
RECENT DEVELOPMENTS

IN FUNCTIONAL EQUATIONS AND INEQUALITIES

BANACH CENTER PUBLICATIONS, VOLUME 99
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2013

REFINEMENT TYPE EQUATIONS:
SOURCES AND RESULTS

RAFAŁ KAPICA and JANUSZ MORAWIEC

Institute of Mathematics, University of Silesia
Bankowa 14, PL-40-007 Katowice, Poland

E-mail: rkapica@math.us.edu.pl, morawiec@math.us.edu.pl

Abstract. It has been proved recently that the two-direction refinement equation of the form

f(x) =
∑
n∈Z

cn,1f(kx− n) +
∑
n∈Z

cn,−1f(−kx− n)

can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets,
wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes
the classical refinement equation f(x) =

∑
n∈Z cnf(kx− n), which has been used in many areas

of mathematics with important applications. The following continuous extension of the classical
refinement equation f(x) =

∫
R c(y)f(kx − y) dy has also various interesting applications. This

equation is a special case of the continuous refinement type equation of the form

f(x) =

∫
Ω

|K(ω)|f(K(ω)x− L(ω)) dP (ω),

which has been studied recently in connection with probability theory. The purpose of this paper
is to give a survey on the above refinement type equations. We begin with a brief introduction of
types of refinement equations. In the first part we present several problems from different areas of
mathematics which lead to the problem of the existence/nonexistence of integrable solutions of
refinement type equations. In the second part we discuss and collect recent results on integrable
solutions of refinement type equations, including some necessary and sufficient conditions for the
existence/nonexistence of integrable solutions of the two-direction refinement equation. Finally,
we say a few words on the existence of extremely non-measurable solutions of the two-direction
refinement equation.
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1. Introduction. Throughout this paper (Ω,A, P ) denotes a complete probabilistic
space.

We are interested in the following refinement type equation

f(x) =
∫

Ω

|detϕ′x(x, ω)| f(ϕ(x, ω)) dP (ω), (R)

where ϕ : Rm × Ω→ Rm is a map fulfilling the conditions:

(i) for every ω ∈ Ω the map Rm 3 x 7→ ϕ(x, ω) ∈ Rm is a diffeomorphism onto Rm;
(ii) for every x ∈ Rm the map Ω 3 ω 7→ ϕ(x, ω) ∈ Rm is A-measurable;
(iii) for every Borel set B ∈ Rm with lm(B) = 0 we have (lm ⊗ P )(ϕ−1(B)) = 0;

here and in the sequel m is a fixed positive integer. The symbol lm denotes the
m-dimensional Lebesgue measure and the symbol ϕ′x denotes the derivative of ϕ with
respect to the first variable.

We say that f ∈ L1(Rm) is an L1-solution of equation (R), if every representative
of f satisfies (R) for almost all x ∈ Rm with respect to lm; this definition is well posed
by the above assumptions (see [99] for details). It is clear that the set of all L1-solutions
of equation (R) forms a linear subspace of L1(Rm); we denote this subspace by Sol(R).

2. Kinds of refinement type equations. Fix A-measurable functions K : Ω →
Rm×m, L : Ω→ Rm and define the map ϕ : Ω× Rm → Rm by ϕ(x, ω) = K(ω)x− L(ω)
with detK(ω) 6= 0 for every ω ∈ Ω. It is easy to verify that the map ϕ satisfies conditions
(i)–(iii) and equation (R) takes the form

f(x) =
∫

Ω

|detK(ω)| f(K(ω)x− L(ω)) dP (ω). (R1)

Note that if P (detK = 0) > 0, then equation (R1) has no nontrivial solution (see e.g.
[103]; cf. [36]). It turns out that integrable solutions of equation (R1) play an important
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role in many interesting problems in pure and applied mathematics (see Sections 3.2, 3.3,
3.4, 3.5 and 3.8 for details).

If m = 1, K(Ω) ⊂ {−k, k} with a fixed positive real number k and L(Ω) ⊂ Z, then
putting cn,ε = kP (K = εk, L = n) for any n ∈ Z and ε ∈ {−1, 1} we have∑

n∈Z
(cn,−1 + cn,1) = k, (c)

and equation (R1) reduces to the two-direction refinement equation

f(x) =
∑
n∈Z

cn,1f(kx− n) +
∑
n∈Z

cn,−1f(−kx− n). (R2)

It has been proved recently that equation (R2) can be used in wavelet theory (see Section
3.7 for details) and in spline theory (see Section 3.6 for details). Furthermore, using
equation (R2) we can characterize some of the well known special functions (see Section
3.1 for details). Equation (R2) generalizes the classical refinement equation

f(x) =
∑
n∈Z

cnf(kx− n); (R3)

condition (c) takes now the form
∑
n∈Z cn = k. Equation (R3), as well as its matrix

version, has been used, among others, in such field as wavelet theory, approximation
theory, theory of subdivision schemes, computer graphics, physics, combinatorial number
theory, and others (see e.g. [10, 13, 22, 24, 26, 32, 35, 42, 43, 47, 48, 68, 69, 73, 78, 83,
90, 137, 138, 140, 164, 169, 174, 175, 177, 214]).

