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Abstract. The aim of this note is to characterize the real coefficients p1, . . . , pn and q1, . . . , qk

so that
n∑

i=1

pixi +

k∑
j=1

qjyj ∈ conv{x1, . . . , xn}

be valid whenever the vectors x1, . . . , xn, y1, . . . , yk satisfy

{y1, . . . , yk} ⊆ conv{x1, . . . , xn}.

Using this characterization, a class of generalized weighted quasi-arithmetic means is introduced
and several open problems are formulated.

1. Introduction. Given a nonempty convex subset D of a linear space X and n, k ∈ N,
define the set Dn,k ⊂ Dn+k by

Dn,k :=
{
(x1, . . . , xn, y1, . . . , yk) ∈ Dn+k | {y1, . . . , yk} ⊆ conv{x1, . . . , xn}

}
.
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The aim of this paper is to characterize those real coefficients p1, . . . , pn and q1, . . . , qk
for which the inclusion

n∑
i=1

pixi +
k∑
j=1

qjyj ∈ conv{x1, . . . , xn}

holds for all (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k.
After answering the above question, we introduce the notion of generalized weighted

quasi-arithmetic means and we give the results for some its subclasses. We also formulate
several open problems.

2. An elementary inclusion problem. We recall the notation for the positive and
negative parts of real numbers defined by

q+ :=

{
q if q ≥ 0

0 if q < 0,
q− :=

{
0 if q > 0

−q if q ≤ 0
(q ∈ R).

It is obvious that q = q+ − q− and |q| = q+ + q− for all q ∈ R.
For n = 1, the description of the set Dn,k is trivial:

D1,k = {(x, y1, . . . , yk) ∈ D1+k | y1 = . . . = yk = x} = {(x, x, . . . , x) | x ∈ D},
therefore, in the following theorem, which contains our main result, we consider only the
case n ≥ 2.

Theorem 2.1. Let X be a linear space, let D ⊆ X be a convex set containing at least two
distinct elements. Let n, k ∈ N, n ≥ 2 and p1, . . . , pn, q1, . . . , qk ∈ R. Then the following
statements are equivalent :

(i) The inclusion
n∑
i=1

pixi +
k∑
j=1

qjyj ∈ conv{x1, . . . , xn} (1)

holds for all (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k.
(ii) The coefficients p1, . . . , pn, q1, . . . , qk satisfy the conditions

n∑
i=1

pi +
k∑
j=1

qj = 1 and min{p1, . . . , pn} ≥
k∑
j=1

q−j . (2)

(iii) For all convex functions f : X → R, the inequality

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
≤

n∑
i=1

pif(xi) +
k∑
j=1

qjf(yj) (3)

holds for all (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k.

Proof. (i)⇒(ii). Assume that (1) is satisfied for all (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k. By the
assumption, D contains two distinct elements, say a, b ∈ D with a 6= b. We may also
assume that a 6= 0. Then, taking x1 = . . . = xn = y1 = . . . = yk = a, we can see that
(x1, . . . , xn, y1, . . . , yk) ∈ Dn,k is valid, hence, from (1), we obtain( n∑

i=1

pi +
k∑
j=1

qj

)
a =

n∑
i=1

pixi +
k∑
j=1

qjyj ∈ conv{x1, . . . , xn} = {a},
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which yields the first equality in (2).
To prove the second inequality in (2), let ` ∈ {1, . . . , n} be a fixed index, let x` := a

and xi := b for i ∈ {1, . . . , n} \ {`} and define, for j ∈ {1, . . . , k}, yj := a if qj ≤ 0 and
yj := b if qj > 0. Then

{y1, . . . , yk} ⊆ {a, b} ⊆ conv{a, b} = conv{x1, . . . , xn},
i.e., (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k is valid and hence (1) holds. Observe that qjyj =
q+j b− q

−
j a, thus (1) and the first equality in (2) yield(

p` −
k∑
j=1

q−j

)
a+

(
1− p` +

k∑
j=1

q−j

)
b =

(
p` −

k∑
j=1

q−j

)
a+

( n∑
i=1

pi − p` +
k∑
j=1

q+j

)
b

=
n∑
i=1

pixi +
k∑
j=1

qjyj ∈ conv{x1, . . . , xn} = conv{a, b} = {ta+ (1− t)b | t ∈ [0, 1]}.

