COLLOQUIUM MATHEMATICUM

WEIGHTED EXTENDED MEAN VALUES

BY

ALFRED WITKOWSKI (Bydgoszcz)

Abstract

The author generalizes Stolarsky's Extended Mean Values to a fourparameter family of means $F(r, s ; a, b ; x, y)=E(r, s ; a x, b y) / E(r, s ; a, b)$ and investigates their monotonicity properties.

1. Introduction. The inequalities

$$
\sqrt{x y} \leq \frac{y-x}{\log y-\log x} \equiv L(x, y) \leq \frac{x+y}{2}
$$

and the observation that for natural s the inequalities

$$
\begin{equation*}
\min (x, y) \leq\left(\frac{x^{s}+x^{s-1} y+\cdots+x y^{s-1}+y^{s}}{s+1}\right)^{1 / s} \leq \max (x, y) \tag{1}
\end{equation*}
$$

hold, led Galvani [1] to the investigation of the one-parameter family of means defined as

$$
\begin{gathered}
S_{p}(x, y)=\left(\frac{y^{p}-x^{p}}{p(y-x)}\right)^{1 /(p-1)} \\
S_{0}(x, y)=L(x, y), \quad S_{1}(x, y)=e^{-1}\left(\frac{y^{y}}{x^{x}}\right)^{1 /(y-x)}
\end{gathered}
$$

Observe that for $p=-1$ and 2 we obtain the geometric and the arithmetic means. It has been proved that $S_{p}(x, y) \leq S_{q}(x, y)$ for $p<q$ and that S_{p} is increasing in both variables. Stolarsky [8] and later Leach and Sholander [2, 3] extended this family to a two-parameter family of extended mean values by
(2) $\quad E(r, s ; x, y)= \begin{cases}\left(\frac{r}{s} \frac{y^{s}-x^{s}}{y^{r}-x^{r}}\right)^{1 /(s-r)}, & s r(s-r)(x-y) \neq 0, \\ \left(\frac{1}{r} \frac{y^{r}-x^{r}}{\log y-\log x}\right)^{1 / r}, & r(x-y) \neq 0, s=0, \\ e^{-1 / r}\left(y^{y^{r}} / x^{x^{r}}\right)^{1 /\left(y^{r}-x^{r}\right)}, & r=s, r(x-y) \neq 0, \\ \sqrt{x y}, & r=s=0, x-y \neq 0, \\ x, & x=y .\end{cases}$

Key words and phrases: extended mean values, monotonicity.
and proved that E is continuous and increasing in all variables. Other proofs of this fact can be found in $[5,6,7,9]$.

In this paper we extend E to a four-parameter family of means and investigate their monotonicity properties.

The inequalities

$$
\begin{align*}
\min (x, y) & \leq\left(\frac{(a x)^{s}+(a x)^{s-1} b y+\cdots+a x(b y)^{s-1}+(b y)^{s}}{a^{s}+a^{s-1} b+\cdots+a b^{s-1}+b^{s}}\right)^{1 / s} \tag{3}\\
& \leq \max (x, y)
\end{align*}
$$

valid for natural s and positive x, y, a, b, will be the departure point for our investigation.

Following Stolarsky we define

$$
\begin{equation*}
F(r, s ; a, b ; x, y)=\left(\frac{(a x)^{s}-(b y)^{s}}{a^{s}-b^{s}} / \frac{(a x)^{r}-(b y)^{r}}{a^{r}-b^{r}}\right)^{1 /(s-r)} \tag{4}
\end{equation*}
$$

for $r s(r-s)(a x-b y)(a-b) \neq 0$. Note that (4) can be written as

$$
\begin{equation*}
F(r, s ; a, b ; x, y)=\frac{E(r, s ; a x, b y)}{E(r, s ; a, b)} \tag{5}
\end{equation*}
$$

thus extending F to a continuous function in $\mathbb{R}^{2} \times \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$.
In Section 3 we show that F is a mean of x and y and is monotone in all variables though the monotonicity in r, s, a and b may not be the same for different values of other parameters.
2. Tools. Before formulating our main results we define some tools and prove a useful lemma.

