in [6]). If assumption (H) holds, g is piecewise weakly expand-
ing and n is even, then there is no topological conjugacy satisfying condition (4).

Corollary 2.10 (Corollary 3.6 in [6]). Let assumption (H) hold, and f and g be piece-
wise weakly expanding.

(i) If n is even, then there is a unique topological conjugacy between f and g. This
conjugacy is increasing.

(ii) If n is odd, then there are exactly two topological conjugacies between f and g. One
of them is increasing, while the other is decreasing.
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Let us next recall (see for instance [10]) that a continuous self-map f of a metric
space X is said to be (topologically) transitive if for any non-empty open subsets U, V
of X there is a positive integer n such that fn(U) ∩ V 6= ∅.

It is known (see [4, 14]) that two horseshoe maps of the same type and without
homtervals (i.e., intervals on which all their iterates are monotone) are topologically
conjugate. So are also transitive horseshoe maps having two laps each, and, in this case,
topological conjugacy is only one (see [2]). Moreover, if f is transitive and g : [0, 1]→ [0, 1]
is an arbitrary function, then every increasing topological semi-conjugacy ϕ : I → [0, 1]
is a topological conjugacy (see [1]).

The following example shows that if we omit the assumption of the transitivity of f ,
then an increasing topological semi-conjugacy needs not to be injective even if g is con-
tinuous and transitive and f is continuous and piecewise monotone.

Example 2.11 (Example 3.7 in [6]). Let n = 2, a = c = 0, b = d = 1, t1 = s1 = 1
2 ,

f(x) =


2x, x ∈ [0, 1

2 ],

−x+ 3
2 , x ∈ [ 1

2 ,
5
6 ],

−4x+ 4, x ∈ [ 5
6 , 1],

and g be the standard tent map defined by

g(x) = 1− |2x− 1|, x ∈ [0, 1].

It is well-known (see for instance [10] which is a survey on transitive maps) that g is tran-
sitive. Moreover, g fulfils the assumption of Theorem 2.5 with γ(x) := 1

2x for x ∈ [0,∞)
and

|f(x)− f(y)| ≥ |x− y|, x, y ∈ Ij , j ∈ {0, 1}.

By Theorem 2.5 there exists a unique function ϕ satisfying equation (1) and condition (3).
This function is an increasing topological semi-conjugacy. However, ϕ is not injective, and
there is no topological conjugacy between f and g.

Let us finally mention that assumption (H) itself does not ensure the uniqueness of
conjugacy (and topological semi-conjugacy), which follows from the example below.

Example 2.12 (Example 3.10 in [6]). If J = I and g = f is a horseshoe map, then for
each positive integer m the function ϕ := fm is a topological semi-conjugacy between f
and g. This function satisfies neither (3) nor (4). Thus, in this case there are infinitely
many topological semi-conjugacies between f and g.

In the considerations of Y.-G. Shi (see [17]) concerning (continuous) solutions of equa-
tion (1), the sets of periodic points of f and g play an important role. In order to present
Shi’s results, assume that f and g are continuous self-maps of the interval I and for all
k ∈ N consider the subsets Pk(f) = {x ∈ I : fk(x) = x} and Pk(g) = {x ∈ I : gk(x) = x}
of the sets of all periodic points Per f and Per g of f and g, respectively.

Let us start with the following lemma.
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Lemma 2.13 (Lemma 2 in [17]). Let f and g be continuous self-maps of the interval I
and k ∈ N. Then the general solution ϕ of equation (1) satisfies

ϕ(x) = α1(x), x ∈ P1(f),

and
ϕ(x) = α2(x), x ∈ Pk(f) \ P1(f),

where α1 is a function from P1(f) into P1(g) if neither P1(f) nor P1(g) is empty and
α2 is a function from Pk(f) \ P1(f) into Pj(g) for some positive integer j such that j
divides k, if neither Pk(f) \ P1(f) nor Pj(g) is empty.

Now, we present the result of Y.-G. Shi in the case where f is strictly decreasing.