Therefore, using a 6= b, for ` ∈ {1, . . . , n}, we get

0 ≤ p` −
k∑
j=1

q−j ≤ 1.

From the left hand side inequality here the second inequality of (2) follows.
(ii)⇒(i). Assume that the conditions in (2) are satisfied. Let (x1, . . . , xn, y1, . . . , yk)

be an element of Dn,k. Then, for (i, j) ∈ {1, . . . , n} × {1, . . . , k}, there exist λij ∈ [0, 1]
such that, for j ∈ {1, . . . , k}, we have

n∑
i=1

λij = 1 and
n∑
i=1

λijxi = yj . (4)

Thus,
n∑
i=1

pixi +
k∑
j=1

qjyj =
n∑
i=1

pixi +
k∑
j=1

qj

n∑
i=1

λijxi =
n∑
i=1

(
pi +

k∑
j=1

qjλij

)
xi. (5)

To prove the validity of (1), it suffices to show that the right hand side expression in (5)
is a convex combination of x1, . . . , xn, i.e.,

n∑
i=1

(
pi +

k∑
j=1

qjλij

)
= 1 and pi +

k∑
j=1

qjλij ≥ 0 (i ∈ {1, . . . , n}). (6)

Using the first equalities in (2) and (4), we get
n∑
i=1

(
pi +

k∑
j=1

qjλij

)
=

n∑
i=1

pi +
k∑
j=1

qj

n∑
i=1

λij =
n∑
i=1

pi +
k∑
j=1

qj = 1,

which proves the first equality in (6). On the other hand, by λij ∈ [0, 1] and the second
inequality in (2), we get

pi +
k∑
j=1

qjλij = pi +
k∑
j=1

(q+j − q
−
j )λij ≥ pi −

k∑
j=1

q−j ≥ 0.

(ii)⇒(iii). Assume that the conditions in (2) are satisfied. Let f : X → R be a convex
function and let (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k. Then, for (i, j) ∈ {1, . . . , n}× {1, . . . , k},
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there exist λij ∈ [0, 1] such that, for j ∈ {1, . . . , k}, we have (4). By the convexity of f ,
we have

f(yj) = f

( n∑
i=1

λijxi

)
≤

n∑
i=1

λijf(xi) (j ∈ {1, . . . , k}).

Thus
k∑
j=1

q−j f(yj) ≤
k∑
j=1

q−j

n∑
i=1

λijf(xi) =
n∑
i=1

( k∑
j=1

q−j λij

)
f(xi). (7)

On the other hand, (ii) and (4) yield that
n∑
i=1

(
pi −

k∑
j=1

q−j λij

)
+

k∑
j=1

q+j = 1

pi −
k∑
j=1

q−j λij ≥ 0 (i ∈ {1, . . . , n}), and q−j ≥ 0 (j ∈ {1, . . . , k}),

i.e., these numbers form a system of convex combination coefficients. Hence, by the con-
vexity of f ,

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
= f

( n∑
i=1

pixi +
k∑
j=1

q+j yj −
k∑
j=1

q−j yj

)

= f

( n∑
i=1

(
pi −

k∑
j=1

q−j λij

)
xi +

k∑
j=1

q+j yj

)
≤

n∑
i=1

(
pi −

k∑
j=1

q−j λij

)
f(xi) +

k∑
j=1

q+j f(yj).

