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Abstract. We give a review of results proved and published mostly in recent years, concerning
real-valued convex functions as well as almost convex functions defined on a (not necessar-
ily convex) subset of a group. Analogues of such classical results as the theorems of Jensen,
Bernstein–Doetsch, Blumberg–Sierpiński, Ostrowski, and Mehdi are presented. A version of the
Hahn–Banach theorem with a convex control function is proved, too. We also study some ques-
tions specific for the group setting, for instance the problem of the extendibility of a convex
function from a subgroup to the whole group. What concerns almost convexity we present an
abstract version of Kuczma’s theorem. We sketch also some possible applications in improving
regularity of solutions of a difference equation and in integer programming. The first appears,
among others, in probability while determining weak generalized stable distributions, whereas
the second is important in economics.

Introduction. Our starting point is the paper [18] by Jensen where a real function f

defined on an interval I of reals is said to be convex if

(0.1) 2f(x) ≤ f(x+ h) + f(x− h)

holds for all x, h ∈ R such that x, x+ h, x− h ∈ I or, equivalently,

(0.2) f
(x+ y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ I. These functions are also called J-convex or midconvex in the literature.
A comprehensive theory of convex functions defined on a convex subset of a linear spaceX
over the rationals, mostly of a real normed space, can be found in the monograph [32]
by Roberts and Varberg; for the case X = Rn the reader is referred also to the book [22]
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by Kuczma. While extending the notion of convexity to a group setting it is clear that
conditions (0.1) and (0.2) are no longer equivalent: the second one demands that the
group X is (uniquely) divisible by 2. There is also another advantage of condition (0.1)
held for all x, h ∈ R with x, x + h, x − h lying in the domain A of f : it imposes no
additional assumption on A like “convexity”.

In what follows, given a subset A of a group G, we say that f : A → R is convex if
(0.1) holds for all x, h ∈ G such that x, x+ h, x− h ∈ A.

The aim of the paper is to present some recent results on convex functions defined
on subsets of groups. In general we are not interested here in cases of groups with an
additional structure, among others in general linear spaces, Lie groups, and groups of
matrices.

The contents of the article reads as follows:
1. Convex functions defined on a subset of a group . . . . . . . . . . . . . . . . . . . . . 56

1.1. Properties Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.2. Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.3. Extendibility of convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.4. The Hahn–Banach theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2. A topological group setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1. The Bernstein–Doetsch theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2. The Blumberg–Sierpiński theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3. Ostrowski’s and Mehdi’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3. Almost convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1. Kuczma’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2. An abstract setting of set σ-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3. Measure-theoretical and topological cases . . . . . . . . . . . . . . . . . . . . . . 70
3.4. Some consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1. Improving regularity of solutions of a functional equation . . . . . . . . . . . . . 71
4.2. Integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

At the end of each of Sections 1–3 we pose some open problems. We omit proofs as
most of the presented results have been already published. The only exceptions are the
proofs of unpublished results of Subsection 1.4 devoted to Hahn–Banach theorem as well
as that of Theorem 4.2.

1. Convex functions defined on a subset of a group. Most of the results of this
section, mainly those presented in Subsections 1.1–1.3, come from the paper [15]. In
general we require no topological structure of the group. However, in the whole section
we assume that the group is Abelian.

1.1. Properties Cn. We begin with a discussion of the following variants of the notion
of convexity.

Let A be a subset of an Abelian group and f : A → R. We say that f has property
Cn if

nf(x) ≤ f(x1) + . . .+ f(xn)
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whenever x, x1, . . . , xn ∈ A and nx = x1 + . . . + xn. Thus C1 means nothing and C2 is
equivalent to the convexity of f . Clearly Cn+1 implies Cn for every n ∈ N. However, as
follows from the examples below, the converse fails to be true.

Example 1.1 ([15, Ex.1.7]). Consider the circle group R/Z, i.e. [0, 1) with the addition
modulo 1. Let A = [0, 1/3] and define f : A→ R by f(x) = x. Then f is convex. Taking
a = 1/3 we have 3a = 0 = 0+0+0 and 3f(a) = 1 > f(0)+f(0)+f(0) = 0. Consequently,
f does not satisfy C3.

Example 1.2 ([15, Ex.1.8]). It is easy to verify that any function f : {(0, 0), (1, 1),
(−1, 0), (0,−1)} → R can be extended to Z2 as a convex function (for details see [15]).
Taking f such that f(0, 0) = 1 and f(1, 1) = f(−1, 0) = f(0,−1) = 0 we come to a
function that violates C3, as 3(0, 0) = (1, 1) + (−1, 0) + (0,−1).

It turns out that under two additional conditions imposed on the domain A all the
properties Cn, n ≥ 2, are equivalent, so all of them describe, in fact, convexity. The
first of these additional assumptions is the equality A + A = 2A. The second one is the
convexity of A meant as follows.

A subset A of an Abelian group G is said to be convex if x + h, x − h ∈ A implies
x ∈ A for every x, h ∈ G. Note that if G is divisible by 2 and A ⊂ G is convex, then
A + A = 2A. If G is uniquely divisible by 2, then the convexity of A is equivalent to
A + A = 2A. In general the condition of convexity of the set A is independent on the
condition A+A = 2A. To see this observe first of all that every Abelian group is convex,
but not necessarily such a group G satisfies G+G = 2G, as not every group is divisible
by 2. On the other hand for the set A = [0, 1/3] considered in Example 1.1 we have
A+A = 2A but A is not convex, as 2/3 + 1/3 ∈ A, 2/3− 1/3 ∈ A, and 2/3 6∈ A.

The result announced above reads as follows.

Theorem 1.3 ([15, Th. 1.5]). Let A be a convex subset of an Abelian group G such that
A + A = 2A. A function f : A → R is convex if and only if it satisfies Cn for every
integer n ≥ 2.

Corollary 1.4 ([15, Cor. 1.6]). Let A be a convex subset of an Abelian group divisible
by 2. A function f : A→ R is convex if and only if it satisfies Cn for every integer n ≥ 2.

1.2. Jensen’s inequality. Studying convex functions in the classical setting one comes
to a very fundamental inequality

(1.1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

More precisely: if f is a convex function defined on a Q-convex subset A of a linear
space over the rationals, then it satisfies (1.1) for every x, y ∈ A and λ ∈ Q ∩ [0, 1] (see
[32, Chap. VII, Sec. 71, Th. A]). It turns out that (1.1) holds in every Abelian group G
for every λ ∈ Q ∩ [0, 1] whenever λx + (1 − λ)y can be interpreted in G. To specify the
last phrase we introduce the following notation.

Let G be an Abelian group. Given x, y ∈ G and λ ∈ Q we write u ∼ λx + (1 − λ)y
with some u ∈ G, if there are coprime integers k and n 6= 0 such that λ = k/n and
nu = kx + (n − k)y. In general neither the existence nor the uniqueness of such an
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element u ∈ G can be claimed. We have the following result yielding a counterpart of
inequality (1.1) in a group setting.