For a function $f(x)$ we write $\operatorname{Mon}_{x}(f)=1,0,-1$ if f is increasing, constant or decreasing in x, respectively. Similarly, $\operatorname{Con}_{x}(f)=1,0,-1$ if f is convex, linear or concave in x. We omit the subscript for functions of one variable. It is worth recording some basic properties of the operators Mon and Con:

- $\operatorname{Mon}(f(g))=\operatorname{Mon}(f) \operatorname{Mon}(g)$.
- If $x=f(y)$ then $\operatorname{Mon}_{x}(g)=\operatorname{Mon}(f) \operatorname{Mon}_{y}(g(f))$.
- $\operatorname{Con}(f)=\operatorname{Mon}\left(f^{\prime}\right)=\operatorname{sgn}\left(f^{\prime \prime}\right)$.
- For fixed c and positive $f, \operatorname{Mon}\left(f^{c}\right)=\operatorname{sgn}(c) \operatorname{Mon}(f)$.
- $\operatorname{Con}_{x}\left(x^{c}\right)=\operatorname{sgn}(c(c-1))$.
- $\operatorname{Mon}_{x}\left(x^{c}\right)=\operatorname{sgn}(c)$.
- $\operatorname{sgn}(f(x)-f(y))=\operatorname{Mon}(f) \operatorname{sgn}(x-y)$ for strictly monotone f.

Let us now recall two properties of convex functions that will be extremely useful [4].

Property 1. f is convex (resp. concave) if and only if the difference quotient function $\frac{f(x)-f(y)}{x-y}, x \neq y$, is increasing (resp. decreasing) in both x and y.

Property 2. If f is convex and $z>0$ (resp. $z<0$), then the function $g(x)=f(x+z)-f(x)$ is increasing (resp. decreasing). For concave functions, the monotonicities reverse.

The above properties can be written as

$$
\begin{align*}
& \operatorname{Con}(f)=\operatorname{Mon}_{x}\left(\frac{f(x)-f(y)}{x-y}\right)=\operatorname{Mon}_{y}\left(\frac{f(x)-f(y)}{x-y}\right) \tag{6}\\
& \operatorname{Con}(f)=\operatorname{sgn}(z) \operatorname{Mon}_{x}(f(x+z)-f(x)) \tag{7}
\end{align*}
$$

Lemma 1. If $A, B>0, A, B \neq 1, A \neq B, A \neq B^{-1}$, then the function

$$
H(t)=\log \left|\frac{1-A^{t}}{1-B^{t}}\right|, \quad H(0)=\log \left|\frac{\log A}{\log B}\right|
$$

is strictly convex or concave and

$$
\begin{equation*}
\operatorname{Con}(H)=\operatorname{sgn}\left(\log ^{2} A-\log ^{2} B\right) \tag{8}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
H^{\prime \prime}(t) & =\frac{B^{t} \log ^{2} B}{\left(1-B^{t}\right)^{2}}-\frac{A^{t} \log ^{2} A}{\left(1-A^{t}\right)^{2}} \tag{9}\\
& =C(t)\left(\frac{A^{t}-2+A^{-t}}{\log ^{2} A}-\frac{B^{t}-2+B^{-t}}{\log ^{2} B}\right) \\
& =2 C(t) \sum_{k=2}^{\infty} \frac{\left(\log ^{2} A\right)^{k-1}-\left(\log ^{2} B\right)^{k-1}}{(2 k)!} t^{2 k} \\
& =2 C(t)\left(\log ^{2} A-\log ^{2} B\right) \sum_{k=2}^{\infty} \frac{\sum_{j=0}^{k-2}\left(\log ^{2} A\right)^{j}\left(\log ^{2} B\right)^{k-2-j}}{(2 k)!} t^{2 k}
\end{align*}
$$

where $C(t)=\frac{B^{t} \log ^{2} B}{\left(1-B^{t}\right)^{2}} \frac{A^{t} \log ^{2} A}{\left(1-A^{t}\right)^{2}}$ is positive.

3. Monotonicity of $F(r, s ; a, b ; x, y)$

Theorem 1 (Monotonicity in x and y).

$$
\operatorname{Mon}_{x}(F)=\operatorname{Mon}_{y}(F)=1
$$

Proof. The result follows immediately from (5) and monotonicity of E, but we will give an independent proof.

Suppose first that $r s(r-s)(a-b)(x-y) \neq 0$ and write F as

$$
\left(\frac{\left((a x)^{r}\right)^{s / r}-\left((b y)^{r}\right)^{s / r}}{(a x)^{r}-(b y)^{r}} \frac{a^{r}-b^{r}}{a^{s}-b^{s}}\right)^{1 /(s-r)}
$$

One can see immediately that F as a function of x is a composition of four monotone functions: $f_{1}(t)=(a t)^{r}, f_{2}$ is the difference quotient function obtained from $t^{s / r}$ (see Property 1), $f_{3}(t)=\frac{a^{r}-b^{r}}{a^{s}-b^{s}} t$, and $f_{4}(t)=t^{1 /(s-r)}$. So F is monotone and

$$
\begin{aligned}
\operatorname{Mon}_{x}(F) & =\operatorname{sgn}(r) \operatorname{Con}\left(t^{s / r}\right) \operatorname{sgn} \frac{a^{r}-b^{r}}{a^{s}-b^{s}} \operatorname{sgn} \frac{1}{s-r} \\
& =\operatorname{sgn}\left(r \frac{s}{r}\left(\frac{s}{r}-1\right) \frac{r}{s} \frac{1}{s-r}\right)=1 .
\end{aligned}
$$