Adding inequality (7) to this inequality, we get

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
+

k∑
j=1

q−j f(yj) ≤
n∑
i=1

pif(xi) +
k∑
j=1

q+j f(yj),

which is equivalent to (3).
(iii)⇒(i). Assume that there exists (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k such that (1) is not

valid, i.e.,
n∑
i=1

pixi +
k∑
j=1

qjyj 6∈ conv{x1, . . . , xn}. (8)

Then, by the standard separation theorem, there exists a linear function ϕ : X → R such
that

c := sup
{
ϕ(u) | u ∈ conv{x1, . . . , xn}

}
< ϕ

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
.

Define f : X → R by f(x) := max{ϕ(x) − c, 0} = (ϕ(x) − c)+. Then f is a convex
function, f(u) = 0 for all u ∈ conv{x1, . . . , xn}, and

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
= ϕ

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
− c > 0.
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On the other hand, by (3),

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
≤

n∑
i=1

pif(xi) +
k∑
j=1

qjf(yj) = 0.

The contradiction obtained proves that (8) cannot hold, i.e., (1) must be valid.
The proof of the theorem is complete.

Remark 2.2. The implication (ii)⇒(iii) is valid more generally: If (ii) holds then (3) is
satisfied for all convex functions f : D → R and for all (x1, . . . , xn, y1, . . . , yk) ∈ Dn,k.
Indeed, as it follows from the implication (ii)⇒(i), inclusion (1) is valid, hence, by the
convexity of D,

n∑
i=1

pixi +
k∑
j=1

qjyj ∈ D,

proving that the left hand side of (3) is well defined. Now, the argument followed in the
proof of Theorem 2.1 yields that (3) is valid.

Based on Theorem 2.1, the set of those (n + k)-tuples (p1, . . . , pn, q1, . . . , qk) that
satisfy the two conditions of (2) will be denoted by Kn,k.

Corollary 2.3. Let I ⊆ R be an interval containing at least two distinct elements.
Let n, k ∈ N, n ≥ 2 and p1, . . . , pn, q1, . . . , qk ∈ R. Then the following statements are
equivalent :

(i) The inequality

min{x1, . . . , xn} ≤
n∑
i=1

pixi +
k∑
j=1

qjyj ≤ max{x1, . . . , xn} (9)

holds for all (x1, . . . , xn, y1, . . . , yk) ∈ In,k.
(ii) The coefficients p1, . . . , pn, q1, . . . , qk satisfy (2), i.e., (p1, . . . , pn, q1, . . . , qk) ∈ Kn,k.
(iii) For all convex functions f : R→ R, the inequality

f

( n∑
i=1

pixi +
k∑
j=1

qjyj

)
≤

n∑
i=1

pif(xi) +
k∑
j=1

qjf(yj) (10)

holds for all (x1, . . . , xn, y1, . . . , yk) ∈ In,k.

Proof. Apply Theorem 2.1 in the particular case X = R and D = I, and observe that, for
x1, . . . , xn, y ∈ R, the inclusion y ∈ conv{x1, . . . , xn} holds if and only if the inequalities

min{x1, . . . , xn} ≤ y ≤ max{x1, . . . , xn}
are satisfied.

Some of the consequences of the statement of Theorem 2.1 are important of their
own. We consider the case when k = 1. Then the equality condition in (2) implies that
q1 = 1− p1 − . . .− pn.

Corollary 2.4. Let X be a linear space, let D ⊆ X be a convex set containing at least
two distinct elements. Let n ≥ 2 and p1, . . . , pn ∈ R. Then the following statements are
equivalent :
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(i) The inclusion
n∑
i=1

pixi +
(

1−
n∑
i=1

pi

)
y ∈ conv{x1, . . . , xn}

holds for all (x1, . . . , xn, y) ∈ Dn,1.
(ii) The coefficients p1, . . . , pn satisfy the conditions

min{p1, . . . , pn} ≥ 0 and min{p1, . . . , pn}+ 1 ≥
n∑
i=1

pi. (11)

(iii) For all convex functions f : X → R, the inequality

f

( n∑
i=1

pixi +
(
1−

n∑
i=1

pi

)
y

)
≤

n∑
i=1

pif(xi) +
(
1−

n∑
i=1

pi

)
f(y)

holds for all (x1, . . . , xn, y) ∈ Dn,1.