Theorem 2.14 (Theorem 2 in [17]). Let f be a strictly decreasing continuous func-
tion from I onto itself and g : I → I be a continuous function. Assume that the set
Per f = P2(f) is countable. Then equation (1) has infinitely many solutions continuous
on I \ Per f . Each of these solutions can be constructed in the following way: for each
consecutive periodic points p and q of f (i.e., f has no periodic point on the interval
(p, q)) choose initial points x0 ∈ (p, q) and y0 ∈ I and a continuous function ϕ0 on
[x0, f

2(x0)] (or [f2(x0), x0]) such that ϕ0(x0) = y0 and ϕ0(f2(x0)) = g2(y0) and define
ϕ on (p, q) ∪ (f(q), f(p)) by

ϕ(x) =

{
ϕ0(x), x ∈ [x0, f

2(x0)) (or x ∈ [f2(x0), x0]),

gn(ϕ0(f−n(x))), x ∈ [fn(x0), fn+2(x0)) (or x ∈ [fn+2(x0), fn(x0)]),

where n ∈ Z. The values of ϕ on periodic points of f are determined by Lemma 2.13.

Remark 2.15. The solution ϕ of equation (1) described in Theorem 2.14 can be discon-
tinuous at points of the set Per f .

For any integer n ≥ 2 denote by Tn, Tn− : [0, 1] → [0, 1] the piecewise monotone and
affine mappings defined as follows:

Tn

(k
n

)
=

{
0, k ∈ [0, n] is an even integer,
1, k ∈ [0, n] is an odd integer,

Tn−
(k
n

)
=

{
1, k ∈ [0, n] is an even integer,
0, k ∈ [0, n] is an odd integer,

and Tn, Tn− are affine between these points. Clearly, T2 is the standard tent map.
With the above notation we have the following theorem due to D.-S. Ou and

K. J. Palmer.

Theorem 2.16 (Theorem 1.1 in [16]). If f : [0, 1]→ [0, 1] is a weak horseshoe map having
n laps and f(0) = 0, then there exists a unique increasing topological semi-conjugacy
ϕ : [0, 1]→ [0, 1] between f and Tn.

Let us next recall (see for instance [3]) that we say that a continuous map f : [0, 1]→
[0, 1] has an n-horseshoe if there exist n closed subintervals of [0, 1], A1, . . . , An, with
pairwise disjoint interiors, such that

(A1 ∪ . . . ∪An) ⊂ (f(A1) ∩ . . . ∩ f(An)).
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A continuous function f : [0, 1]→ [0, 1] is called turbulent if it has a 2-horseshoe.
Very recently, L. Block, J. Keesling and D. Ledis proved the following result.

Theorem 2.17 (Theorem 3.12 in [3]). If f : [0, 1]→ [0, 1] is a turbulent map, then f and
the standard tent map T2 are topologically semi-conjugate.

Remark 2.18. The topological semi-conjugacy between a turbulent map and the stan-
dard tent map is not necessarily unique. In the proof of Remark 3.18 in [3] two different
topological semi-conjugacies between T4 and T2 were provided. Let us also mention here
(see Proposition 3.19 in [3]) that these semi-conjugacies are not monotone.

The example below shows that the converse of Theorem 2.17 is not true.

Example 2.19 (see the proof of Theorem 3.13 in [3]). Let f : [0, 1]→ [0, 1] be given by

f(x) =


2x+ 1

2 , x ∈ [0, 1
4 ],

−2x+ 3
2 , x ∈ [ 1

4 ,
3
4 ],

2x− 3
2 , x ∈ [ 3

4 , 1].

Then f is not turbulent, while f and T2 are topologically semi-conjugate.

The main result of [3] is the following theorem.

Theorem 2.20 (Theorem 3.31 in [3]). Let f : [0, 1] → [0, 1] be a continuous mapping
having an n-horseshoe for an integer n ≥ 2. Then there exists a topological semi-conjugacy
between f and Tn or Tn− .

Denote byMr(I) the set of all r-modal maps f : I → I and put

M1
r(I) :=

{
f ∈Mr(I) : f(x) < x for x ∈ (t0, t1], f(t2j) = t0 for j ∈ {0, . . . , b r2c},

f(t2j−1) = f(t1) ≥ f(tr+1) for j ∈ {2, . . . , b r+1
2 c}

}
,

where {tj}r+1
j=0 is the partition of f .

With this notation we have the following results (here and subsequently {sj}r+1
j=0 stands

for the partition of g).

Theorem 2.21 (Theorem 1 in [18]). Let f ∈ M1
r(I) and g ∈ M1

r(J). Then f and g are
topologically conjugate if and only if there exists a positive integer m such that one of the
following conditions holds:

(i) f(tr+1) = fm(t1), g(sr+1) = gm(s1);
(ii) f(tr+1) = t0, g(sr+1) = s0;
(iii) f(tr+1) ∈ (fm+1(t1), fm(t1)), g(sr+1) ∈ (gm+1(s1), gm(s1)).

