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Abstract. The inverse stability of functional equations is considered, i.e. when the function,
approximating a solution of the equation, is an approximate solution of this equation.

1. Introduction. The theory of stability of functional equations, initiated by Ulam
and Hyers (see [6]), is inspired by the problem: for the fixed functional equation, is the
approximate solution of this equation the approximation of a solution of this equation? It
is known by the results of Forti (see [4]) that the answer is no for the functional equation
of homomorphism of the free group, generated by two elements, to the additive group of
reals.

It is possible to consider the inverse problem: for the fixed functional equation, is the
approximation of a solution of this equation the approximate solution of this equation?
More exactly:
— the functional equation L(f) = R(f) is said to be inversely stable if for every ε > 0

there exists a δ > 0 such that for every function g if there exists a solution f of this
equation such that ρ(g, f) ≤ δ (ρ is a metric) for all arguments in the functions g
and f , then ρ(L(g), R(g)) ≤ ε for all variables in the equation.
This stability is called the inverse stability since the stability in the sense of Ulam–

Hyers is defined as follows:
— the functional equation L(f) = R(f) is stable (in the sense of Ulam–Hyers) if for every

ε > 0 there exists a δ > 0 such that for every function g for which ρ(L(g), R(g)) ≤ δ

for all variables in the equation there exists a solution f of the equation such that
ρ(g, f) ≤ ε for all arguments in the functions g and f .

2010 Mathematics Subject Classification: Primary 39B82; Secondary 39B62.
Key words and phrases: Stability, inverse stability, superstability, b-stability, uniform b-stability,
inverse b-stability, inverse uniform b-stability, functional equations, difference equations, differ-
ential equations, integral linear equation.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc99-0-8 [111] c© Instytut Matematyczny PAN, 2013



112 Z. MOSZNER

2. Inverse stability

Example 2.1. The equation of homomorphism

f(x · y) = f(x) · f(y)

for f from a groupoid (G1, ·) to a groupoid (G2, ·) with a metric ρ invariant with respect
to the operation “·” in G2 is inversely stable. In fact, for f, g : G1 → G2 we have

ρ
(
g(x · y), g(x) · g(y)

)
≤ ρ
(
g(x · y), f(x · y)

)
+ ρ
(
f(x · y), f(x) · f(y)

)
+ ρ
(
f(x) · f(y), g(x) · f(y)

)
+ ρ
(
g(x) · f(y), g(x) · g(y)

)
= ρ
(
g(x · y), f(x · y)

)
+ ρ
(
f(x · y), f(x) · f(y)

)
+ ρ
(
f(x), g(x)) + ρ(f(y), g(y)

)
and if f is a solution of the equation and ρ(g(x), f(x)) ≤ ε

3 for x ∈ G1, then

ρ(g(x · y), g(x) · g(y)) ≤ ε

3
+
ε

3
+
ε

3
= ε, x, y ∈ G1.

Example 2.2. The functional equation of isometry

ρ2

(
f(x), f(y)

)
= ρ1(x, y),

where f : X1 → X2 and Xi is a space with the metric ρi for i = 1, 2, is inversely stable.
Indeed, since the metric ρ2 is the uniformly continuous function for arbitrary ε > 0
there exists a δ > 0 (δ = ε

2 ) such that |ρ2(u1, v1) − ρ2(u2, v2)| ≤ ε for ρ2(u1, u2) ≤ δ

and ρ2(v1, v2) ≤ δ. If for g : X1 → X2 there exists an isometric mapping f such that
ρ2(g(u), f(u)) ≤ δ for u ∈ X1, then∣∣ρ2(g(x), g(y))− ρ1(x, y)

∣∣ = ∣∣ρ2(g(x), g(y))− ρ2(f(x), f(y))
∣∣ ≤ ε.

Example 2.3. The equation

f(x+ y) = f(x) · f(y)

for f from the additive reals (R,+) to the multiplicative reals (R, ·) with natural metric
is not inversely stable. Suppose that this equation is inversely stable. For the function
g(x) = expx + δ there exists the solution f(x) = expx such that |g(x) − f(x)| ≤ δ for
x ∈ R. We have

|g(x+ y)− g(x) · g(y)| = |exp(x+ y) + δ − (expx+ δ)(exp y + δ)|
= |δ − δ(expx+ exp y)− δ2| ≤ ε, x, y ∈ R,

which yields a contradiction.