Proof. Apply Theorem 2.1 in the case k = 1 for the coefficients p1, . . . , pn and q1 :=
1− p1− . . .− pn. Then (2) holds, i.e., (p1, . . . , pn, 1− p1− . . .− pn) ∈ Kn,1 is valid if and
only if

min{p1, . . . , pn} ≥
(
1−

n∑
i=1

pi

)−
= max

(
0,

n∑
i=1

pi − 1
)
.

This condition is trivially equivalent to (11).

Remark 2.5. In the particular case n = 2 the conditions of (11) are easily seen to be
equivalent to p1, p2 ∈ [0, 1]2. Thus, with p1 := p2 := 1, we have that, for all x1, x2 ∈ D,
y ∈ conv{x1, x2} and for all convex functions f : D → R,

x1 + x2 − y ∈ conv{x1, x2} and f(x1 + x2 − y) ≤ f(x1) + f(x2)− f(y).

3. Generalized weighted quasi-arithmetic means. Given a nonvoid open interval
I ⊂ R, a function M : In → R is said to be an n-variable mean on I if

min{x1, . . . , xn} ≤M(x1, . . . , xn) ≤ max{x1, . . . , xn}
holds for all (x1, . . . , xn) ∈ In.

To recall the notion of n-variable weighted quasi-arithmetic means, denote by CM(I)
the class of continuous and strictly monotone real valued functions defined on the in-
terval I. For ϕ ∈ CM(I) and (p1, . . . , pn) ∈ [0, 1] with p1 + . . . + pn = 1, define
A

(p1,...,pn)
ϕ : In → R by

A(p1,...,pn)
ϕ (x1, . . . , xn) := ϕ−1

(
p1ϕ(x1) + . . .+ pnϕ(xn)

)
. (12)

The following result enables us to construct a more general class of means.

Theorem 3.1. Let n ≥ 2 and k ≥ 1 be natural numbers, (p1, . . . , pn, q1, . . . , qk) ∈
Kn,k, ϕ ∈ CM(I) and M1, . . . ,Mk : In → R be n-variable means. Then the function
A

(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

: In → R defined by

A
(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn) := ϕ−1

( n∑
i=1

piϕ(xi) +
k∑
j=1

qjϕ(Mj(x1, . . . , xn))
)

(13)

is an n-variable mean on I.
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Proof. By the monotonicity of ϕ and by the mean value property of the means
M1, . . . ,Mn, for all (x1, . . . , xn) ∈ In and j ∈ {1, . . . , k}, we have

min{ϕ(x1), . . . , ϕ(xn)} ≤ ϕ(Mj(x1, . . . , xn)) ≤ max{ϕ(x1), . . . , ϕ(xn)}. (14)

In other words,(
ϕ(x1), . . . , ϕ(xn), ϕ(M1(x1, . . . , xn)), . . . , ϕ(Mk(x1, . . . , xn))

)
∈ (ϕ(I))n,k. (15)

Hence, by Corollary 2.3, we get

min{ϕ(x1), . . . , ϕ(xn)} ≤
n∑
i=1

piϕ(xi) +
k∑
l=1

qjϕ(Mj(x1, x2, . . . , xn))

≤ max{ϕ(x1), . . . , ϕ(xn)}.
Using the monotonicity of ϕ−1, we obtain that

ϕ−1

( n∑
i=1

piϕ(xi) +
k∑
j=1

qlϕ(Mj(x1, . . . , xn))
)

is between min{x1, . . . , xn} and max{x1, . . . , xn}, which proves that A
(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

is
an n-variable mean.

We call this mean the generalized weighted quasi-arithmetic mean generated by the
function ϕ, the means M1, . . . ,Mk, and the weights (p1, . . . , pn, q1, . . . , qk) ∈ Kn,k. In the
particular case q1 = . . . = qk = 0, the generalized weighted quasi-arithmetic mean in (5)
reduces to the weighted quasi-arithmetic mean in (4).