If m = 1 and K(ω) = α ∈ R \ {0} for every ω ∈ Ω then equation (R1) takes the form

f(x) =
∫

Ω

|α|f
(
αx− L(ω)

)
dP (ω). (R4)

Put Ω = R, L = idR and define the measure P , on the σ-algebra of all Lebesgue mea-
surable subsets on the real line, by P (A) = 1

|α|
∫
A
c(y) dy, where c ∈ L1(R) is a given

nonnegative function such that
∫

R c(y) dy = |α|. Then equation (R4) reduces to the con-
tinuous refinement equation of the form

f(x) =
∫

R
c(y)f(αx− y) dy. (R5)

Equation (R5) has many significant applications and has been studied by many authors
(see e.g. [18, 31, 40, 41, 58, 89, 123]).

All the above equations will be called refinement equations. In this paper we are
interested only in homogeneous refinement equations, however there are many papers
concerning inhomogeneous versions of many particular cases of equation (R) (see e.g.
[45, 46, 86, 87, 93, 126, 127, 128, 185, 186]).

3. Problems leading to refinement type equations. In this section we present
problems from different areas of mathematics closely connected with integrable solutions
of refinement equations. We restrict ourselves only to some of them because, in our
opinion, the complete presentation all of them is impossible.
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3.1. Special functions. Special functions are examined by many authors and in many
cases graphs of such functions look like fractals (see [96] and the references given there).
To see that many special functions are closely related to refinement equations we will
follow an example from [37]. For every a ∈ R define the sequence (fa,n)n∈N0 putting

fa,0(x) =


1 + x, if x ∈ [−1, 0],

1− x, if x ∈ [0, 1],

0, if x 6∈ [−1, 1],

fa,n+1(x) = fa,n(3x) +
1− a

2

[
fa,n(−3x− 1) + fa,n(3x+ 1)

]
+

1 + a

2

[
fa,n(−3x− 2) + fa,n(3x+ 2)

]
.

We can now formulate our first proposition.

Proposition 3.1. For every |a| < 1 the sequence (fa,n)n∈N0 converges pointwise to a
continuous function fa, which is the unique (up to a multiplicative constant) L1-solution
of the equation

fa(x) = fa(3x) +
1− a

2
[
fa(−3x− 1) + fa(3x+ 1)

]
+

1 + a

2
[
fa(−3x− 2) + fa(3x+ 2)

]
. (3.1.1)

Equation (3.1.1) is a special case of (R2). Moreover, since 1 + 2 1−a
2 + 2 1+a

2 = 3, it
follows that condition (c) holds. One can show that among all functions from Proposition
3.1 there are continuous and nowhere differentiable functions (e.g. the de Rham function
f1/3), singular functions (e.g. f0 which coincides with the Cantor function on the interval
[−1, 0] and on the interval [0, 1] is its mirror image) and more regular functions (e.g. the
cardinal B-spline function of the first order f−1/3).

Let us mention that an example of a continuous and nowhere differentiable function
as a solution of a functional equation close to equation (3.1.1) is given in [171] (cf. [108,
Chapter 10.5] where more details on continuous and nowhere differentiable functions can
be found).

3.2. Iterated function systems and Foias operators. To give another reason show-
ing that graphs of solutions of refinement equations are closely related with fractals
we associate with (R1) the iterated function system {Sω : ω ∈ Ω} consisting of maps
Sω : Rm → Rm given by Sω(x) = K(ω)−1(x + L(ω)). Iterated function systems have
been originally introduced and studied in [84] (see also [3]). It can be shown (see [148])
that if

sup
ω∈Ω
‖Sω(0)‖ < +∞ and sup

ω∈Ω
sup
‖x‖=1

‖K(ω)−1x‖ < 1, (3.2.1)

then the iterated function system {Sω : ω ∈ Ω} is asymptotically stable; i.e., there is a
unique nonempty compact set A∗ ⊂ Rm such that H(A∗) = A∗ and limn→∞Hn(A) = A∗
for every nonempty and compact set A ⊂ Rm, where H : Rm → Rm is the corresponding
Hutchinson operator given by H(A) = cl

⋃
ω∈Ω Sω(A) and the convergence holds in the

Hausdorff metric. The set A∗ is said to be an attractor.
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Consider now the Foias operator M :M1(Rm)→M1(Rm) given by

Mµ(A) =
∫

Ω

∫
Rm

1A(Sω(x)) dµ(x) dP (ω) for Borel sets A ⊂ Rm, (3.2.2)

whereM1(Rm) denotes the family of all Borel probability measures on Rm. The operator
M corresponds to a regular stochastic dynamical system and it is a special case of Markov
operator (see [113, Chapter 12.4]). If∫

Ω

‖Sω(0)‖ dP (ω) < +∞ and
∫

Ω

sup
‖x‖=1

‖K(ω)−1x‖ dP (ω) < 1, (3.2.3)

then the operator M is asymptotically stable; i.e., there exists a unique measure µ∗ ∈
M1(Rm) such that Mµ∗ = µ∗ and limn→∞Mnµ = µ∗ for every µ ∈M1(Rm), where the
convergence holds in the Fortet–Mourier metric, or equivalently, in the weak sense. The
unique measure µ∗, called an attractor, is of pure type and it is absolutely continuous
with respect to lm if and only if there exists a unique density f ∈ L1(Rm) satisfying (R1).
Moreover, if (3.2.1) holds and µ∗ has a density f , then this density is an L1-solution of (R1)
with support contained in the attractor A∗ of the iterated function system {Sω : ω ∈ Ω}
(see [148] for details); in the discrete case where Ω = {ω1, . . . , ωN} and P (ωn) > 0 for
every n ∈ {1, . . . , N} we have supp f = A∗ (see e.g. [84]). Clearly, condition (3.2.1)
implies condition (3.2.3).