Furthermore, for cases (i) and (ii), any homeomorphism ϕ0 : [f(t1), t1]→ [g(s1), s1] such
that

ϕ0(t1) = s1, ϕ0(f(t1)) = g(s1) (5)

can be uniquely extended to a homeomorphic solution of equation (1) on I, as well as for
case (iii) with the additional condition

ϕ0

(
f−m|[t0,t1](f(tr+1))

)
= g−m|[s0,s1](g(sr+1)). (6)
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Theorem 2.22 (Theorem 2 in [18]). Under the assumptions of Theorem 2.21, any homeo-
morphism ϕ0 : [f(t1), t1] → [g(s1), s1] satisfying (5) (and (6) for case (iii)) can be ex-
tended to finitely many continuous non-monotone solutions of equation (1). In case I = J

only one of these solutions belongs toM1
r(I).

Now, we give an application of the presented results to investigating iterative roots.
Before we do this, let us recall that for a given integer k ≥ 2, a self-map f of a set X is
said to be an iterative root (of order k) of a function g : X → X if fk = g.

Using Theorem 2.21, one can obtain the form of all iterative roots f ∈M1
r(I) of some

g ∈M1
r(I):

Theorem 2.23 (Corollary 2 in [18]). Let k ≥ 2 be an integer and g ∈M1
r(I) be such that

g(sr+1) ∈ {s0, g(s1)}. Then every iterative root f ∈ M1
r(I) of order k of the function g

is given by
f = ϕ−1 ◦ g ◦ ϕ,

where ϕ is a topological conjugacy between g and gk.

2.2. The system. Let (X, ρ) be a complete metric space and n ≥ 2 be an integer.
In [20], M. C. Zdun investigated bounded and continuous solutions ϕ : [0, 1]→ X of the
system of functional equations

ϕ(fk(x)) = Fk(ϕ(x)), k ∈ {0, . . . , n− 1}, (7)

where given functions f0, . . . , fn−1 : [0, 1] → [0, 1] and F0, . . . , Fn−1 : X → X satisfy at
least one of the following hypotheses:

(H1) f0, . . . , fn−1 are continuous, strictly increasing, f0(0) = 0, fn−1(1) = 1 and fk+1(0)
= fk(1) for k ∈ {0, . . . , n− 2};

(H2) F0, . . . , Fn−1 are continuous, F0 and Fn−1 have unique fixed points a and b, respec-
tively, and Fk+1(a) = Fk(b) for k ∈ {0, . . . , n− 2}.

The assumption that a and b are the unique fixed points of F0 and Fn−1 implies
that for any solution ϕ : [0, 1] → X of system (7) we have ϕ(0) = a and ϕ(1) = b (see
Remark 1 in [20]).

Theorem 2.24 (see Theorem 1 in [20]). Assume that the mappings f0, . . . , fn−1 fulfil
(H1), and there exists an increasing function α : [0,∞) → [0,∞) such that the sequence
of its iterates converges pointwise to the zero function on [0,∞) and

ρ(Fk(x), Fk(y)) ≤ α(ρ(x, y)), x, y ∈ X, k ∈ {0, . . . , n− 1}, (8)

(i.e., each Fk is α-contractive). Then for any c1, . . . , cn−1 ∈ X there exists a unique
bounded solution ϕ : (0, 1) → X of (7) such that ϕ(fk(0)) = ck for k ∈ {1, . . . , n− 1}.
Moreover, if F0, . . . , Fn−1 satisfy (H2), then there exists a unique bounded solution
ϕ : [0, 1]→ X of system (7). This solution is continuous.

Under the assumption that the mappings F0, . . . , Fn−1 satisfy (H2), every bounded
solution ϕ : (0, 1) → X of system (7) can be extended to [0, 1] if ck = Fk(a) for
k ∈ {1, . . . , n − 1}. Moreover, in the case where the functions f0, . . . , fn−1 are given
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by

fk(x) =
x+ k

n
, x ∈ [0, 1], k ∈ {0, . . . , n− 1},

the theorem below provides a formula for a solution of (7).