Concerning these means, we may consider the following three basic problems:

(i) Equality problem;
(ii) Comparison problem;
(iii) Matkowski–Sutô type problem.

In the following subsections we briefly describe some basic results as well as some open
problems related to these questions.

(i) Equality Problem. Given the n variable means M1, . . . ,Mk : In → R, characterize
those weights (p1, . . . , pn, q1, . . . , qk), (r1, . . . , rn, s1, . . . , sk) ∈ Kn,k and pairs of functions
ϕ,ψ ∈ CM(I) such that, for all x1, . . . , xn ∈ I,

A
(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn) = A
(r1,...,rn,s1,...,sk)
ψ,M1,...,Mk

(x1, . . . , xn). (16)

For this problem, we have the following sufficient condition.

Theorem 3.2. Let n ≥ 2 and k ≥ 1 be natural numbers, (p1, . . . , pn, q1, . . . , qk) ∈ Kn,k,
ϕ,ψ ∈ CM(I) and let M1, . . . ,Mk : In → I be n-variable means. Assume that there exist
a, b ∈ R, a 6= 0, such that

ψ(x) = aϕ(x) + b (x ∈ I). (17)

Then, for all x1, . . . , xn ∈ I,
A

(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn) = A
(p1,...,pn,q1,...,qk)
ψ,M1,...,Mk

(x1, . . . , xn). (18)

Proof. It follows from (17) that ψ−1(t) = ϕ−1
(
t−b
a

)
for t ∈ ψ(I). This, and the definition

(13) of the means, immediately results (18).
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Open Problem 3.3. Under the assumption of Theorem 3.2, is the equality (17) necessary
for the validity of (18)?

The answer to this question is affirmative in several particular cases.
— In the case when q1 = . . . = qn = 0, the equality problem (18) reduces to the

equality problem of weighted quasi-arithmetic means when the necessity of (17) is known
to be valid (cf. [14], [17], [22], [24]).

— In the case n = 2, k = 1, the necessity of (17) was obtained in [8], where the
following result was proved: Let M : I2 → R be a strict and continuous two variable
mean, p, q ∈]0, 1], ϕ,ψ ∈ CM(I). Then, in order that A

(p,q,1−p−q)
ϕ,M = A

(p,q,1−p−q)
ψ,M , that is,

the functional equation

ϕ−1
(
pϕ(x) + qϕ(y) + (1− p− q)ϕ(M(x, y))

)
= ψ−1

(
pψ(x) + qψ(y) + (1− p− q)ψ(M(x, y))

)
be satisfied for all x, y ∈ I, it is necessary and sufficient that (17) be valid for some
a, b ∈ R with a 6= 0.

The more general equality problem (16) has also been solved in other particular cases.
In [5] the case of the equality problem A

(p,q,1−p−q)
ϕ,M = A

(r,1−r,0)
ψ,M , that is, the functional

equation

ϕ−1
(
pϕ(x) + qϕ(y) + (1− p− q)ϕ(M(x, y))

)
= ψ−1

(
rψ(x) + (1− r)ψ(y)

)
was investigated with the additional assumption thatM is a (symmetric) quasi-arithmetic
mean on I.

(ii) Comparison Problem. Given the n variable means M1, . . . ,Mk : In → R, char-
acterize those weights (p1, . . . , pn, q1, . . . , qk), (r1, . . . , rn, s1, . . . , sk) ∈ Kn,k and pairs of
functions ϕ,ψ ∈ CM(I) such that, for all x1, . . . , xn ∈ I,

A
(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn) ≤ A
(r1,...,rn,s1,...,sk)
ψ,M1,...,Mk

(x1, . . . , xn).

For this problem, we have the following sufficient condition.