We end this section by a proposition ensuring sufficient conditions for the existence of
a nontrivial solution of equation (R1) with deterministic matrix K; cf. [41, 89, 100, 148].

Proposition 3.2. Assume that the matrix K does not depend on ω, sup‖x‖=1 ‖K−1x‖<1
and

∫
Ω
‖L(ω)‖P (dω) < +∞. If an absolutely continuous part of the Jordan decomposition

of a probability law of L is nonzero, then equation (R1) has a nontrivial and nonnega-
tive L1-solution f . Moreover, if L is bounded, then the support of f is contained in the
attractor of the iterated function system {Sω : ω ∈ Ω}.

3.3. Self-similar measures. In the previous section we have looked for asymptotically
stability of the operator M given by (3.2.2). Sometimes it is enough to know that there
exists a measure µ ∈M1(Rm) such that Mµ = µ; such a measure is called stationary. If
the operator M has stationary measure µ, then

µ =
∫

Ω

µ ◦ S−1
ω dP (ω) (S)

It is known that in some cases there exists a unique measure µ ∈ M1(Rm), called self-
similar, satisfying (S) (see e.g. [49, 84, 187]). If such a measure exists it is of purely type;
i.e., it is either singular or absolutely continuous with respect to lm (see e.g. [85, 161]).
The problem of deciding when a given self-similar measure is absolutely continuous is
very difficult. Even in the simplest case of the Erdős problem it is still far from being
solved (see e.g. [179, 180]). Certain connection between self-similar measures satisfying
(S) and L1-solutions of equation (R1) can be formulated as follows.

Proposition 3.3. If a Borel measure µ satisfying (S) has a density f , then f satisfies
(R1). On the other hand, if f is a nontrivial and nonnegative L1-solution of equation
(R1), then the formula µ(B) = 1

‖f‖
∫
B
f(t) dt defines a Borel measure satisfying (S).
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Proposition 3.3 has been used in very particular cases of equation (R1) in many papers
(see e.g. [80, 120, 147]) and it is strictly connected with a construction of Haar-type
wavelets (see e.g. [66, 77, 110]).

If equation (R1) has no nontrivial L1-solution, then according to Proposition 3.3 we
can expect that the corresponding self-similar measure µ is singular; i.e., lm(suppµ) = 0.
In such a case, to get more detailed information on the self-similar measure µ, one can
try to calculate some of dimensions of µ studied in the literature (see e.g. [2, 16, 60, 67,
107, 114, 115, 117, 118, 119, 150, 151, 152, 153, 155, 158, 162, 181, 62] for details).

3.4. Perpetuities. Assume that (ξn, ηn)n∈N is a sequence of independent identically
distributed random variables such that P (ξ1 = 0) = 0, −∞ <

∫
Ω

log |ξ1(ω)|P (dω) < 0,∫
Ω

log max{|η1(ω)|, 1}P (dω) < +∞ and P (η1 + cξ1 = c) < 1 for every c ∈ R. According
to [74] (see also [105, 189]) we know that the series

∞∑
n=1

ηn

n−1∏
k=1

ξk (G)

is almost surely convergent and its probability distribution F is of purely type; i.e., F is
either absolutely continuous or continuous and singular. The limiting random variable
(G) is the probabilistic formulation of the actuarial notion of a perpetuity; it represents
the present value of a permanent commitment to make a payment at regular intervals, say
annually, into the future forever (see e.g. [59]). We will see later that convergence of special
perpetuities plays important role in determining the Fourier transform of L1-solutions of
refinement equations.

Put K = ξ−1
1 , L = ξ−1

1 η1. From [74] it follows that the probability distribution F

fulfils

F (x) =
∫
K>0

F (K(ω)x− L(ω)) dP (ω) +
∫
K<0

[1− F (K(ω)x− L(ω))] dP (ω). (D)

Equation (D) has an extensive literature; we refer the reader to [4, 5] (see also [108])
for detailed and current review of linear iterative equations including many cases of
equation (D). Equation (D) is closely related to the iterates of random-valued functions
(see e.g. [6, 97, 98]); in this context it is not surprising that a probabilistic approach occurs
often in study of equation (D) (see e.g. [40]). Let us also mention that a characterization
of the Cantor function via a very special case of equation (D) can be found in [178] (see
also [141, 142]).

What is the connection between equation (D) and refinement type equations? The
answer to this question is given by the following proposition.

Proposition 3.4 (see [100]; cf. [39, 99, 168, 195]). If a probability distribution F is a
solution of equation (D) and has a density f ∈ L1(R), then f satisfies (R1). On the
other hand, if f ∈ L1(R) is a nontrivial solution of equation (R1), then the formula
F (x) = 1

‖f‖
∫ x
−∞ |f(t)| dt defines an absolutely continuous function satisfying (D).