Theorem 2.25 (Theorem 2 in [20]). Assume that the mappings F0, . . . , Fn−1 satisfy
(H2), and there exists an increasing function α : [0,∞) → [0,∞) such that the sequence
of its iterates converges pointwise to the zero function on [0,∞) and (8) holds. Then the
unique bounded solution ϕ : [0, 1]→ X of the system

ϕ
(x+ k

n

)
= Fk(ϕ(x)), k ∈ {0, . . . , n− 1},

is given by
ϕ(x) = lim

ν→∞
Fk1 ◦ . . . ◦ Fkν (ξ), x ∈ [0, 1],

where ξ is an arbitrary element of X and ki ∈ {0, . . . , n − 1} for i ∈ N are digits of the
representation of x in a positional base-n numeral system, i.e.,

x =
∞∑
i=1

ki
ni
.

The next theorem describes the connection between continuous solutions of system (7)
and a (unique) fixed point of the Barnsley–Hutchinson operator associated with the
Iterated Function System F0, . . . , Fn−1.

Theorem 2.26 (Theorem 3 in [20]). Let the mappings f0, . . . , fn−1 fulfil (H1). Assume
also that F0, . . . , Fn−1 satisfy (H2) and (8) with an increasing function α : [0,∞) →
[0,∞) such that limx→t+ α(x) = α(t) < t for t ∈ (0,∞). Then a non-empty compact
set C ⊂ X is a curve parameterized by a continuous solution ϕ of system (7), i.e.,
C = {ϕ(t) : t ∈ [0, 1]}, if and only if C is a unique fixed point of the Barnsley–Hutchinson
operator

F (A) :=
n−1⋃
i=0

Fi[A], A ∈ c(X),

where c(X) denotes the metric space of non-empty compact subsets of (X, ρ) with the
Hausdorff metric dρ generated by the metric ρ. Moreover, the curve C does not depend
on the choice of the system of functions f0, . . . , fn−1 satisfying (H1).

Remark 2.27. The assumption of Theorem 2.26 on the function α implies that the
Barnsley–Hutchinson operator satisfies the relation

dρ(F (A), F (B)) ≤ α(dρ(A,B)), A,B ∈ c(X).

In the case where X = J is an interval (bounded or unbounded) which is a closed
subset of R, the following two results give more information on solutions of system (7).

Theorem 2.28 (Theorem 4 in [20]). Assume that the mappings f0, . . . , fn−1 satisfy (H1)
and F0, . . . , Fn−1 : J → J are increasing functions fulfilling (H2) and (8) with an in-
creasing function α : [0,∞) → [0,∞) such that the sequence of its iterates converges
pointwise to the zero function on [0,∞). Then the unique bounded solution ϕ : [0, 1]→ J

of system (7) is monotone.
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Theorem 2.29 (Theorem 5 in [20]). Let the mappings f0, . . . , fn−1 satisfy (H1) and

|fk(x)− fk(y)| < |x− y|, x 6= y, x, y ∈ [0, 1], k ∈ {0, . . . , n− 1}.

Assume also that F0, . . . , Fn−1 : J → J are strictly increasing functions fulfilling (H2)
with a 6= b and

|Fk(x)− Fk(y)| < |x− y|, x 6= y, x, y ∈ J, k ∈ {0, . . . , n− 1}.

Then the unique bounded solution ϕ : [0, 1] → J of system (7) is strictly monotone.
Moreover, if the interval J is compact, then (7) has a unique solution.

3. Self-maps of the circle

3.1. Preliminaries. We begin this part of the paper by recalling the basic definitions
and facts concerning self-maps of the unit circle.

It is well-known (see for instance [1]) that for every continuous mapping F : S1 → S1

there exist a continuous function f : R → R, which is unique up to translation by an
integer, and a unique integer k such that

F (e2πix) = e2πif(x), x ∈ R,

and
f(x+ 1) = f(x) + k, x ∈ R.

The function f is said to be the lift of F and the integer k is called the degree of F , and
is denoted by degF . If F is a homeomorphism, then so is its lift. Moreover, |degF | = 1.
We say that a homeomorphism F : S1 → S1 preserves (respectively, reverses) orientation
if degF = 1 (respectively, degF = −1), which is equivalent to the fact that the lift of F
is increasing (respectively, decreasing).