Theorem 3.4. Let n ≥ 2 and k ≥ 1 be natural numbers, (p1, . . . , pn, q1, . . . , qk) ∈ Kn,k,
ϕ,ψ ∈ CM(I) and letM1, . . . ,Mk : In → I be n-variable means. Assume that ψ is increas-
ing [decreasing] on I and ψ◦ϕ−1 is convex [concave] on ϕ(I). Then, for all x1, . . . , xn ∈ I,

A
(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn) ≤ A
(p1,...,pn,q1,...,qk)
ψ,M1,...,Mk

(x1, . . . , xn). (19)

Proof. Assume that ψ is increasing define f := ψ ◦ϕ−1. To prove (19), let x1, . . . , xn ∈ I.
By the monotonicity of ϕ and by the mean value property of M1, . . . ,Mn, for all
(x1, . . . , xn) ∈ In and j ∈ {1, . . . , k}, we deduce that (14) holds, and hence (15) is
also valid. Thus, by Theorem 2.1(iii) and the convexity of f , it follows that

ψ
(
A

(p1,...,pn,q1,...,qk)
ϕ,M1,...,Mk

(x1, . . . , xn)
)

= f

( n∑
i=1

piϕ(xi) +
q∑
j=1

ϕ(Mj(x1, . . . , xn))
)

≤
n∑
i=1

pif(ϕ(xi)) +
k∑
j=1

f
(
ϕ(Mj(x1, . . . , xn))

)
=

n∑
i=1

piψ(xi) +
k∑
j=1

ψ(Mj(x1, . . . , xn)).
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By applying ψ−1 to both sides of this inequality, (19) results.

Open Problem 3.5. Under the assumption of Theorem 3.4 and provided that ψ is
increasing [decreasing] on I, is the convexity [concavity] of ψ ◦ϕ−1 on ϕ(I) necessary for
the validity of inequality (19)?

The answer to this problem is also affirmative in several particular cases.
— In the case when q1 = . . . = qn = 0, the comparison problem (18) reduces to

the comparison problem of weighted quasi-arithmetic means when the necessity of the
convexity [concavity] of ψ ◦ϕ−1 on ϕ(I) (provided that ψ is increasing [decreasing] on I)
is known to be valid (cf. [17], [22], [24], [14]).

— In the case n = 2, k = 1, the necessity of the convexity [concavity] of ψ ◦ ϕ−1 on
ϕ(I) was obtained in [8], where the following result was proved: Let M : I2 → R be a
strict and continuous two variable mean, p, q ∈]0, 1], ϕ,ψ ∈ CM(I). Then, in order that

A
(p,q,1−p−q)
ϕ,M ≤ A

(p,q,1−p−q)
ψ,M ,

that is, the functional inequality
ϕ−1

(
pϕ(x) + qϕ(y) + (1− p− q)ϕ(M(x, y))

)
≤ ψ−1

(
pψ(x) + qψ(y) + (1− p− q)ψ(M(x, y))

)
be satisfied for all x, y ∈ I, it is necessary and sufficient that ψ◦ϕ−1 be convex [concave] on
ϕ(I) provided that ψ is increasing [decreasing] on I. A more general result was obtained
in [1].

(iii) Matkowski–Sutô Problem. Given the two variable means M1, . . . ,Mk : I2 → R,
characterize those weights (p1, p2, q1, . . . , qk), (r1, r2, s1, . . . , sk) ∈ K2,k, t ∈ [0, 1], and
pairs of functions ϕ,ψ ∈ CM(I) such that, for all x, y ∈ I,

A
(p1,p2,q1,...,qk)
ϕ,M1,...,Mk

(x, y) + A
(r1,r2,s1,...,sk)
ψ,M1,...,Mk

(x, y) = 2(tx+ (1− t)y).
The particular case when q1 = . . . = qk = 0, i.e., when the two means on the left hand
side of this equation are ordinary weighted quasi-arithmetic means, was considered by
several authors (see [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26]).

The special case k = 1, p1 = p2, t = 1
2 andM1 is the arithmetic mean was investigated

in [10].
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