Example 2.4. The equation
f(xy) = f(x)f(y)

is not inversely stable in the class of the functions from (R, ·) to (R, ·). The proof is
analogous to the above. This equation is inversely stable in the class of the equi-bounded
functions (e.g. by M). In fact, we have

|g(xy)− g(x)g(y)| =
∣∣(g(xy)− f(xy)

)
+
(
f(x)(f(y)− g(y))

)
+
(
(f(x)− g(x))g(y)

)∣∣
≤ δ +Mδ +Mδ = (1 + 2M)δ, x, y ∈ R

for a solution f such that |g(x)− f(x)| ≤ δ for x ∈ R.
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The same situation is for the equation(
f(x+ y)− f(x)− f(y)

)(
f(x+ y) + f(x) + f(y)

)
= 0

and for the equations in Examples 2.17 and 2.19.

Example 2.5. The dilatation equation

f(xy) = xf(y) + yf(x)

for f : R→ R is not inversely stable since

|g(xy)− xg(y)− yg(x)| = |δ(1− x− y)|

for g(x) = 0 + δ and the function |δ(1− x− y)| is unbounded. This equation is inversely
stable in every class of functions with bounded common domain D (e.g. |x| ≤ M for
x ∈ D) since

|g(xy)− xg(y)− yg(x)| =
∣∣g(xy)− xg(y)− yg(x)− (f(xy)− xf(y)− yf(x)

)∣∣
≤ δ(1 + 2M)

for |g(x)− f(x)| ≤ δ for x ∈ D, where f is a solution of the equation.

Example 2.6. The equation of the idempotent function

f(f(x)) = f(x)

for f : R→ R is not inversely stable. For the proof “ad absurdum” assume that for ε = 1
there exists a δ > 0 such that for every function g : R → R for which there exists a
solution f with |g(x)− f(x)| ≤ δ, we have |g(g(x))− g(x)| ≤ 1. Therefore for

f(x) =

{
x, x ∈ Q,
0, x ∈ R \Q,

g(x) = f(x) + δ∗, where δ∗ ≤ δ and δ∗ is irrational, we have f(f(x)) = f(x) and
|g(x)− f(x)| ≤ δ and

|g(g(x))− g(x)| = |δ∗ − (x+ δ∗)| ≤ 1, x ∈ Q,

which gives a contradiction.

Conclusion 2.7. The translation equation

F (F (x, y), z) = F (x, y + z),

for F : R×R→ R, is not inversely stable. Assume that this equation is inversely stable and
let ε and δ be as in the definition of inverse stability of this equation. Then the equation
of the idempotent function has to be inversely stable, too. In fact, let |g(x) − f(x)| ≤ δ

and f2 = f . Putting G(x, y) = g(x) and F (x, y) = f(x) we have |G(x, y) − F (x, y)| ≤ δ

and F is a solution of translation equation, thus |G(G(x, y), z) − G(x, y + z)| ≤ ε, also
|g(g(x))− g(x)| ≤ ε.

The problem of the Ulam–Hyers stability of translation equation is still open. This
equation is Ulam–Hyers stable in the class of functions continuous with respect to each
variable (see [11]).



114 Z. MOSZNER

Example 2.8. The dynamical system is determined by the function F : I × R → I
(I is an interval) which satisfies the translation equation and the identity condition
F (x, 0) = x for x ∈ I. This identity condition is evidently inversely stable (the condition
|G(x, y) − F (x, y)| ≤ δ for F (x, 0) = x implies |G(x, 0) − x| ≤ δ). It is also stable since
|G(x, 0) − x| ≤ δ implies |G(x, y)− F ∗(x, y)| ≤ δ for F ∗(x, y) = G(x, y) if y 6= 0 and
F ∗(x, 0) = x.

The function F in the dynamical system is supposed to be continuous, thus it is
reasonable to consider the stability of this system in the class of continuous functions.
The function F ∗ above may be discontinuous even if the function G is continuous (e.g.
for G(x, y) = x+ δ for I = [a,+∞)). The identity condition is also stable in the class of
continuous functions; it is sufficient to put for the proof:

F1(x, y) = G(x, y)−G(x, 0) + x if I = R,

F2(x, y) = |G(x, y)−G(x, 0) + x− a|+ a if I = [a,+∞),

F3(x, y) = F2(x, y) + α(y) if I = (a,+∞),

where α : R → R is continuous, α(0) = 0, 0 < α(y) ≤ δ for y 6= 0 (e.g. α(y) =
| 2δπ arctan y|),

F4(x, y) = −|G(x, y)−G(x, 0) + x− b|+ b if I = (−∞, b],
F5(x, y) = F4(x, y) + α(y) if I = (−∞, b),

where α : R→ R is continuous, α(0) = 0, −δ < α(y) < 0 for y 6= 0,

F6(x, y) = −
∣∣|G(x, y)−G(x, 0) + x− a|+ a− b

∣∣+ b if I = [a, b],

F7(x, y) = F6(x, y) + β(x, y) if I = [a, b) or I = (a, b] or I = (a, b),

where β : I × R→ R is continuous, β(x, 0) = 0, |β(x, y)| ≤ δ and

a− F6(x, y) ≤ β(x, y) ≤ b− F6(x, y) for y 6= 0.