For an orientation-preserving homeomorphism F : S1 → S1 the number α(F ) ∈ [0, 1)
defined by

α(F ) := lim
n→∞

fn(x)
n

(mod 1), x ∈ R,

is called the rotation number of F . This number always exists and does not depend on x
and f . Furthermore, α(F ) ∈ Q if and only if F has a periodic point. If α(F ) /∈ Q, then
the non-empty set

LF := {Fn(z) : n ∈ Z}d, z ∈ S1,

(the limit set of F ) does not depend on z, is invariant with respect to F and either
LF = S1 or LF is a perfect nowhere dense subset of S1 (see for instance [7]).

3.2. The equation. Given a continuous mapping F : S1 → S1, denote by f its lift such
that f(0) ∈ [0, 1). For any integer n ≥ 2 put

Kn := {F : S1 → S1 : F is continuous, degF = n

and |x− y| < |f(x)− f(y)|, x, y ∈ R, x 6= y}
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and

K∗n :=
{
F : S1 → S1 : F is continuous, degF = n

and there is an increasing function γ : [0,∞) −→ [0,∞) such that

lim
m→∞

γm(t) = 0, t ∈ [0,∞) and |x− y| ≤ γ(|f(x)− f(y)|), x, y ∈ R}.

With fixed a, b ∈ S1 and an integer n ≥ 2, we have following three theorems due to
M. C. Zdun (the last of them deals with the special case when F (z) = zn).

Theorem 3.1 (Theorem 1 in [19]). If F,G ∈ Kn and F (a) = a, G(b) = b, then for every
integer r 6= 0 there exists a unique continuous solution Φ : S1 → S1 of the equation

Φ(F (z)) = G(Φ(z)), z ∈ S1, (9)

such that deg Φ = r, Φ(a) = b and ϕ[[0, 1]] = [ϕ(0), ϕ(1)], where ϕ is the lift of Φ.
Moreover, the mapping ϕ is strictly monotone, and Φ is a topological conjugacy if and
only if |r| = 1.

Theorem 3.2 (Theorem 2 in [19]). If F ∈ Kn, G ∈ K∗n and F (a) = a, G(b) = b, then for
every integer r 6= 0 there exists a unique continuous solution Φ : S1 → S1 of equation (9)
such that deg Φ = r and Φ(a) = b. Moreover, the lift of Φ is strictly monotone.

Theorem 3.3 (Theorem 4 in [19]). If G ∈ Kn and G(a) = a, then for every integer r 6= 0
there exists a unique continuous solution Φ : S1 → S1 of the equation

Φ(zn) = G(Φ(z)), z ∈ S1, (10)

such that deg Φ = r and Φ(1) = a. If |r| = 1, then Φ is a topological conjugacy.

Theorem 3.3 can be applied for proving the following result concerning continuous
iterative roots of mappings from the class Kn.

Theorem 3.4 (Theorem 5 in [19]). Let n ≥ 2 be an integer. A function G ∈ Kn has a
continuous iterative root of order k if and only if n = rk for an integer r.

With the notation

Sr := {Ψ : S1 → S1 : there is a homeomorphism Φ : S1 → S1

such that Ψ(z) = Φ
(
Φ−1(z)r

)
, z ∈ S1}

we also have

Theorem 3.5 (Theorem 6 in [19]). Let k, n, r ≥ 2 be integers such that n = rk. If
G ∈ Kn, then G has exactly n−1

r−1 iterative roots of order k in the class Sr. They are given
by the formula

F (z) = Φ
(
e2πi(r−1)j/(n−1)Φ−1(z)r

)
, z ∈ S1, j = 0, . . . , n−rr−1 ,

where Φ : S1 → S1 is a homeomorphic solution of equation (10).

In 2007 (see [21]), M. C. Zdun gave a necessary and sufficient condition for topological
conjugacy of homeomorphisms of the circle having periodic points. Since stating this
result (Theorem 17 in [21]) requires a long and sophisticated introduction, its details are
omitted here.
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On the other hand, L. Block, J. Keesling and D. Ledis proved the following theorem.

Theorem 3.6 (Theorem 6.7 in [3]). If F,G : S1 → S1 are continuous mappings with

0 < degF 6= degG > 1,

then they are not topologically semi-conjugate.

It is well-known (see for instance [15]) that if two orientation-preserving homeo-
morphisms F,G : S1 → S1 are topologically conjugate, then either α(G) = α(F ) or
α(G) + α(F ) = 1. The following theorem from [5] generalizes this fact.