3.5. Distributional fixed points. As we have seen in the previous section, in the one-
dimensional case the probability distribution of a density satisfying (R1) fulfils equation
(D). As we have seen, in the case where m = 1, equation (D) consists of two terms and it
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is written explicitly in a form useful for refinement equations. In the case where m ≥ 2 a
counterpart of equation (D) can be written explicitly in a useful form in some particular
cases only (see [102]). Hence, instead of probability distributions we examine laws of
solutions (which have to be densities up to normalization). This leads us to the notion
of a distributional fixed point. To introduce this notion assume that ξ : Ω→ Rm×m and
η : Ω→ Rm are A-measurable functions. Let Ψ be the random affine map given by

Ψ(t, ω) = η(ω) + ξ(ω)t for all t ∈ Rm, ω ∈ Ω.

Following [189] consider a stochastic fixed-point equation

Φ d= ξΦ + η, (F)

where the symbol d= means equality of probability laws. According to [71] we say that
a distributional fixed point of a random affine map Ψ is a probability law of a random
vector Φ : Ω→ Rm such that (F) holds and Φ is independent of (η, ξ).

Let Π(0,1) denote the projection map given by Π(0,1)(x, ω) = x for ω ∈ Ω and
x ∈ (0, 1). Here the unit interval (0, 1) is endowed with the Lebesgue measure. The main
result of this section characterizes the existence of nontrivial L1-solutions of equation
(R1) by distributional fixed points of special random affine maps. It also gives a charac-
terization of the dimension of the space Sol(R1).

Proposition 3.5. Assume that Φ : (0, 1) → Rm is a random variable with a density f .
Then f is an L1-solution of equation (R1) if and only if the probability law of Φ ◦ Π(0,1)

is a distributional fixed point of the random affine map

Ψ(t, ω, x) = K−1(ω)L(ω) +K−1(ω) t, t ∈ Rm, ω ∈ Ω, x ∈ (0, 1). (A)

Moreover, dimSol(R1)= n if and only if random affine map (A) has exactly n absolutely
continuous distributional fixed points with linearly independent densities.

Proposition 3.5 can be found in [104] in the case where m = 1. To prove its moreover
part it is enough to do the following observation. If f is an L1-solution of equation (R1),
then so is |f |. Consequently, any basis of the space Sol(R1) can be replaced by a basis
consisting of densities.

Let us notice that under some non-degeneracy and moment conditions the space
Sol(R1) is at most one-dimensional (see e.g. [103]). So, in such a case the existence of a
nontrivial L1-solution of equation (R1) is equivalent to dimSol(R1)= 1. For example, if
m = 1, then under weak assumptions the space Sol(R1) is at most one-dimensional, and
moreover, if K and L are independent and a probability law µ is a distributional fixed
point of random affine map (A), then dimSol(R1)= 1 provided L is absolutely continuous
or K is absolutely continuous and P (L+ y = 0) = 0 for µ-a.e. y ∈ R (see [104]).

3.6. Refinable splines. Consider the cardinal B-spline functions defined as follows:

N1 = χ[0,1] and Nm+1 = Nm ∗N1 for every m ∈ N.

It is known (see e.g. [17]) that the cardinal B-spline Nm is symmetric about m/2 and
satisfies (R3) with k = 2, cn = m!/(2m−1n!(m− n)!) for n ∈ {0, 1, . . . ,m} and cn = 0 for
n ∈ Z\{0, 1, . . . ,m}. Fix an arbitrary sequence (cn,1)n∈Z of reals and put cn,−1 = cn−cn,1
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for every n ∈ Z. A short calculation shows that

Nm(x) =
∑
n∈Z

cn,1Nm(2x− n) +
∑
n∈Z

cn,−1Nm(−2x+ n+m)

and (c) holds with k = 2. Similar motivation for studying equation (R2) with arbitrary k
comes from [203] (see also [146, 154, 204]).

Any compactly supported piecewise polynomial function on the real line is called a
spline. Among the most useful splines there are those that are also refinable; i.e., splines
being solutions of equation (R3) with a real number k such that

∑
n∈Z cn = |k| > 1

and cn 6= 0 only for finitely many n ∈ Z. Consequently, refinable splines are solutions
of equation (R2) with cn,1 = 0 for all n ∈ Z or with cn,−1 = 0 for all n ∈ Z. Complete
classification of refinable splines can be found in [33] (see also [32, 122]) and in [170],
where not only refinable splines, but all refinable piecewise-smooth functions have been
analysed.

Refinable splines, as well as cardinal B-splines, form the foundation for theory of
compactly supported wavelets, theory of subdivision schemes, fractal geometry and self-
affine tilings (see e.g. [13, 19, 30, 35, 61, 111]).

3.7. Orthonormal basis of wavelets. It is well known (see [133], cf. [34]) that having a
multiresolution analysis one can construct a wavelet; i.e., a function ψ ∈ L2(R) such that
the family {2j/2ψ(2j · − l) : j, l ∈ Z} is an orthonormal basis of L2(R). A multiresolution
analysis is a sequence (Vj)j∈Z of closed subspaces of L2(R) such that

⋃
j∈Z Vj is dense

in L2(R), there exists φ ∈ V0 such that {φ(· − l) : l ∈ Z} is an orthonormal basis of V0,
and moreover, Vj ⊂ Vj+1 and f ∈ V0 ⇔ f(2−j ·) ∈ Vj for every j ∈ Z. The function φ is
called a scaling function. It is an easy matter to show that the scaling function φ satisfies
equation (R3) with k = 2. Even more, it turns out that wavelets can be constructed via
equation (R3). Namely, if f ∈ L1(R) ∩ L2(R) satisfies (R3) and there are positive reals
A,B such that A ≤

∑
l∈Z |f̂(x+ 2lπ)|2 ≤ B for almost all x ∈ R, then a multiresolution

analysis is the sequence (Vj)j∈Z given by Vj = cl(lin{f(2j · − l) : l ∈ Z}) (see e.g. [35]).
A multidimensional multiresolution analysis has been treated, among others, in [23, 76,
77, 132, 136, 196].