Theorem 1.5 ([15, Th. 1.1 and Cor. 1.9]). Let A be a subset of an Abelian group G.
Assume that either A = G, or A is convex and A + A = 2A. If f : A → R is a convex
function, then

f(u) ≤ λf(x) + (1− λ)f(y)

holds for every x, y, u ∈ A and λ ∈ Q ∩ [0, 1] such that u ∼ λx+ (1− λ)y.

Sometimes, for instance when the group G is torsion free, we can claim the uniqueness
of elements u satisfying u ∼ λx+ (1− λ)y. Then, if x, y ∈ G, λ ∈ Q and there is such a
u ∈ A ⊂ G, we say that λx+ (1− λ)y exists in A and write λx+ (1− λ)y = u. The next
result is an immediate consequence of the previous one.

Theorem 1.6. Let A be a subset of a torsion free Abelian group G. Assume that either
A = G, or A is convex and A+A = 2A. If f : A→ R is a convex function, then inequality
(1.1) holds for every x, y ∈ A and λ ∈ Q ∩ [0, 1] such that λx+ (1− λ)y exists in A.

We complete this subsection with two corollaries concerning groups with a richer, viz.
linear, structure.

Corollary 1.7 ([15, Cor. 1.10]). Let A be a convex subset of a linear space over the
rationals, and let f : A → R be a convex function. Then inequality (1.1) holds for every
x, y ∈ A and λ ∈ Q ∩ [0, 1] such that λx+ (1− λ)y ∈ A.

This result slightly generalizes that classical one cited at the very beginning of the
present subsection. There the condition of Q-convexity of the domain A means that

λx+ (1− λ)y ∈ A

whenever x, y ∈ A and λ ∈ Q ∩ [0, 1], whereas the convexity of A assumed in Corollary
1.7 (and in Corollary 1.8 also!) requires the above relation to be held for all x, y ∈ A and
for every dyadic λ ∈ [0, 1] only.

Corollary 1.8 ([15, Cor. 1.11]). Let A be a convex subset of a linear topological space
and let f : A→ R be a continuous convex function. Then inequality (1.1) holds for every
x, y ∈ A and λ ∈ [0, 1] such that λx+ (1− λ)y ∈ A.

1.3. Extendibility of convex functions. This topic is not very typical in the classical
theory. However, in the group setting the problem has surprisingly turned out to be not
trivial. We start with a simple observation which is another immediate consequence of
Theorem 1.3.

Corollary 1.9 ([15, Cor. 2.1]). Let A be a convex subset of an Abelian group G such
that A + A = 2A. If a real function f , defined on a subset of A, has a convex extension
to A, then f satisfies the condition Cn for every n ∈ N.

Of course, any convex function f : A → R is trivially extendible to A as a convex
function, so Examples 1.1 and 1.2 show that each of the assumptions imposed on the
set A is essential in Corollary 1.9.
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Denote by H the group generated by two real numbers linearly independent over the
rationals. Then H is isomorphic to the group Z2. Making use of the function described
in Example 1.2 we can obtain a convex function f : H → R which does not satisfy C3,
and thus, by Corollary 1.9, cannot be extended to R as a convex function. Consequently,
we have come to the following result.

Theorem 1.10 ([15, Th. 2.2]). There exists a convex function defined on a subgroup of
the reals which cannot be extended to R as a convex function.

Rather unexpectedly it turns out that the property of satisfying all the conditions Cn

is much more appropriate while extending the function.

Theorem 1.11 ([15, Th. 2.3]). Let H be a subgroup of an Abelian group G. If f : H → R
satisfies Cn for every n ∈ N, then f can be extended to G as a function satisfying Cn for
every n ∈ N.

The proof of this theorem (see [15]) is fairly non-trivial. Given any x ∈ G \ H the
required extension to the group 〈H,x〉 generated by H and x is defined step by step.
Among the tools used in the proof there is the fundamental theorem of finitely generated
Abelian groups (cf. [34, Th. 10.26]). The final step is making use of Zorn’s lemma.

The assumption that H is a subgroup of G is essential for the validity of Theo-
rem 1.11, which can be seen from the following simple example. Let A = (a, b), where
−∞ < a < b <∞, and let f : A→ R be a convex function such that f(a+) = f(b−) =∞.
By Theorem 1.3, the function f satisfies Cn for every n ∈ N. On the other hand it does
not admit a convex extension to R.

As an immediate consequence of Theorems 1.3 and 1.11 we obtain the following result.

Corollary 1.12 ([15, Cor. 2.4]). Let H be a subgroup of an Abelian group G. If H is
divisible by 2, then every convex function defined on H can be extended to G as a convex
function.

Comparing Theorem 1.10 and Corollary 1.12 we see how subtle the situation is while
extending functions from a subgroup H to the whole group, with preserving convexity.
The crucial role is played here by the assumption of divisibility by 2 of the subgroup H.

For a little bit relative problem of extendibility of convex functions defined on a finite
set of reals to the whole real line the reader is referred to the paper [29] by Pinkus and
Wulbert. Actually that paper deals with the notion of n-convexity introduced already
by Eberhard Hopf in his dissertation [12], and then extensively studied by Popoviciu in
his thesis [30] and his monograph [31]. In the reals that notion generalizes the convexity
considered here. The paper [29] brings a (nonconstructive) method of determining if an
n-convex function defined on a finite set of reals has a desired n-convex extension to R.

1.4. The Hahn–Banach theorem. A version of that classical result, formulated as
Theorem 1.15 below, was not published yet, so here it is presented with a proof. The
main ideas are due to Miklós Laczkovich (private communication).

Let S be a semigroup. A function p : S → R is said to be subadditive if p(x + y) ≤
p(x) + p(y) for every x, y ∈ S. If X is a linear space over the reals then p : X → R is
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called sublinear if it is subadditive and p(tx) = tp(x) for every x ∈ X and nonnegative
t ∈ R. The Hahn–Banach theorem states that

(HB) if X is a linear space over the reals, p : X → R is sublinear, Y is a subspace of X,
and L : Y → R is a linear map such that L(x) ≤ p(x) for every x ∈ Y , then L can
be extended to X as a linear map such that L(x) ≤ p(x) for every x ∈ X.

Consider the following variants of (HB).

(HB1) Let X be a linear space over the rationals and let p : X → R be subadditive. If Y is
a subspace of X, and a : Y → R is an additive map such that a(x) ≤ p(x) for every
x ∈ Y , then a can be extended to X as an additive map such that a(x) ≤ p(x) for
every x ∈ X.

(HB2) Let X be a linear space over the rationals and let p : X → R be convex. If Y is a
subspace of X, and a : Y → R is an additive map such that a(x) ≤ p(x) for every
x ∈ Y , then a can be extended to X as an additive map such that a(x) ≤ p(x) for
every x ∈ X.

It is easy to see that each of (HB1) and (HB2) implies (HB). Indeed, if p is sublinear
then it is both subadditive and convex. Also, if L ≤ p is additive then L is linear. To
prove this, let x ∈ X be given. Then the map R 3 t 7→ L(tx) is additive, and bounded
from above on an interval. As is well-known (cf., for instance, [22, Th. 5.2.1] and the
comment just after it), this implies that L(tx) = tL(x) for every t ∈ R, proving that L is
linear.