Theorem 3.7 (Theorem 1 in [5]). Let F,G : S1 → S1 be orientation-preserving homeo-
morphisms and suppose that there exists a continuous function Φ : S1 → S1 such that (9)
holds. Then

α(G) = α(F ) deg Φ (mod 1).

The proposition below is an extension of the well-known result of Poincaré.

Proposition 3.8 (Proposition 1 in [5]). If F : S1 → S1 is an orientation-preserving
homeomorphism for which α(F ) /∈ Q, then there exists a unique continuous function
ΦF : S1 → S1 such that

ΦF (F (z)) = e2πiα(F )ΦF (z), z ∈ S1, (11)

and ΦF (1) = 1. Moreover, deg ΦF = 1 and ΦF is a homeomorphism if and only if
LF = S1.

Let F : S1 → S1 be an orientation-preserving homeomorphism such that α(F ) /∈ Q.
The set

KF := ΦF [S1 \ LF ],

where ΦF : S1 → S1 is the continuous solution of equation (11) with ΦF (1) = 1, is said
to be the iterative kernel of F .

The next two results provide some information about the properties of continuous
(and homeomorphic) solutions of equation (9) and justify some assumptions made in
Theorem 3.12 (and Remark 3.13).

Theorem 3.9 (Theorem 2 in [5]). Let F,G : S1 → S1 be orientation-preserving homeo-
morphisms and suppose that α(G) /∈ Q. If a continuous function Φ : S1 → S1 of degree l
satisfies equation (9), then it is a topological semi-conjugacy and Φ[LF ] = LG. If, more-
over, LG 6= S1 and d := ΦG(Φ(1)), then for every w ∈ S1, dwl ∈ KG implies w ∈ KF .

Proposition 3.10 (see Lemma 4 in [5]). Let F,G : S1 → S1 be orientation-preserving
homeomorphisms and suppose that α(G) /∈ Q. If F and G are topological conjugate via an
orientation-preserving (respectively, orientation-reversing) homeomorphism Φ : S1 → S1,
then KG = dKF (respectively, KG = dK−1

F ) for d := ΦG(Φ(1)).

3.3. The system. In this part of the paper we present some results from [5], which
concern continuous and homeomorphic solutions of the system

Φ(Ft(z)) = Gt(Φ(z)), z ∈ S1, t ∈M, (12)
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where M is an arbitrary non-empty set and Ft, Gt : S1 → S1 for t ∈ M are orientation-
preserving homeomorphisms.

Theorem 3.11 (Theorem 3 in [5]). Let

Ft ◦ Fs = Fs ◦ Ft, Gt ◦Gs = Gs ◦Gt, s, t ∈M, (13)

and
α(Gt) = lα(Ft) (mod 1), t ∈M, (14)

for an l ∈ Z. Assume also that there is a t0 ∈M for which α(Gt0) /∈ Q.

(i) If LGt0 = S1, then for every a ∈ S1 there exists a unique continuous solution
Φ : S1 → S1 of system (12) such that Φ(1) = a. This solution is of degree l. If,
moreover, LFt0 = S1 and |l| = 1, then Φ is a homeomorphism.

(ii) If LGt0 6= S1 and LFt0 = S1, then system (12) has no continuous solution.

Theorem 3.12 (Theorem 4 in [5]). Let condition (14) hold for an l ∈ Z and there exist
a t0 ∈ M with α(Gt0) /∈ Q. Moreover, suppose that for all k ∈ N, t1, . . . , tk ∈ M and
n1, . . . , nk ∈ Z such that n1α(Ft1) + . . .+ nkα(Ftk) ∈ Z we have

Fn1
t1 ◦ . . . ◦ F

nk
tk

= id = Gn1
t1 ◦ . . . ◦G

nk
tk
.

If LFt0 6= S1 6= LGt0 and there is a d ∈ S1 such that for every w ∈ S1, dwl ∈ KGt0

implies w ∈ KFt0
, then system (12) has a continuous solution of degree l depending on

an arbitrary function.

Remark 3.13 (Remark 3 in [5]). Under the hypotheses of Theorem 3.12 if, moreover,
|l| = 1 and KGt0

= dKl
Ft0

for a d ∈ S1, then system (12) has a homeomorphic solution
of degree l depending on an arbitrary function and the construction given in the proof of
Theorem 3.12 (see [5]) determines all such solutions of (12).
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