It has been proved recently that in many constructions in wavelet theory equation
(R3) can be replaced by two-direction refinement equation (R2). More precisely, equation
(R2) has been used for constructing two-direction wavelets, biorthogonal wavelets, wavelet
packets, wavelet frames and multiwavelets (see e.g. [109, 124, 125, 129, 130, 131, 160, 197,
198, 199, 201, 203, 204, 205, 208]). All the constructions are based on the classical ones,
but they are a little bit more complicated to be presented here.

3.8. Subdivision schemes. Computer Aided Geometric Design (shortly CAGD) is a
branch of applied mathematics concerned with algorithms for the design of smooth curves,
surfaces and many important geometrical quantities (see e.g. [63, 65, 194]); general meth-
ods in CAGD are explained in [11], whereas the history of curves and surfaces in CAGD
can be found in [64].

Subdivision schemes have become important and efficient ways to generate smooth
curves and surfaces (see e.g. [1, 51, 54, 163, 173, 213]). To explain the idea of subdivision
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schemes in the simplest binary case assume that we have a sequence (cn)n∈Z, called the
mask of the subdivision scheme, and an initial data v0 = (v0

l )l∈Z. Then we recursively
define a new data sequence (vn)n∈N =

(
(vnl )l∈Z

)
n∈N by the refinement rule

vnl =
∑
m∈Z

cl−2mv
n−1
m

for all l ∈ Z and n ∈ N. It turns out that under a suitable condition on the refinement
rule, the data sequence (vn)n∈N starting with v0 = (δ0,l)l∈Z converges to a smooth curve f
(being a nontrivial and continuous function from the space L1(R)) in the following sense:
limn→+∞ supl∈Z |f(2−ln) − vnl | = 0 and the limit curve f satisfies (R3) with k = 2.
Moreover, for any initial data v0 ∈ l∞(Z) the data sequence (vn)n∈N converges to a
curve f0 which can be expressed as f0(x) =

∑
l∈Z v

0
l f(x− l) for every x ∈ R, where f is

the smooth curve obtained above (see e.g. [13, 138, 139]).
It is well known that a necessary condition for the convergence of the subdivision

scheme is the so called the first sum rule condition∑
n∈Z

c2n =
∑
n∈Z

c2n+1 = 1. (3.8.1)

The convergence analysis of subdivision schemes can be found in many papers (see e.g. [13,
43, 55]). In many problems arising from CAGD, the mask (cn)n∈Z consists of nonnegative
reals (see e.g. [50, 138]). In such a case condition (3.8.1) is close to be sufficient for the
convergence of the subdivision scheme (see e.g. [72, 91, 135, 193, 211]).

More details on subdivision schemes, some generalizations and applications can be
found, among others, in [14, 15, 27, 28, 29, 38, 41, 52, 53, 56, 57, 79, 81, 159, 176].

4. Integrable solutions of refinement type equations. In this section we are inter-
ested in the space Sol(R). In general, it is very difficult to describe the space Sol(R), but
in special cases it is possible to determine its dimension and obtain some properties of
its elements. As already mentioned, we are interested in L1-solutions, however we begin
with a few words on distributional solutions of refinement equations.

4.1. Distributional solutions. Distributional solutions of refinement equations have
been considered by many authors in the homogeneous case (see e.g. [12, 25, 83, 92, 94, 112,
165, 203, 204, 210]), as well as in the inhomogeneous case (see e.g. [45, 86, 87, 185]). We
will not present the formal definition of distributional solutions of refinement equations.
For a precise definition we refer the reader to aforementioned references.

Distributional solutions of refinement equations can be constructed via the Fourier
transform. The key fact is that the Fourier transform converts a refinement equation to
some equivalent form. In the case of equation (R3) with m = 1, application of the Fourier
transform and iteration leads to f̂(x) =

∏∞
n=1 h(x/kn)f̂(0), where h is a characteristic

function given by h(x) = 1
k

∑
n∈Z cne

inx. This is the well known representation of solu-
tions of equation (R3) (see e.g. [34]). Under some conditions this representation can be
extended to equation (R1) as follows

f̂(x) =
∫

Ω∞
exp
(
ix ·

∞∑
n=1

( n∏
k=1

K(ωk)−1
)
L(ωn)

)
f̂(0) dP∞(ω1, ω2, . . . ). (4.1.1)
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Here the Fourier transform of f ∈ L1(Rm) at a point x is defined by f̂(x) =
∫

Rm eix·tf(t) dt
and · denotes the inner product in Rm. Representation (4.1.1) of solutions of refinement
equations can be generalized to the case of matrix refinement type equations (see e.g.
[103]). However, in more general setting additional assumptions on asymptotic behavior
of the product of random matrices like in [182] (see also [106, 149]) are needed.