We have |G(x, y)− Fi(x, y)| ≤ kiδ, where

ki =


1, i = 1,

3, i = 2, 4, 6,

4, i = 3, 5, 7,

if |G(x, 0)− x| ≤ δ.
The function F2 may be not good for I = (a,+∞). In fact, e.g. for I = (0,+∞) and

a continuous mapping G : I × R → I satisfying G(x, 0) = x + δ, G(1, 1) = δ we have
F2(1, 1) = 0 /∈ I. The function α is also essential in the definition of the function F3.
Similar situation is for the functions F5 and F7.

Notice that in the class of continuous functions the translation equation and the
identity condition are Ulam–Hyers stable and the system (the dynamical system) is not
stable in this sense if I 6= R (see [11]). This system is not inversely stable, too. In fact, for
F (x, y) = ( 3

√
x + y)3 and G(x, y) = F (x, y) + δ, F is a solution of translation equation,

F (x, 0) = x for x ∈ R and we have |G(x, y)− F (x, y)| ≤ δ for x, y ∈ R and

|G(G(0, 0), z)−G(0, 0 + z)| = |G(δ, z)−G(0, z)| = |δ + 3z( 3
√
δ)2 + 3z2 3

√
δ|, z ∈ R,

which yields a contradiction.
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Example 2.9. If the linear functional equation

f(α(x)) = β(x)f(x) + γ(x),

where f, α, β, γ : R → R, has a solution, then it is inversely stable if and only if the
function β is bounded. In fact, if |β(x)| ≤M for an M ∈ R and all x ∈ R and g : R→ R
is such that |g(x)− f(x)| ≤ ε

1+M for a solution f of the equation and all x ∈ R, then

|g(α(x))− β(x)g(x)− γ(x)|
= |g(α(x))− β(x)g(x)− γ(x)−

(
f(α(x))− β(x)f(x)− γ(x)

)
|

≤ |g(α(x))− f(α(x))|+ |β(x)||g(x)− f(x)| ≤ ε

1 +M
+

Mε

1 +M
= ε.

Suppose that β is unbounded and the equation is inversely stable. Then for 1 there exists
a δ > 0 such that for every function g : R→ R satisfying |g(x)− f(x)| ≤ δ for a solution
f of the equation and all x ∈ R, we have |g(α(x)) − β(x)g(x) − γ(x)| ≤ 1. Putting
g(x) = f(x) + δ we have |g(x)− f(x)| ≤ δ and

|f(α(x)) + δ − β(x)(f(x) + δ)− γ(x)| = |δ − β(x)δ| ≤ 1,

which gives a contradiction.
If the equation in consideration has no solutions, then it is inversely stable.

Example 2.10. The functional equation of periodic function

f(x+ c) = f(x),

where f is a function from a groupoid (G,+) to a metric space (S, ρ), is inversely stable.
In fact, if ρ(g(x), f(x)) ≤ ε

2 for a g : G→ S and a periodic function f : G→ S, then

ρ(g(x+ c), g(x)) ≤ ρ(g(x+ c), f(x+ c)) + ρ(f(x+ c), f(x)) + ρ(f(x), g(x)) ≤ ε

2
+
ε

2
= ε.

This equation is not Ulam–Hyers stable for f : R→ R and c 6= 0 since, for the indirect
proof, it is sufficient to put g(x) = δx

c in the definition of Ulam–Hyers stability. We also
see that there exists a periodic function f such that |g(x)−f(x)| ≤ ε. Putting here x = nc

we have | δncc − f(0)| ≤ ε, which yields a contradiction.