The statements (HB1) and (HB2) are independent in that neither of them is covered
by the other. For example, if X = R then p : X → R, given by p(x) =

√
|x|, is subadditive

but not convex, while p(x) = x2 defines a function p : X → R which is convex but not
subadditive.

It was proved by R. Kaufman in [19] and [20] that (HB1) can be generalized to Abelian
groups, and even to Abelian semigroups; see also [33] for a generalization.

In this section we shall consider the possible generalization of (HB2) to Abelian groups.
We shall prove that (HB2) holds under the following conditions: p has the property Cn

for every n ∈ N, and Y is divisible by 2. As the following examples show, none of these
conditions can be omitted.

Example 1.13. Let G = Q and define p : G → R by p(x) = x2 − x. Then p is convex
and, in addition, has property Cn for every n ∈ N. Take H = Z, and let a be the zero
function on H. Then a ≤ p|H . Now the only extension of a to Q as an additive function
is the identically zero function which does not satisfy a ≤ p.

Example 1.14. In Example 1.2 we described a convex function f on G = Z2 such that
f(0, 0) = 1 and f(1, 1) = f(−1, 0) = f(0,−1) = 0. Then p = f − 1 is convex and
p(0, 0) = 0. The subgroup H = {(0, 0)} is divisible by 2 and a ≤ p|H , where a(0, 0) = 0.
However, there is no additive function ā : Z2 → R with ā ≤ p. Indeed, suppose that
ā is such a homomorphism. Then each of the numbers ā(1, 1), ā(−1, 0), ā(0,−1) is not
greater than −1. On the other hand, ā(1, 1) + ā(−1, 0) + ā(0,−1) = ā(0, 0) = 0, which is
impossible.
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Theorem 1.15. Let G be an Abelian group, H its subgroup divisible by 2, and let
p : G → R be a function satisfying the condition Cn for every n ∈ N. Then any ad-
ditive function a : H → R such that a(x) ≤ p(x) for every x ∈ H can be extended to G
as an additive function satisfying a(x) ≤ p(x) for every x ∈ G.

Our method of proving Theorem 1.15 is to reduce it to (HB1). For this purpose we
shall need some lemmas.

Lemma 1.16 ([15, Lemma 1.2]). Let G be an Abelian group, x, h ∈ G, and let f : {x,
x+ h, . . . , x+ nh} → R be a convex function. Then

nf(x+ kh) ≤ (n− k)f(x) + kf(x+ nh)

for every k = 0, . . . , n.

Lemma 1.17. Let A be a subset of an Abelian group G and let f : A → R be a convex
function. If x0 ∈ G is of finite order, then f(x + x0) = f(x) for every x ∈ G with
x+ x0Z ⊂ A.

Proof. Since −x0 is also of finite order, it is enough to show that f(x + x0) ≤ f(x) for
every x ∈ G such that x + x0Z ⊂ A. Take any such x and n ∈ N satisfying nx0 = 0.
Then, by Lemma 1.16, we obtain

nf(x+ x0) ≤ (n− 1)f(x) + f(x+ nx0) = nf(x)

which was to be proved.

Lemma 1.18. Let X be a linear space over the rationals and let p : X → R be a convex
function such that p(0) ≥ 0. Then

(1.2) q(x) = inf{np(x/n) : n ∈ N}

defines a subadditive function q : X → R satisfying q ≤ p.

Proof. It is clear that q ≤ p. Take any x ∈ X. By Lemma 1.16 we have

0 ≤ (n+ 1)p(0) = (n+ 1)p((−x) + n(x/n))

≤ p(−x) + np((−x) + (n+ 1)(x/n)) = p(−x) + np(x/n)

for every n ∈ N. Thus np(x/n) ≥ −p(−x) for every n ∈ N, which proves that q is finite.
We show that q is subadditive. Let x, y ∈ X be arbitrary. Then, by the definition of q
and Corollary 1.7,

q(x+ y) ≤ (m+ n)p
( x+ y

m+ n

)
= (m+ n)p

( m

m+ n

x

m
+

n

m+ n

y

n

)
≤ mp

( x
m

)
+ np

( y
n

)
for all m,n ∈ N, whence q(x+ y) ≤ q(x) + q(y).

Lemma 1.19. Any convex function defined on Q is continuous.

Proof. Let f : Q→ R be a convex function. Write

ha,b(t) =
f(b)− f(a)

b− a
(t− a) + f(a)
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for every a, b ∈ Q, a < b, and for every t ∈ Q. Let c ∈ Q be arbitrary, and choose rational
numbers a and b such that a < c < b. Take any t ∈ Q ∩ (c, b). Then a < c < t < b, also

c =
t− c
t− a

a+
c− a
t− a

t and t =
b− t
b− c

c+
t− c
b− c

b,

whence, by Corollary 1.7,

f(c) ≤ t− c
t− a

f(a) +
c− a
t− a

f(t) and f(t) ≤ b− t
b− c

f(c) +
t− c
b− c

f(b).

This results in ha,c(t) ≤ f(t) ≤ hc,b(t) for every t ∈ Q ∩ (c, b). Since

ha,c(c+) = hc,b(c+) = f(c),

it follows that f(c+) = f(c). That is, f is continuous at c from the right. A similar
argument shows that f is continuous at c from the left.

Proof of Theorem 1.15. First assume that G is uniquely divisible, i.e. G is a linear space
over the rationals. Let q : G → R be defined by (1.2). Then, by Lemma 1.18, q is
subadditive and q ≤ p. We prove that a ≤ q|H .

Let x ∈ H be fixed, and put px(t) = p(tx) for every t ∈ R. It is easy to check that px

is convex on Q. Therefore, by Lemma 1.19, px is continuous. Since H is divisible by 2,
we have k

2nx ∈ H for every k ∈ Z and n ∈ N, whence,

k

2n
a(x) = a

( k
2n

x
)
≤ p
( k

2n
x
)

= px

( k
2n

)
.

From the continuity of px it follows that ta(x) ≤ px(t) for every t ∈ Q. In particular,
a(x) ≤ npx(1/n) = np(x/n) for every n ∈ N, which implies a(x) ≤ q(x).

Now it follows from (HB1) that a can be extended to G as an additive function such
that a(x) ≤ q(x) for every x ∈ G. Since q ≤ p, this proves the theorem in that case.

Next assume that G is a divisible group. Let G0 denote the torsion subgroup of G.
Then p is constant on each coset ofG0 by Lemma 1.17. Also a(x) = 0 for every x ∈ H∩G0.
Therefore, if we define a(h + x) = a(h) for every h ∈ H and x ∈ G0, then we obtain
an extension of a to the subgroup H0 = 〈H,G0〉 generated by H and G0 such that
a(x) ≤ p(x) for every x ∈ H0, and a is constant on each coset of G0 lying in H0.