In general it is very difficult to decide when the right hand side of (4.1.1) describes
the Fourier transform of a function f ∈ L1(Rm). But we may say that equation (R) has a
unique (up to a multiplicative constant) solution being a distribution, provided the right
hand side of (4.1.1) is a distribution. More precisely, in the case where m = 1, we have
the following proposition.

Proposition 4.1. Assume that

lim
n→∞

L(ωn)
K(ω1) · · ·K(ωn)

= 0 a.s. on Ω∞ (4.1.2)

and
lim
n→∞

|K(ω1) · · ·K(ωn)| = +∞ a.s. on Ω∞. (4.1.3)

Then the formula H(x) =
∫

Ω∞
exp
(
ix
∑∞
n=1

L(ωn)
K(ω1)···K(ωn)

)
dP∞(ω1, ω2, . . . ) is well de-

fined for every x ∈ R. Moreover:

(i) Equation (R1) has a unique (up to a multiplicative constant) distributional solution,
if H is a distribution.

(ii) If H is the Fourier transform of f0 ∈ L1(R), then Sol(R1)= {λf0 : λ ∈ R}.
Condition (4.1.2) holds obviously in the case where P (L = 0) = 1. If P (L = 0) < 1,

then condition (4.1.3) holds if and only if condition (4.1.2) is satisfied and∫ ∞
1

log y∫ log y

0
P (log |K| > x) dx

dP (|K−1L| ≤ y) < +∞

(see [71]). Consequently, one of assumptions (4.1.2), (4.1.3) of Proposition 4.1 is satisfied
trivially.

If H from Proposition 4.1 is a well defined function, then equation (R1) has a unique
distributional solution and, by the Paley–Wiener theorem for distributions, this distri-
butional solution is supported in [−A,A] if and only if H can be extended to an entire
analytic function H̃ such that H̃(z) ≤ C(1 + |z|)NeA|Im z| for z ∈ C with N ∈ N and
C > 0.

It may happen that the function H defined in Proposition 4.1 is constant. Then
Sol(R1)= {0} and the Dirac delta distribution is the only distributional solution of (R1).
It concerns, e.g., the equation f(x) = 2f(2x) (see [36]), although from Theorems 1 and 2 in
[203] (see also [204]) it would result that this equation has more than one even compactly
supported distributional solution. Similarly, equation f(x) = f(2x) − f(−2x) has no
nontrivial distributional solutions, whereas from Lemma 1 in [201] (see also Theorem 1
in [199]) it would result that it is not the case.

4.2. The space of integrable solutions. As we have seen in Proposition 3.5 the
dimension of the space Sol(R1) depends on the number of absolutely continuous distri-
butional fixed points of the random affine map of form (A). These distributional fixed
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points are in fact perpetuities and in most cases we also have the uniqueness. Therefore
in such a case the space Sol(R1) is at most one-dimensional. The same conclusion can
be drawn from the representation formula described in the previous section; for example,
dimSol(R1)≤ 1 under assumptions of Proposition 4.1.

Equation (R) without additional assumptions on ϕ is not easy to examine, especially
the problem of existence of a solution of equation (R) is difficult. In particular, it is
rather impossible to get a representation of a solution of equation (R) in its full extent.
However, we can give some assumptions which imply that the trivial function is the
unique L1-solution of equation (R) with m = 1. According to [99] (cf. also [102]) we have
the following proposition.

Proposition 4.2. Assume that |ϕ(x, ω) − ϕ(y, ω)| ≤ K(ω)|x − y| for all x, y ∈ R,
ω ∈ Ω. If K : Ω → (0,+∞) is measurable and −∞ <

∫
Ω

logK(ω) dP (ω) < 0, then
dimSol(R)= 0.

In contrast to Proposition 4.2 we have the following result concerning the dimension
of the space Sol(R4).

Theorem 4.3 (see [100]). Assume that L : Ω→ R is a continuous random variable such
that

∫
Ω

log max {|L(ω)|, 1} dP (ω) < +∞. If |α| > 1 then dimSol(R4)= 1.

At the end of this section let us only mention that in the case of a matrix refinement
type equation the space of all its L1-solutions is at most p-dimensional in general, where
p is the number of coordinates of the unknown L1-solution f = (f1, . . . , fp) ∈ L1(Rm)p

(see e.g. [83, 103]).

4.3. Basic properties of integrable solutions. From now on, by Sol(R2) we will
mean the space of all L1-solutions of equation (R2) under condition (c).

Here and throughout we will examine equation (R2) only in the case where m = 1
with k > 1 and cn,ε ≥ 0 for all (n, ε) ∈ Z×{−1, 1}, however there are papers concerning
the case m > 1, as well as more general equation (see e.g. [200, 202, 206, 207, 209]).
Moreover, to simplify the presented result we restrict ourselves to the case where cn,ε > 0
only for finitely many (n, ε) ∈ Z× {−1, 1}; i.e., we consider the equation

f(x) =
∑

(n,ε)∈S

cn,εf(εkx− n), (R′2)

where the set S = {(n, ε) ∈ Z× {−1, 1} : cn,ε > 0} is finite. Now, condition (c) takes the
form

∑
(n,ε)∈S cn,ε = k.

We already know that the space Sol(R′2) is at most one-dimensional. According to
[203] (cf. [7, 36]) it is also known that every element f ∈ Sol(R′2) is compactly supported
with supp f ⊂ J = [− N

k−1 ,
N
k−1 ], where N = max{|n| : cn,ε ∈ S}. The next result gives

precise information on the support of elements from Sol(R′2).