Example 2.11. The Gołąb–Schinzel equation

f(x+ yf(x)) = f(x)f(y),

where f : R → R, is not inversely stable. For the indirect proof, let f be an unbounded
solution of this equation (thus f(0) = 1), e.g. f(x) = 1+x, ε and δ be as in the definition
of inverse stability of this equation and g(x) = f(x) + δ. Since we have |g(x)− f(x)| ≤ δ,
thus

ε ≥ |g(x+ yg(x))− g(x)g(y)| = |f
(
x+ y(f(x) + δ)

)
+ δ − (f(x) + δ)(f(y) + δ)|

and for y = 0
|f(x) + δ − (f(x) + δ)(1 + δ)| = |−δ(δ + f(x))| ≤ ε,

which gives a contradiction (f is unbounded).
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Proposition 2.12. The stability and the inverse stability are independent.

Proof. The equation of homomorphism if G1 is a free group, generated by two elements
and G2 is the additive group of reals, is not stable (see [4]) and it is inversely stable (see
Example 2.1). Conversely, the equation of the idempotent function (see Example 2.3) is
not inversely stable and it is stable (it is sufficient to put, for the function g : R→ R such
that |g(g(x))− g(x)| ≤ ε, f(x) = x for x ∈ g(R) and f(x) = g(x) for x ∈ R \ g(R)).

Proposition 2.13. It is possible that a functional equation is inversely stable and an
equivalent equation is not. If for two equivalent equations Li(f) = Ri(f) (i = 1, 2) there
exists a sequence εn → 0, εn > 0 such that

{g : ρ(L1(g), R1(g)) ≤ εn} ⊂ {g : ρ(L2(g), R2(g)) ≤ εn}, n ∈ N,

and the first equation is inversely stable, then the second equation is inversely stable, too.

Proof. The equations
f(x+ y) = f(x) + f(y)

and
(f(x+ y))2 = (f(x) + f(y))2

are equivalent (see [7], p. 380) and the first of them is inversely stable (see Example 2.1),
while the second one is not. For the indirect proof it is sufficient to put g(x) = x+ δ and
proceed analogously as in Example 2.4.

Fix an ε > 0 and for an εn ≤ ε let δ be such as in the inverse stability of the first
equation. Assume also that ρ(g, f) ≤ δ for a solution f of the second equation. Then
ρ(g, f) ≤ δ for f as the solution of the first equation, and therefore ρ(L1(g), R1(g)) ≤ εn
as well as ρ(L2(g), R2(g)) ≤ εn ≤ ε.

An analogous result for the stability is the following proposition.

Proposition 2.14. If for two equivalent equations Li(f) = Ri(f) (i = 1, 2) there exists
a sequence δn → 0, δn > 0, such that

{g : ρ(L2(g), R2(g)) ≤ δn} ⊂ {g : ρ(L1(g), R1(g)) ≤ δn}, n ∈ N,

and the first equation is stable, then the second equation is stable, too.

Remark 2.15. A system of two inversely stable functional equations is evidently inversely
stable. This statement is not true in the case of stability in Ulam–Hyers sense. On the
other hand, a system of two functional equations may be inversely stable although the
equations in this system are not. In fact, the equations in the system

f(x+ y) = f(x)f(y)

and
f(x+ y) = −f(x)f(y),

for f : R → R, are not inversely stable (see Example 2.3 for the first equation; similarly
one can deal with the second equation), while the system is. This system has only the
solution f ≡ 0. If

|g(x)− 0| ≤ δ =
√

1 + 4ε− 1
2

,
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then
|g(x+ y)− g(x)g(y)| ≤ δ + δ2 = ε

and
|g(x+ y) + g(x)g(y)| ≤ δ + δ2 = ε.

Let us next recall that the equation L(f) = R(f) is said to be superstable if for every
function g such that ρ(L(g), R(g)) is bounded, the function g is bounded or it is a solution
of the equation.

Proposition 2.16. If the functional equation L(f) = R(f), where f : R→ R, is super-
stable in some class of functions and it has an unbounded solution f in this class such
that for every δ > 0 the function f+δ is not a solution of this equation, then this equation
is not inversely stable.

Proof. Suppose that the equation is inversely stable, ε and δ are as in the definition of
inverse stability of this equation and g = f + δ. Thus |g − f | ≤ δ and |L(g)−R(g)| ≤ ε.
By the superstability of the equation, the function g has to be a solution of the equation
or it has to be bounded, which is impossible since g = f + δ.