The factor group G/G0 is divisible and torsion free, that is uniquely divisible. Let φ
denote the natural homomorphism from G to the factor group G/G0. Then φ(H0) = φ(H)
is divisible by 2, since it is the homomorphic image of a group with the same property.
There is a function p̄ : G/G0 → R such that p = p̄ ◦ φ. Clearly, p̄ is convex on G/G0.
Similarly, there is a homomorphism ā : φ(H0)→ R such that a = ā ◦φ. Clearly, ā ≤ p̄ on
φ(H0). Since G/G0 is uniquely divisible, there exists an extension of ā to G/G0 such that
ā ≤ p̄ on G/G0. Taking ā ◦ φ we obtain an extension of a satisfying the requirements.

Finally, consider the general case. It is well-known that G can be embedded in a
divisible group A (see [34, Th. 10.23]). By Theorem 1.11, p can be extended to A as
a convex function. By what we proved above, a can be extended to A as an additive
function such that a ≤ p. Then the restriction of a to G satisfies the requirements.
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Problem. Because of the subtraction occurring in (0.1), that inequality cannot serve as
a definition of the convexity in a semigroup setting. However, the condition C2, which is
equivalent to convexity in groups, is a good candidate for such a definition. In fact, all
the conditions Cn make sense in semigroups. It seems to be reasonable to study functions
defined on subsets of semigroups and having the properties Cn. How far the results of
Subsections 1.1–1.4 can be generalized to (Abelian) semigroups? Is it possible to have a
comprehensive theory of convex functions (in the sense proposed above) in semigroups?
This concerns also the results of the next sections, where topological groups could be
replaced by topological semigroups.

2. A topological group setting. In this section we deal with convex functions in
groups with much more richer structure, viz. topological groups, in Subsections 2.2 and
2.3 assumed to be locally compact. The results presented here originate in two papers:
[6] by Chademan and Mirzapour, and [15]. We consider possible generalizations of such
classical theorems as those due to Bernstein and Doetsch, Blumberg and Sierpiński, also
Ostrowski. The counterparts of these theorems proved by Chademan and Mirzapour
are different from those obtained in [15]. This concerns both the assumptions and the
assertions. For instance, in [6] (cf. Theorems 1 and 2 there) the authors sometimes assume
that if the considered topological group is not discrete, then it has the property
(CM) for every x ∈ G there is a sequence (yn)n∈N of elements of G such that x = 2nyn

for each n ∈ N and yn → 0,
which is not the case in [15]. On the other hand, in [15] only Abelian groups are treated,
whereas the commutativity of groups in [6] is postulated only in a result generalizing
Ostrowski’s theorem.

The main tool of the proofs in [6] is the following generalization of Jensen’s theorem.

Theorem 2.1 ([6, Prop. 3]). Let U be an open subset of a locally compact not discrete
group and let x ∈ U . If a convex function f : U → R satisfies the condition

lim sup
h→0

f(x+ h) <∞,

then f is continuous at x.

In fact, Chademan and Mirzapour admit functions from slightly larger classes than
the class of convex functions. Given a topological group they consider locally convex,
sequentially convex at a point and locally uniformly convex at a point functions defined
on a subset of the group (see [6, Sec. 2.1]). In particular, Theorem 2.1 is considered
there for functions sequentially convex at x. Here, however, for the uniformity of the
presentation, we shall formulate all the results for convex functions only.

2.1. The Bernstein–Doetsch theorem. Its classical version states that if D is a
convex open subset of a normed linear space and f : D → R is a convex function locally
bounded from above at a point, then f is continuous (see [32, Chap. VII, Sec. 71, Th. C
and Chap. IV, Sec. 41, Th. C] or [22, Th. 6.4.2], also [2]).

To formulate a generalization proved by Chademan and Mirzapour we need the fol-
lowing notion. A subset A of a group G is called (right) midconvex if for every x, y ∈ A
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there is an h ∈ G such that x+h ∈ A and x+ 2h = y. In the case when G is Abelian the
midconvexity of A is equivalent to the condition A+A = 2A. However, in general, both
properties are independent.

Theorem 2.2 ([6, Th. 1]). Let G be a topological group with property (CM) whenever G
is not discrete and let D be a midconvex open subset of G. If a convex function f : D → R
is locally bounded from above at a point, then f is continuous.

The approach presented in [15] need the commutativity of the group. On the other
hand, the assertion obtained there is stronger: the local uniform continuity of f is stated
and, in the case when the group is metric, the local Lipschitz condition. In the theorem
below another notion occurs, too. Namely, we say that a neighbourhood U ⊂ G of 0 is
absorbing if for every x ∈ G there is a positive integer n such that x ∈ 2nU . The detailed
formulation of the result is as follows.

Theorem 2.3 ([15, Th. 3.6]). Let G be an Abelian topological [metric] group and let D
be an open subset of G satisfying at least one of the following conditions:

(i) D = G;
(ii) D is connected ;
(iii) D is convex, and every convex neighbourhood of 0 is absorbing.

If a convex function f : D → R is locally bounded from above at a point, then f is locally
uniformly continuous [locally Lipschitz ].

Clearly, condition (CM) implies that every neighbourhood of 0 is absorbing. Conse-
quently, for Abelian groups Theorem 2.2 can be derived from Theorem 2.3 (where it is
enough to assume (iii) only). Observe also that any topological group, containing at least
one absorbing neighbourhood of 0 is necessarily divisible by 2.

Note that Theorem 2.3 generalizes the Bernstein–Doetsch theorem even in the case
G = Rn, as the notion of convexity of sets is more general than the classical one; for that
observation it is enough to consider Theorem 2.3 with assumption (iii) only.

The following two examples show that if there are convex neighbourhoods of 0 which
are not absorbing, then, in general, the assertion of Theorem 2.3 fails to be true.

Example 2.4 ([15, Ex. 3.4]). Consider the group G = R × Z with the invariant metric
d given by d

(
(x1, n1), (x2, n2)

)
= |x1 − x2|+ |n1 − n2|. The topology induced by d is the

product topology when the factors R and Z are endowed with the Euclidean topology
and the discrete one, respectively.

The set D = R × {0, 1} is convex and open. Let a : R → R be a discontinuous
additive function (cf. [22, Cor. 5.2.2] for instance). Then the function f : D → R, given
by f(x, n) = na(x), is convex. Moreover, f vanishes on the open subset R × {0} of D.
However, f is not continuous at any point of R× {1}, as f(·, 1) = a.

Example 2.5 ([15, Ex. 3.5]). Let d0 be the discrete metric on R, that is d0(x, y) = 1
whenever x, y are distinct reals and d0(x, x) = 0 for every x ∈ R. Consider the group
G = R×R with the metric d defined by d((x1, y1), (x2, y2)) = |x1 − x2|+ d0(y1, y2). The
topology generated by d is the product topology when the first R factor is endowed with
the Euclidean topology and the second R factor is equipped with the discrete one.
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The set D = R× [0, 1] is convex and open. Take any discontinuous additive function
a : R→ R and define a function f : D → R putting f(x, y) = 0 for every x ∈ R, y ∈ [0, 1)
and f(x, 1) = a(x)2 for every x ∈ R. Then f is a convex function which vanishes on the
open subset R \ {0} of D but is not continuous.

Making use of Theorem 2.3 one can prove another extension result.

Corollary 2.6 ([15, Cor. 3.8]). Let H be a dense subgroup of an Abelian topological
group G and let f : H → R be a convex function. If f is locally bounded from above at a
point, then f can be extended to G as a continuous convex function.