Theorem 4.4 (see [147]). Let JS be the attractor of the iterated function system {Sn,ε :
(n, ε) ∈ S} consisting of maps Sn,ε : R → R given by Sn,ε(x) = x+n

εk . If f ∈ Sol(R′2) is
nontrivial, then supp f = JS ⊂ J.
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One can ask when JS = J. For example, it is the case where 2N + 1 ≥ k and
S ∩ {(n, 1), (−n,−1)} 6= ∅ for every n ∈ {−N, . . . , N}. On the other hand, if 2N + 1 < k

or if card S < k, then dimSol(R′2)= 0.
As we have seen every element from the space Sol(R′2) must be compactly supported.

The converse is false even in the case of equation (R3) (see [184]). Furthermore, equation
(R3) with finitely many nonzero coefficients may also have a non-compactly supported
L2-solution (see [134]).

The next result generalizes a known property of elements from the space Sol(R3) (see
e.g. [39, 70, 80, 144, 168, 195]) correlative to an open problem proposed in [135].

Theorem 4.5 (see [147]). If f ∈ Sol(R′2), then f is of constant sign. Moreover, if JS is
an interval, then f is either essentially positive or essentially negative on JS.

To see an example of a nonnegative function f ∈ L1(R) which is not essentially
positive on its support take as f the characteristic function of an arbitrary Cantor set C
of positive Lebesgue measure on the real.

We end this section with a result which allows us to approximate elements from the
space Sol(R′2).

Theorem 4.6 (see [147]; cf. [34, 70, 190]). Assume that f0 ∈ Sol(R′2), ‖f0‖1 = 1 and
f0 > 0 on J. If f is a density with support contained in J, then

lim
N→∞

1
N

N−1∑
n=0

Mnf = f0,

where M is the Foias operator connected with equation (R′2).

4.4. Necessary and sufficient conditions for the existence of nontrivial inte-
grable solutions. The main purpose of this section is to give necessary and sufficient
conditions for dimSol(R′2)= 1. However, we begin with two results which give sufficient
conditions for dimSol(R′2)= 0 and for dimSol(R′2)= 1. The first one is closely related to
self-similar measures (see e.g. [157]).

Theorem 4.7 (see [147, 148]).

(i) If
∑

(n,ε)∈S cn,ε log cn,ε > 0, then dimSol(R′2)= 0.
(ii) If

∑
(n,ε)∈S cn,ε log cn,ε = 0 and cn,ε 6= 1 for some (n, ε) ∈ S, then dimSol(R′2)= 0.

(iii) If cn,ε = 1 for all (n, ε) ∈ S, then dimSol(R′2)= 1 if and only if l1(JS) > 0.

Condition l1(JC) > 0 in assertion (iii) of Theorem 4.7 can be replaced by the so-
called open set condition, which reads as follows: There exists an open set U ⊂ J such
that Tn,ε(U) ⊂ U and Tn,ε(U) ∩ Tm,η(U) = ∅ for (n, ε), (m, η) ∈ S with (n, ε) 6= (m, η)
(see [157]). From [156] it follows that if l1(JS) > 0, then int JS 6= ∅ and cl(int JS) = JS.
In consequence, l1(JS) > 0 if and only if the set int JS is nonempty and satisfies the open
set condition. Although we can write JS =

{∑
l∈N

ε1...εj

kl nl : (nl, εl)l∈N ∈ SN} it is very
difficult to determine the Lebesgue measure of the set JS in the general situation. For
example, from [147] it can be derived that the refinement equation

f(x) = f(2εx− n) + f(2ηx−m)
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has a nontrivial L1-solution if and only if ε+ η 6= 0 or m+ 3n 6= 0.
To formulate the second result assume that k ≥ 2 is an integer number.

Theorem 4.8 (see [101, 147]).

(i) If ∑
n∈Z

ckn+j,ε =
∑
n∈Z

ckn,ε for all j ∈ {1, . . . , k − 1} and ε ∈ {−1, 1}, (4.4.1)

then dimSol(R′2)= 1.
(ii) If ∑

n∈Z
(ckn+j,−1 + ckn+j,1) = 1 for every j ∈ {0, . . . , k − 1}, (4.4.2)

then dimSol(R′2)= 1.

In fact, condition (4.4.1) implies condition (4.4.2), but assertion (i) can be extended
to the case of equation (R2) with infinitely many positive cn,ε’s. Clearly, both conditions
(4.4.1) and (4.4.2) imply condition (c). In the case where k = 2 and cn,−1 = 0 for all n ∈ Z,
i.e. in the case of equation (R3), condition (4.4.1), as well as condition (4.4.2), reduces to
the first sum rule condition (3.8.1). Thus Theorem 4.8 generalizes the well known result
(having many essentially different proofs) saying that equation (R3) has a nontrivial
L1-solution under the first sum rule condition (see e.g. [39, 121, 145, 168, 191, 192, 206]).
Let us mention that without the nonnegativity assumption the first sum rule condition is
not sufficient for the existence of L1-solutions even for equation (R3) with finitely many
terms (see [37]).