Example 2.17. The equations

f(x+ y)f(x− y) = f(x)2 − f(y)2 (sine equation),
f(xy) = f(x)f(y) (homomorphism equation),
f(x+y2 )2 = f(x)f(y) (Lobačevski equation),
f(x+ y) + f(x− y) = 2f(x)f(y) (cosine equation),(
f(x) + f(y)

)(
f(x+ y)− f(x)− f(y)

)
= 0 (Dhombres equation),

f(x+ y)
(
f(x+ y)− f(x)− f(y)

)
= 0 (Mikusiński equation),

where f : R → R, satisfy the assumptions of Proposition 2.16 (see [3, 1, 5, 2, 10] for
the superstability of sine, homomorphism, Lobačevski, Dhombres, and Mikusiński equa-
tion, respectively, and [1, 5] for the superstability of cosine equation), thus they are not
inversely stable (see Example 2.4).

Example 2.18. The equation
f(x)2 = a,

where f : R → R and a ∈ R, is inversely stable. If a < 0, then the equation has no
solutions, thus it is inversely stable. If a ≥ 0, then every solution of this equation has the
form f(x) = β(x)

√
a, where β is a function from R to the set {−1, 1}. Let ε, δ > 0 be

such that δ(δ + 2
√
a) ≤ ε and g : R→ R satisfy |g(x)− β(x)

√
a| ≤ δ. We have

|g(x)| ≤ δ + |β(x)
√
a| = δ +

√
a,

thus

|g2(x)− a| = |
(
g(x)− β(x)

√
a
)(
g(x) + β(x)

√
a
)
|

≤ δ
(
|g(x)|+ |β(x)

√
a|
)
≤ δ(δ + 2

√
a) ≤ ε.

This example is interesting since the function f is in the square in the inversely stable
equation.
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By an analogous method it is possible to prove that the equation

f(x)n = a,

for f : R→ R, n ∈ N and a ∈ R, is inversely stable, too.

Example 2.19. The equation
f(x)2 = |x|,

for f : R → R, is not inversely stable. The indirect proof is analogous to the previous
one. It is enough to consider g(x) =

√
|x|+ δ. The equation

f(x)2 = x

is inversely stable since it has no solutions.

Example 2.20. The equations
f(f(x)) = 0

and
f(f(x)) = x (involution equation),

for f : R→ R, are not inversely stable. For the indirect proof it is sufficient to take

f(x) =

{
0, x ∈ Z,
E(x), x ∈ R \ Z

(E(x) denotes the entire part of x), g(x) = f(x) + δ with an irrational δ for the first
equation, and

f(x) =

{
−x, x ∈ Q,
x, x ∈ R \Q,

g(x) = f(x) + δ with an irrational δ for the second equation. The involution equation is
also not stable (see [8]).

Remark 2.21. The linear difference equation

αkan+k + αk−1an+k−1 + . . .+ α1an+1 + α0an = 0,

where an : N→ R, α0, . . . , αk ∈ R, is inversely stable (δ = ε
α0+...+αk

if α0 + . . .+αk 6= 0,
and δ > 0 is arbitrary if α0 + . . .+ αk = 0). The difference equation

a2
n+1 = anan+2

is not inversely stable (it is sufficient to put bn = 2n + δ for the indirect proof).

Remark 2.22. The inverse stability of differential equations is not interesting since the
boundedness of the function does not imply the boundedness of the derivative of this
function. For example, for the function g(x) = x + α(x) the inequality |g(x) − x| ≤ δ

gives |α(x)| ≤ δ and |g′(x)− 1| ≤ ε gives |α′(x)− 1| ≤ ε, thus the differential equation

f ′(x) = 1

is not inversely stable.
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Remark 2.23. The Fredholm integral linear equation

f(x) =
∫ b

a

K(x, t)f(t) dt+ α(x),

where f : R→ R is an unknown function and functions α : R→ R and K : R× [a, b]→ R
are given, is inversely stable if the function

∫ b
a
|K(x, t)| dt is bounded. If

∫ b
a
K(x, t) dt is

unbounded, then the equation is not inversely stable. The proof is analogous to the proof
in Example 2.6.

3. Inverse b-stability. In the theory of the stability of functional equations we also
investigate the notion of the so-called b-stability, defined as follows:
— for every function g if ρ(L(g), R(g)) is bounded, then there exists a solution f of the

equation L(f) = R(f) such that ρ(g, f) is bounded, too.
This definition is not equivalent to the Ulam–Hyers stability.