It turns out that if we assume the global boundedness of f from above, then the
assertion of Theorem 2.3 can be proved in arbitrary Abelian topological [metric] group.

Theorem 2.7 ([15, Th. 3.1]). Let D be an open subset of an Abelian topological [metric]
group and let f : D → R be a convex function. If f is bounded from above, then it is
locally uniformly continuous [locally Lipschitz ].

2.2. The Blumberg–Sierpiński theorem. A well-known theorem of Blumberg and
Sierpiński (see [3] and [36], also [22, Th. 9.4.2]) states that every Lebesgue measurable
convex function, defined on an open convex subset of Rk, is continuous. While generalizing
this result to locally compact topological groups we replace the Lebesgue measurability
by the M-measurability, where M stands for completion of the σ-field of Borel subsets of
the group G with respect to the (say left) Haar measure in G; in the sequel we shall call
it measurable.

We begin with a generalization proposed by Chademan and Mirzapour.

Theorem 2.8 ([6, Cor. 2]). Let U be an open subset of a locally compact topological
group. If f : U → R is a measurable convex function, then f is continuous.

A slightly more general version of the Blumberg–Sierpiński theorem was proved for
locally uniformly convex functions (see [6, Prop. 4]). In the commutative case the assertion
of Theorem 2.8 can be strengthened.

Theorem 2.9 ([15, Th. 4.1]). Let U be an open subset of a locally compact Abelian
topological [metric] group. If f : U → R is a measurable convex function, then f is locally
uniformly continuous [locally Lipschitz ].

The original Blumberg–Sierpiński theorem has a topological counterpart, where the
Lebesgue measurability of the function is replaced by the Baire property (see [22, Ex. 7,
p. 256]). By Baire property of a real-valued function we mean here the measurability with
respect to the σ-field of Baire sets, viz. sets which differ from an open set by a set of the
first Baire category. The mentioned generalization to groups reads as follows.

Theorem 2.10 ([15, Th. 4.2]). Let U be an open subset of a locally compact Abelian
topological [metric] group. If f : U → R is a convex function with the Baire property,
then f is locally uniformly continuous [locally Lipschitz ].

The assumption of local compactness in Theorems 2.8–2.10 cannot be removed, as
the following shows.
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Example 2.11 ([15, Rem. 4.3]). Let α be an irrational number. Then the group G =
Z + αZ, endowed with the topology generated by the Euclidean topology of R, is an
Abelian topological group. Since G is countable, every function defined on G is Borel,
whence both measurable and with the Baire property. However, there are convex, even
additive, functions on G which are discontinuous. The function f : G → R given by
f(n+ kα) = k, serves as an example.

Nevertheless, the condition of local compactness of the group in Theorem 2.10 can be
relaxed. Namely, the same proof (see [15]) shows that the assertion of Theorem 2.10 is
valid in every topological Abelian group G in which every nonempty open set is of the
second Baire category. It is easy to see that this happens if and only if G is of the second
category. Indeed, if there is a nonempty open set which is of the first category, then, as
its translations cover G, it follows that G is the union of a family of open sets of the first
category. By Banach’s Category Theorem [28, Th. 16.1], this implies that G is of the first
category.

2.3. Ostrowski’s and Mehdi’s theorems. As was proved by Ostrowski in [27] the
assumptions of Lebesgue measurability of the function f in the Blumberg–Sierpiński
theorem may be essentially relaxed: it is enough to require that f is bounded from above
on a measurable set of positive measure (see also [22, Th. 9.3.1]). Examples 2.4 and
2.5 show that if we want to generalize this result to topological groups, then we have
to impose additional assumptions on the group or on the domain of f . It can be seen
from the example below that the situation is rather sophisticated: there are discontinuous
convex functions defined on the whole group and bounded above on a closed set of positive
measure.

Example 2.12. Let G be as in Example 2.5 and take any discontinuous additive function
a : R → R. Then f : G → R, given by f(x, y) = a(x), is discontinuous convex (even
additive) function, vanishing on the closed set F = {0} ×R of positive Haar measure. In
fact, F is of infinite measure. Nevertheless, the interior of F + F is empty. Observe also
that the group G is not divisible by 2.

While proving any version of Ostrowski’s theorem a crucial point is to know that
f under consideration is bounded above on a set A such that the interior of A + A is
nonempty. It is well-known that in locally compact Abelian groups this is the case when
A is measurable set of finite (σ-finite) positive measure (see [11, (20.17) Cor.]). It turns
out that in the proof of the generalized Ostrowski’s theorem it is advisable to assume the
following property which is an abstract version of Steinhaus’ theorem:
(S) If G is a locally compact group and A ⊂ G is a measurable set of finite positive

measure, then the interior of A+A contains an element 2x with some x ∈ G.
Clearly, every locally compact Abelian group divisible by 2 has property (S). Also

every connected locally compact Abelian group G has property (S), as for such groups
2G is dense in G. Note, however, that in general 2G is not dense in G. This is the case,
for instance, if G is a compact group not divisible by 2; then G \ 2G is a nonempty open
set, disjoint with 2G. Examples of such a group are the Cantor group {0, 1}N and the
group of 2-adic integers.
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In [15] one can find the following generalization of Ostrowski’s theorem.

Theorem 2.13 ([15, Th. 4.4]). Let G be a locally compact Abelian topological [metric]
group and let D be a convex open subset of G satisfying at least one of the following
conditions:

(i) D = G and G has property (S);
(ii) D is connected ;
(iii) every convex neighbourhood of 0 is absorbing.

If a convex function f : D → R is bounded from above on a measurable set of finite
positive measure, then f is locally uniformly continuous [locally Lipschitz ].

This is an extension of [6, Th. 2] where the commutativity of the group is also assumed.
(It seems that there the assumption of finiteness of measure of the set, on which f is
bounded above, has been wrongly omitted.)

The final result of this subsection is the category counterpart of Theorem 2.13; it
generalizes Mehdi’s theorem [24] (see also [22, Th. 9.3.2]).

Theorem 2.14 ([15, Th. 4.4]). Let G be an Abelian topological [metric] group and let D
be an open subset of G satisfying at least one of conditions (i)–(iii). If a convex function
f : D → R is bounded from above on a set of the second category with the Baire property,
then f is locally uniformly continuous [locally Lipschitz ].

Problem. Prove or disprove that every locally compact Abelian group has property (S).

3. Almost convexity. In the paper [21] Kuczma proved that if D is a convex open
subset of Rn, then every function f : D → R satisfying inequality (0.2) for almost every
(with respect to the product Lebesgue measure in Rn×Rn) pair (x, y) ∈ D×D equals a
convex function a.e. (with respect to Lebesgue measure in Rn). The results of this section
extend Kuczma’s theorem to some locally compact Abelian groups; they originate in the
papers [16] and [14].

3.1. Kuczma’s theorem. Let A be a subset of a locally compact Abelian group G with
Haar measure λ. We shall say that a function f : A → R is almost convex if inequality
(0.1) holds for λ2-a.e. (x, h) ∈ G2 such that x, x+ h, x− h ∈ A. Clearly, for G = Rn and
for a convex open set A ⊂ G, this is equivalent to Kuczma’s condition.