Now, let us pass to necessary and sufficient conditions for dimSol(R′2)= 1. Obviously,
we may characterize the dimension of the space Sol(R′2) by the existence of an absolutely
continuous distributional fixed point of a suitable random affine map (see Proposition
3.5) or via the representation from Proposition 4.1. We will not explain this approach.
An interesting criterion for the existence of nontrivial L1-solutions of equation (R3) with
finitely many nonzero terms can be found in [82, 88, 116, 121, 192]. That criterion uses the
joint spectral radius introduced in [172]. Unfortunately, it is inapplicable in the general
situation, because we do not know a simple way to compute the joint spectral radius. For
more details on joint spectral radius and discussions of this aspect see e.g. [20, 44, 75, 95,
166, 167, 188, 212] (cf. also [183] and the references given there).

A nice criterion for the existence of nontrivial L1-solutions of equation (R3) with
nonnegative cn’s can be found in [168] (see also [39]). This criterion uses the notion of
blocking sets. Let us introduce this notation. Fix an integer number k ≥ 2. Put V0 = {2π},
VN =

{
2π
∑N
n=1 dn/k

n : d1, . . . , dN−1 ∈ {0, . . . , k − 1}, dN ∈ {1, . . . , k − 1}
}
for every

N ∈ N, V =
⋃
N∈N0

VN , E =
{

(v, w) : ∃N ∈ N0 ∃j ∈ {0, . . . , k − 1}v ∈ VN , w = v+j
k

}
. It

is easy to see that the pair T = (V,E) forms a tree of order k with the root 2π. An infinite
path from the root v0 = 2π is a sequence (vn)n∈N0 such that vn ∈ Vn and (vn, vn+1) ∈ E
for every n ∈ N0. A subset V of vertices of the tree T is said to be blocking if 2π 6∈ V,
v ∈ V if and only if 2π − v ∈ V, and any infinite path from the root 2π includes exactly
one element of V. It is easy to show that every blocking set is finite.
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The functions m−1,m1 : R → C given by mε(t) =
∑

(n,ε)∈S cn,εe
−int are said to be

the masks or the characteristic functions of equation (R′2).
Our first characterization for dimSol(R′2)= 1 generalizes results from [39, 168].

Theorem 4.9 (see [101]). Fix ε ∈ {−1, 1} and assume that mε(0) = 0. Let

p = max{n ∈ Z : cn,−ε 6= 0} −min{n ∈ Z : cn,−ε 6= 0}.
Then dimSol(R′2)= 1 if and only if the tree T has a blocking set of cardinality less than
or equal to p consisting of roots of equation m−ε(t) = 0.

The following example shows the usefulness of Theorem 4.9.

Example 4.10. Consider the refinement equation

f(x) =
∑

(n,−1)∈S

cn,−1f(−2x− n) (4.4.3)

and assume that
∑
n∈Z c2n,−1 =

∑
n∈Z c2n+1,−1 = 1. Then m1(0) = 0, p ≥ 2 and

m−1(π) =
∑

(n,−1)∈S cn,−1e
−inπ =

∑
n∈Z c2n,−1 −

∑
n∈Z c2n+1,−1 = 0. Since the set

{π} is blocking, we conclude, by Theorem 4.9, that equation (4.4.3) has exactly one
(up to a multiplicative constant) L1-solution. Observe that the same conclusion follows
immediately from Theorem 4.8.

Let us cite one more result from [101], where similar types of characterization for
dimSol(R2)= 1 are included.

Theorem 4.11 (see [101]). Let p = max{n ∈ Z : cn,1 6= 0} −min{n ∈ Z : cn,1 6= 0}.
(i) If cn,1 = cn,−1 for every n ∈ Z, then dimSol(R′2)= 1 if and only if the tree T has

a blocking set of cardinality less than or equal to p consisting of roots of equation

m−1(−t) +m1(t) = 0. (4.4.4)

(ii) If cn,1 = c−n,−1 for every n ∈ Z and if
∑
n∈Z ckn+j,1 =

∑
n∈Z ckn−j,1 for every

j ∈ {1, . . . , k − 1}, then dimSol(R′2)= 1 if and only if the tree T has a blocking set
of cardinality less than or equal to 2p consisting of roots of equation (4.4.4).

5. Extremely non-measurable solutions of refinement type equations. We end
this paper with a few words on the existence of extremely non-measurable solutions of
refinement type equations.

Assume that dimSol(R2)= 1. Then fix a nonnegative f ∈ Sol(R2) such that ‖f‖1 = 1
and choose a representative f0 of f which is nonnegative everywhere and satisfies equation
(R2) for every x ∈ R; this is always possible. Next fix a, b ∈ [−∞,+∞] with a < b and
put

Bba =
{

(x, y) ∈ R2 : af0(x) ≤ y ≤ bf0(x)
}
.

Obviously, l2(Bba) = b − a > 0. Now from [8] it follows that there exists a function
g : R → R satisfying (R2) for every x ∈ R such that the set Bba \ Graph(g) contains
neither subset of Bba of second category having the property of Baire nor subset of Bba of
positive inner measure on the plane; we will call such a function extremely non-measurable.
Moreover, if f0 is continuous, then the set Graph(g) is connected. Thus we can formulate
the following proposition.
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Proposition 5.1 (see [147]; cf. [70]). If dimSol(R2)= 1, then there exist extremely non-
measurable solutions of equation (R2). Moreover, if there exists a continuous function
f ∈ Sol(R2), then there exist extremely non-measurable solutions of equation (R2) with
connected graphs.

Similar results in this direction can be found in [9] (see also [21, 143]).
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