One can also consider an analogous notion of the inverse b-stability :
— for every function g if there exists a solution f of the equation L(f) = R(f) such that

ρ(g, f) is bounded, then ρ(L(g), R(g)) is bounded, too.
All above-considered equations, which are (not) inversely stable, are (not) inversely

b-stable. The inverse stability and the inverse b-stability are not equivalent. For example,
the equation

f(x)2 = f(0)2,

where f : R → R with the natural metric, is inversely b-stable and it is not inversely
stable. Every solution of this equation is bounded, thus every function g : R → R for
which |g(x) − f(x)| is bounded for a solution f , is bounded, and so is |g(x)2 − g(0)2|.
Suppose that this equation is inversely stable. Then, for ε = 1 there exists a δ > 0 such
that for every function g : R→ R if there exists a solution f for which |g(x)− f(x)| ≤ δ,
then |g(x)2 − g(0)2| ≤ 1. Putting

g(x) =

{
1−δ2
δ , x = 0,

1+δ2

δ , x 6= 0

we have for the solution f(x) = 1
δ of the equation: |g(x)− 1

δ | ≤ δ. Therefore we have for
x 6= 0,

|g(x)2 − g(0)2| = |(g(x)− g(0))(g(x) + g(0))| = 2δ
2
δ

= 4 > 1,

which yields a contradiction.
This equation is Ulam–Hyers stable. In fact, if |g(x)2 − g(0)2| ≤ ε2 for x ∈ R, then

|g(x)− g(0)| ≤ ε or |g(x) + g(0)| ≤ ε. Putting

f(x) =

{
g(0), |g(x)− g(0)| ≤ ε,
−g(0), |g(x)− g(0)| > ε,

we receive the solution of the equation in consideration for which |g(x)− f(x)| ≤ ε. This
equation is evidently b-stable, too.

The equation
f(x)−1 = 1,



120 Z. MOSZNER

for f : R→ R, is inversely stable and it is not inversely b-stable, thus the inverse stability
does not imply the inverse b-stability. For the proof let δ > 0 be such that δ < 1 and
δ

1−δ ≤ ε for ε > 0 and |g(x)−1| ≤ δ for x ∈ R. We have 1−|g(x)| ≤ δ, thus 1−δ ≤ |g(x)|
and |g(x)−1| ≤ (1− δ)−1. We receive thus

|g(x)−1 − 1| =
∣∣∣1− g(x)

g(x)

∣∣∣ ≤ δ

1− δ
≤ ε.

On the other hand, the boundedness of the function g(x)− 1 does not imply the bound-
edness of the function g(x)−1 − 1, thus the equation in consideration is not inversely
b-stable. This equation is Ulam–Hyers stable. In fact, let δ > 0 be such that δ < 1 and
δ

1−δ ≤ ε for ε > 0 and assume that |g(x)−1 − 1| ≤ δ. We have thus

|g(x)| − 1 ≤ |g(x)− 1| ≤ δ|g(x)|

and we receive |g(x)| ≤ 1
1−δ and

|g(x)− 1| ≤ δ|g(x)| ≤ δ

1− δ
≤ ε.

This equation evidently is not b-stable.

4. Inverse uniform b-stability. We consider the uniform b-stability (see [9]):
— the equation L(f) = R(f) is said to be uniformly b-stable if for every ε > 0 there

exists a δ > 0 such that for every function g if ρ(L(g), R(g)) ≤ ε, then there exists a
solution f of the equation such that ρ(g, f) ≤ δ.
This b-stability is “uniform” since δ does not depend on the function g.
Per analogiam it is possible to consider the inverse uniform b-stability:

— the equation L(f) = R(f) is said to be inversely uniformly b-stable if for every ε > 0
there exists a δ > 0 such that for every function g if there exists a solution f of the
equation for which ρ(g, f) ≤ ε, then ρ(L(g), R(g)) ≤ δ.
This notion of stability is in reality the inverse of the stability in Ulam–Hyers stability

(the implication in the inverse uniform b-stability is the inverse of the implication in
the Ulam–Hyers stability). The inverse uniform stability implies evidently the inverse
b-stability but not inversely. For example, the equation

f(x)2 = f(0)2,

for f : R→ R, is inversely b-stable (see the remark above) and it is not inversely uniformly
b-stable. In fact, for the indirect proof, let ε = 1, the function

f(x) =

{
δ, x = 0,

−δ, x 6= 0,

is a solution of the equation and for the function g(x) = f(x) + 1 we have

|g(x)− f(x)| = 1 = ε

and for x 6= 0:

|g(x)2 − g(0)2| = |
(
f(x) + 1

)2 − (f(0) + 1
)2| = |(−δ + 1)2 − (δ + 1)2| = |−4δ| > δ,

which gives a contradiction.
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The equation in consideration is uniformly b-stable (see Section 3).
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