The following theorem is the main result of the paper [16].

Theorem 3.1 ([16, Th. 1]). Let G be a locally compact Abelian group divisible by 2.
Then for every almost convex function f : G → R there exists a unique convex function
g : G→ R such that f(x) = g(x) for λ-a.a. x ∈ G.

Kuczma’s theorem is valid in any compact connected Abelian group, as every such a
group is divisible. The condition of divisibility by 2 is by no means necessary. Indeed, in
discrete groups every almost convex function is convex, so Kuczma’s theorem is true in
discrete groups. It is also valid on torsion groups, as every almost convex function defined
on a torsion group is constant a.e.

The outer measure of a set E ⊂ G is defined by λ̄(E) = inf{λ(U) : E ⊂ U ⊂ G,

U is open}. Then λ̄ is an extension of λ to an outer measure on G. It turns out that
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Kuczma’s proof is based on the fact that the following properties are satisfied in the
case G = Rn. Here and in the sequel 1

nE denotes the set {x ∈ G : nx ∈ E} for every
E ⊂ G and n ∈ N. Moreover, we shall make use of the transformation of G × G given
by φ(x, y) = (x + y, x − y). We say that E ⊂ G is a null set if λ̄(E) = 0, whereas the
complement of a null set is said to be of full measure. Consider the following properties.

(P1) If A ⊂ G is a set of positive outer measure, then also the set 1
2A is of positive outer

measure.

(P2) If A,B ⊂ G are sets of positive outer measure and M,N ⊂ G2 are sets of full
measure, then

φ−1(M) ∩N ∩
[(1

2
A
)
×
(1

2
B
)]
6= ∅.

The proof of Theorem 3.1 presented in [16] consists of two parts. In the first one
the authors prove that Kuczma’s argument works in any group with properties (P1) and
(P2). The second one, consisting of a series of lemmas, shows that both the properties
are satisfied in every group which is divisible by 2.

3.2. An abstract setting of set σ-ideals. In the book [22] Kuczma actually proved
his theorem in a more general setting, in which the families of null sets were replaced by
some abstract ideals. The paper [14] provides counterparts of that result for functions
defined in groups.

Sets being elements of proper σ-ideals can be considered as small sets in abstract
setting. In what follows the phrases almost everywhere and almost all are meant in the
sense of given σ-ideals in the groups G and G×G.

To fix the terminology we recall some notions. A nonempty family I of subsets of a
set X is called a σ-ideal in X if every subset of any element of I belongs to I and the
union of any countable subfamily of I is in I. If X 6∈ I the σ-ideal is called proper. The
classical examples of proper σ-ideals are:

— the family of countable subsets of any uncountable set;
— the family of the first Baire category subsets of a topological space of the second

category;
— the family of sets of measure zero with respect to a non-zero complete measure;
— the family of null subsets of a locally compact group.

A σ-ideal I in a group G is said to be invariant if x − A ∈ I whenever A ∈ I and
x ∈ G. Clearly, the first category subsets of a topological group as well as the null subsets
of a locally compact Abelian group constitute invariant σ-ideals.

In the proofs of the results of [14] some abstract versions of the Fubini theorem are
helpful. They can be postulated by imposing the following notions of conjugation of the
considered σ-ideals. Let I1 and I2 be σ-ideals in X and X ×X, respectively. We require
that I1-a.a. appropriate sections of every set from I2 are in I1. Namely, I1 and I2 are
said to be:

— conjugate if for every A ∈ I2 the vertical sections {y ∈ X : (x, y) ∈ A} are in I1 for
I1-a.a. x ∈ X.
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If X is an Abelian group, I1 and I2 are called (see [14]):

— radially conjugate if the I1-a.a. sections {y ∈ X : (x + ny, y) ∈ A} of any A ∈ I2
are in I1 for every n ∈ Z,

— diagonally conjugate if they are conjugate and the I1-a.a. sections {y ∈ X : (x+2ny,

−2ny) ∈ A} and {y ∈ X : (x − 2ny, 2ny) ∈ A} of any A ∈ I2 are in I1 for every
n ∈ N ∪ {0}.

Clearly, radially conjugate as well as diagonally conjugate σ-ideals are conjugate.
We need one definition more; this is a modification of that proposed by Ger in [8],

[9]. For any σ-ideal I of subsets of a set X let Ω(I) be the family of those A ⊂ X ×X,
whose I-a.a. vertical sections {y ∈ X : (x, y) ∈ A} as well as horizontal sections {x ∈ X :
(x, y) ∈ A} are in I. Clearly, if I is an invariant proper σ-ideal in an Abelian group G,
then Ω(I) is an invariant proper σ-ideal in G×G, conjugate with I.

Let G be an Abelian group, I a proper σ-ideal in G × G and let A be a subset
of G. A function f : A → R is called I-almost convex if inequality (0.1) holds for I-a.a.
(x, h) ∈ G×G with x, x+ h, x− h ∈ A. In [22, Th. 17.8.2] Kuczma proved what follows.

Let I1 and I2 be conjugate proper invariant σ-ideals in Rn and R2n, respectively,
fulfilling the conditions
(K1) if A ∈ I1 then aA ∈ I1 for every a ∈ R,
(K2) if A ∈ I2 then φ−1(A) ∈ I2.
If D ⊂ Rn is a convex open set and f : D → R is an I2-almost convex function, then
there exists a unique convex function g : D → R such that g(x) = f(x) for I1-a.a. x ∈ D.

In [14], to extend Kuczma’s theorem to an abstract group setting, the following general
result has been proved. The condition (Q1) below is a natural extension of (P1) considered
in Subsection 3.1, whereas the condition (Q2) is a slight but essential modification of
condition (P2).

Theorem 3.2 ([14, Th. 1]). Let G be an Abelian group and let I1 and I2 be invariant
σ-ideals in G and G ×G, respectively, radially or diagonally conjugate and fulfilling the
conditions
(Q1) if 1

2A ∈ I1 then A ∈ I1,
(Q2) if A,B ⊂ G, A,B /∈ I1, M ∈ Ω(I1) and N ∈ I2, then[(1

2
A
)
×
(1

2
B
)]
\ [φ−1(M) ∪N ] 6= ∅.

If D ⊂ G is a nonempty convex set, (D−x)∩(x−D) /∈ I1 for every x ∈ D, and f : D → R
is an I2-almost convex function, then there exists a convex function g : D → R such that
g(x) = f(x) for I1-a.a. x ∈ D.

It can be easily checked that any conjugate proper invariant σ-ideals in Rn and R2n,
respectively, fulfilling conditions (K1) and (K2), are diagonally conjugate. Moreover, ob-
serve that condition (K1) implies (Q1), and (Q1), (K2) force (Q2). Since I1 is invari-
ant and proper, it follows that empty set is the unique open set belonging to I1. Thus
(D − x) ∩ (x−D) /∈ I1 for every nonempty open set D ⊂ Rn and x ∈ D. Consequently,
Kuczma’s theorem follows directly from Theorem 3.2 and the next uniqueness result.
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Observe that the assumptions imposed on the domain D of f in Theorems 3.2 and 3.3
are more general than those in original Kuczma’s theorem.

Theorem 3.3 ([14, Th. 2]). Let G be an Abelian group and let I1 be an invariant σ-ideal
in G fulfilling condition (Q1). If D ⊂ G is a nonempty convex set, (D−x)∩ (x−D) /∈ I1
for every x ∈ D and f1, f2 : D → R are convex functions such that f1(x) = f2(x) for
I1-a.a. x ∈ D, then f1 = f2.

3.3. Measure-theoretical and topological cases. There are two crucial realizations
of Theorems 3.2 and 3.3. Let us start with the first one.

Theorem 3.4 ([14, Th. 3]). Let G be a locally compact Abelian group divisible by 2, with
Haar measure λ, and let D ⊂ G be a nonempty convex set such that (D−x)∩(x−D) is a
null set for no x ∈ D. If f : D → R and inequality (0.1) holds for λ2-a.a. (x, h) ∈ G×G
with x, x+ h, x− h ∈ D, then there exists a unique convex function g : D → R such that
g(x) = f(x) for λ-a.a. x ∈ D.

Theorem 3.4 can be derived from Theorems 3.2 and 3.3 due to a series of lemmas
proved in [14]. They show that the divisibility of G by 2 forces conditions (Q1) and (Q2)
with the σ-ideals I1 and I2 of null sets in G and G×G, respectively. On the other hand,
Theorem 3.4 generalizes Theorem 3.1 where f is assumed to be defined on the whole
group.

For a topological version of Theorems 3.2 and 3.3 let G be an Abelian topological
group with a countable base. Then, according to the Kuratowski–Ulam theorem (cf. [28,
Chap. 15]), the first category subsets of G and G×G, respectively, form invariant radially
conjugate σ-ideals.

Theorem 3.5 ([14, Th. 4]). Let G be a locally compact Abelian group with a countable
base. Assume that G is divisible by 2 and has only finitely many elements of order 2. Let
D ⊂ G be a nonempty convex set such that (D − x) ∩ (x −D) is of the second category
for every x ∈ D. If f : D → R and there is a first category subset P of G×G such that
inequality (0.1) holds for every (x, h) ∈ (G×G) \ P with x, x+ h, x− h ∈ D, then there
exist a first category subset Q of G and a unique convex function g : D → R such that
g(x) = f(x) for every x ∈ D \Q.

The n-dimensional torus serves as an example of a non-trivial, that is not uniquely
divided by 2, group satisfying the assumptions of Theorem 3.5.

3.4. Some consequences. We complete this section with two consequences of some
results presented here. The first one states that, under appropriate conditions imposed on
the group G, every measurable function satisfying a condition related to almost convexity
is equal to a continuous convex function almost everywhere.

Theorem 3.6 ([14, Th. 5]). Let G be a σ-compact locally compact Abelian group, divisible
by 2, with Haar measure λ, and let D ⊂ G be a nonempty convex open set. Let f : D → R
be a measurable function. Assume that there is a dense subset B of G such that inequality
(0.1) holds for all x ∈ G and h ∈ B with x, x+h, x−h ∈ D. Then there exists a continuous
convex function g : D → R such that g(x) = f(x) λ-a.e. in D.
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The main tools used in the proof of the above result are Theorems 3.4 and 2.9.
Making use of Theorems 3.5 and 2.10 one can deduce the following topological version of
Theorem 3.6.

Theorem 3.7 ([14, Th. 6]). Let G be a locally compact Abelian group with a countable
base. Assume that G is divisible by 2 and has only finitely many elements of order 2. Let
D ⊂ G be a nonempty convex open set and let f : D → R be a function with the Baire
property. Assume that there is a dense subset B of G such that inequality (0.1) holds for
every x ∈ G and h ∈ B with x, x + h, x − h ∈ D. Then there exist a continuous convex
function g : D → R and a first category subset Q of G such that g(x) = f(x) for every
x ∈ G \Q.

3.5. Problems

1. Answer the question whether or not Theorem 3.1 is valid in every locally compact
Abelian group.

2. Is it possible to relax or even cancel the divisibility assumption imposed on G

in Theorem 3.5? Examine the assertion of this result in the Cartesian product of
infinitely but countably many copies of the circle S1.

3. Check if the local compactness of the group G is essential for the validity of Theo-
rem 3.5.

4. Prove or disprove: Theorem 3.6 is true in every locally compact Abelian group.
5. In the paper [35], replacing inequality (0.2) by the inclusion

F (x) + F (y)
2

⊂ F
(x+ y

2

)
,

Sadowska studied almost convex set-valued functions defined on a convex open
subset of a linear topological space. Examine that notion and Sadowska’s result in
a group setting, for some individual σ-ideals or abstract σ-ideals.

6. Versions of Kuczma’s theorem for almost t-convex and almost Wright-convex func-
tions, defined on a convex subset of a linear space over the reals, are known due to
Adamek [1]. Generalize his results to groups.

4. Applications. We confine ourselves to two topics, touching only on possible appli-
cations.

4.1. Improving regularity of solutions of a functional equation. It turns out
that Kuczma’s theorem on almost convex functions (see [21] and [22, Th. 17.8.2]; cf.
also Section 3.1 of the present paper) can be useful while proving that Lebesgue measur-
able solutions of some functional equations in a single variable are, in fact, continuous.
A pertinent exemplification of this is the following result.

Theorem 4.1 ([13, Prop. 3.3.(ii)]). Let p1, . . . , pk be positive numbers and let a1, . . . , ak

be non-zero reals generating a dense subgroup of R. If f : R → R is a non-negative
measurable function satisfying the equality

(4.1) f(x) =
k∑

i=1

pif(x+ ai)
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a.e. in R, then either f(x) = 0 for a.a. x ∈ R, or there is a positive continuous solution
g : R → R of equation (4.1) such that f(x) = g(x) for a.e. x ∈ R; in addition, g is
logarithmically convex:

g
(x+ y

2

)
≤
√
g(x)g(y), x, y ∈ R.

This is one of the main steps in determining all the non-negative measurable solutions
of (4.1) (see [13, Th. 3.1], also [23] for another argument). As the reference [13] is hardly
obtainable, below we give a sketch of the proof of a special variant of Theorem 4.1 to see
the crucial role of Kuczma’s theorem while proving Theorem 4.1. The condition f(0+) = 0
is not essential for the validity of Theorem 4.2 (cf. [13, Lemma 1.3]). However, imposing
this assumption we can give a simpler argument.

Theorem 4.2. Let a, b be positive numbers such that log a/ log b is irrational. If f :
(0,∞)→ R is a non-negative measurable function such that f(0+) = 0 and the equality

(4.2) f(x) = f(ax) + f(bx)

holds a.e. in (0,∞), then either f(x) = 0 for a.a. x ∈ (0,∞), or there is a positive
continuous solution g : (0,∞) → R of equation (4.2) such that f(x) = g(x) for a.a.
x ∈ (0,∞); in addition, g is geometrically convex:

g
(√
xy
)
≤
√
g(x)g(y), x, y ∈ (0,∞).

Proof. Let E ⊂ (0,∞) be a null set such that equality (4.2) holds for every x ∈ (0,∞)\E.
Then the set

E0 =
∞⋃

i=−∞

∞⋃
j=−∞

aibjE

is of measure zero. Moreover, aE0 = bE0 = E0. Thus, replacing f by the function
f0 : (0,∞)→ R given by

f0(x) =

{
f(x), if x ∈ (0,∞) \ E0,

0, if x ∈ E0,

we may assume that f satisfies (4.2) for every x ∈ (0,∞).
Modifying slightly the proof of [17, Lemma 2] we deduce that actually a, b ∈ (0, 1).

It can be easily checked that the argument used in [17, Lemma 6] remains valid if the
assumption “f ∈ F” is replaced by “f is non-negative and f(0+) = 0” there. Making use
of this fact we infer that

f(x)2 ≤ f(aibjx)f(a−ib−jx), x ∈ (0,∞), i, j ∈ Z.

Thus, putting ϕ = f ◦ exp, we come to a non-negative measurable function ϕ : R → R
satisfying the condition

ϕ(x)2 ≤ ϕ(x+ i log a+ j log b)ϕ(x− i log a− j log b), x ∈ R, i, j ∈ Z.

In other words,
ϕ(x)2 ≤ ϕ(x+ h)ϕ(x− h), x ∈ R, h ∈ B,

where B = Z log a+Z log b. Since the number log a/ log b is irrational, B is a dense subset
of R.
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The set T =
{

(x, h) ∈ R2 : ϕ(x)2 > ϕ(x + h)ϕ(x − h)
}

is measurable. Fix a real
h and a sequence (hn)n∈N of elements of B tending to h. By [23, Lemma 2] there is a
subsequence (hnm)m∈N of (hn)n∈N and a null set E(h) ⊂ R such that

ϕ(x+ hnm)→ ϕ(x+ h) and ϕ(x− hnm)→ ϕ(x− h), x ∈ R \ E(h).

Then
ϕ(x)2 ≤ ϕ(x+ hnm

)ϕ(x− hnm
), x ∈ R \ E(h), m ∈ N,

whence
ϕ(x)2 ≤ ϕ(x+ h)ϕ(x− h), x ∈ R \ E(h).

Thus
{

(x, h) ∈ R2 : ϕ(x)2 > ϕ(x+ h)ϕ(x− h)
}
⊂ E(h), and, consequently, the h-section

of T is a null set for every h ∈ R. By Fubini’s theorem this means that T is a null set.
If the set Z =

{
x ∈ R : ϕ(x) = 0

}
is of full measure, then ϕ(x) = 0 for a.a. x ∈ R,

that is f(x) = 0 for a.a. x ∈ (0,∞). So assume that |R \ Z| > 0. Since |T | = 0, there is a
null set N ⊂ R such that the x-section of T is a null set for every x ∈ R \N . Fix a point
x0 ∈ R \ (N ∪ Z). Then ϕ(x0) > 0 and

∣∣{y ∈ R : (x0, y) ∈ T
}∣∣ = 0 which means that

0 < ϕ(x0)2 ≤ ϕ(x0 + h)ϕ(x0 − h) for a.a. h ∈ R.

Thus ϕ(x0 + h) > 0 for a.a. h ∈ R, i.e. the set Z has measure zero. Putting

F (x) =

{
logϕ(x), if x ∈ R \ Z,
0, if x ∈ Z,

we come to a measurable function F : R→ R which, satisfying the condition

2F (x) ≤ F (x+ h) + F (x− h), (x, h) ∈ R2 \ T,

is almost convex. By Kuczma’s theorem there exists a convex function G : R → R such
that F (x) = G(x) for a.a. x ∈ R. Since F is measurable and G is convex, the last
one is continuous. Consequently, the function g = exp ◦ G ◦ log is positive continuous
geometrically convex. Moreover, f(x) = g(x) for a.a. x ∈ (0,∞). In particular, g being
continuous satisfies equation (4.2) everywhere in (0,∞).

At the very end of the above proof one can make use of Theorem 3.6 instead of
Kuczma’s theorem.

Theorem 4.1 was extended to functions defined in Rn and measurable with respect to
some σ-fields containing Borel subsets by Grinč [10, Theorem]. In particular, a topological
version of it is proved there (see [10, Cor. 1]). The main tool of both proofs is Kuczma’s
theorem [22, Th. 17.8.2]. However, while proving [10, Cor. 1] one can use also Theorem 3.7.

Theorem 4.1 and [10, Theorem] make up the first step in determining the form of all
non-negative solutions of equation (4.1), Lebesgue measurable [13, Th. 3.1] and with the
Baire property [10, Cor. 2]. All the Lebesgue measurable non-negative solutions of (4.1)
were found yet in [23] by Laczkovich, by using quite different argument. Equation (4.2)
was studied in the paper [17], where all the continuous solutions f : (0,∞)→ R fulfilling
f(0+) = 0 and not vanishing in a vicinity of 0 have been determined (see [17, Th. 1]).
The form of all of them allows to determine all weak generalized stable distributions (see
[17, Th. 4]).
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4.2. Integer programming. Integer programming is important in economics due to its
usefulness in solving optimization problems and problems arising in operation research
and management science (cf., for instance, the classical optimal fleet mix problem). This
is a wide topic, studied for many years and having a vast literature. Here we would like
only to point out some close relations between integer programming and convex functions
defined on subsets of a very special group, viz. the group Z of all integers.

One of the most fundamental models in the discrete optimization is that of matroids
which can be viewed as some discrete convex, in a sense, structures. This motivates the
quest for a general theory of discrete convexity. There are various approachs to that
notion and many, in the main not equivalent, definitions of it. The reader is referred to
the article [7] by Favati and Tardella, the book [25] by Murota, also the papers [38] due
to Yüceer, [26] by Murota and Shioura, and [5] by Cambini, Riccardi and Yüceer. The
last paper yields also a new concept of discrete convex function defined on a suitable
subset of Zn; the inequality describing this notion is equivalent to inequality (0.1). In the
paper [4] Cambini and Riccardi have been studied the case n = 1 more thoroughly and
compared discrete convexity in that situation with some discrete quasiconvexity concepts.

Clearly one of the most essential problem of optimization is discrete convex function
minimization. However, determining minima of strictly convex functions (i.e. such convex
function that inequality (0.1) is sharp whenever h 6= 0) one can realize that, in contrast
to the classical theory of convexity, discrete convex functions admit more than one global
minimum. The function f : Z → R, given by f(x) =

∣∣x − 1
2

∣∣ − 1
2 , serves as an example:

it is strictly convex and takes the global minimum 0 at 0 and 1. The paper [4] provides
also two efficient algorithms for the determining the minimum points of dicrete strictly
convex functions defined on “intervals” of integers.

For some different ideas of discrete convexity, essential in economics and other areas
computer aided, the reader is referred to the paper [37] by Tabor&Tabor and Misztal.
There convexity is considered both for finite sets and functions with such domains.

Acknowledgements. I am indebted to the referee for calling my attention to refer-
ence [29].
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