If $r=0$ then

$$
F(s, 0)=F(0, s)=\left(\frac{\exp (s \log (a x))-\exp (s \log (b y))}{\log (a x)-\log (b y)} \frac{\log a-\log b}{a^{s}-b^{s}}\right)^{1 / s}
$$

and we have a similar situation with $f_{1}(t)=\log (a t)$ and f_{2} coming from $e^{s t}$. So

$$
\operatorname{Mon}_{x}(F)=\operatorname{Mon}\left(f_{1}\right) \operatorname{Con}_{t}\left(e^{s t}\right) \operatorname{sgn}\left(\frac{\log a-\log b}{a^{s}-b^{s}}\right) \operatorname{sgn} \frac{1}{s}=1
$$

In the case $r=s$,

$$
\log F=-\frac{1}{s}+\frac{1}{s} \frac{(a x)^{s} \log (a x)^{s}-(b y)^{s} \log (b y)^{s}}{(a x)^{s}-(b y)^{s}}-\log E(s, s ; a, b)
$$

is monotone in x for the same reason as above, and

$$
\operatorname{Mon}_{x}(F)=\operatorname{Mon}_{x}(\log F)=\operatorname{Mon}_{t}\left(t^{s}\right) \operatorname{Con}_{t}\left(s^{-1} t \log t\right)=1
$$

We leave the case $a=b$ to the reader.
The proof of the monotonicity in y is exactly the same.
Theorem 2 (Monotonicity in r and s).

$$
\begin{equation*}
\operatorname{Mon}_{r}(F)=\operatorname{Mon}_{s}(F)=\operatorname{sgn}(x-y) \operatorname{sgn}\left(a^{2} x-b^{2} y\right) \tag{10}
\end{equation*}
$$

Proof. We consider four cases:
Case 1: $x=y$ or $a^{2} x=b^{2} y$. In this case the right hand side of (10) equals 0 . An easy calculation shows that

$$
F(r, s ; a, b ; x, y)= \begin{cases}x & \text { if } x=y \tag{11}\\ \sqrt{x y} & \text { if } a^{2} x=b^{2} y\end{cases}
$$

is constant in r and s, so our theorem holds.
CASE 2: $a=b$. The right hand side of (10) equals 1 and from (2) and (5) we obtain

$$
\begin{align*}
\log F(r, s ; a, a ; x, y) & =\log E(r, s ; x, y) \tag{12}\\
& =\frac{\log \left|\frac{y^{s}-x^{s}}{s}\right|-\log \left|\frac{y^{r}-x^{r}}{r}\right|}{s-r} .
\end{align*}
$$

As the function $f(s)=\log \left|\frac{y^{s}-x^{s}}{s}\right|$ is convex (the proof is almost the same as the proof of Lemma 1), it follows from (12) and Property 1 that $\log F$ and $\log E$, hence F and E are increasing in r and s.

Case 3: $a x=b y$. Then

$$
\operatorname{sgn}\left((x-y)\left(a^{2} x-b^{2} y\right)\right)=\operatorname{sgn}\left((x-y)(a x)^{2}\left(x^{-1}-y^{-1}\right)\right)=-1
$$

By (12) and (5),

$$
F(r, s ; a, b ; x, y)=\frac{\sqrt{a b x y}}{E(r, s ; a, b)}
$$

hence from $\operatorname{Mon}_{r, s}(E)=1$ it follows that $\operatorname{Mon}_{r, s}(F)=-1$.
Case 4: all other cases. We have

$$
\begin{align*}
\operatorname{sgn}(x & -y) \operatorname{sgn}\left(a^{2} x-b^{2} y\right)=\operatorname{sgn}\left(\log \frac{x}{y}\right) \operatorname{sgn}\left(\log \frac{a^{2} x}{b^{2} y}\right) \\
& =\operatorname{sgn}\left(\log \frac{x}{y}\right) \operatorname{sgn}\left(2 \log \frac{a}{b}+\log \frac{x}{y}\right) \\
& =\operatorname{sgn}\left(\log ^{2} \frac{a x}{b y}-\log ^{2} \frac{a}{b}\right) \\
& =\operatorname{Con}_{t}\left(\log \left|\frac{1-\left(\frac{a x}{b y}\right)^{t}}{1-\left(\frac{a}{b}\right)^{t}}\right|\right) \tag{byLemma1}\\
& =\operatorname{Mon}_{r, s}\left(\frac{1}{s-r}\left(\log \left|\frac{1-\left(\frac{a x}{b y}\right)^{s}}{1-\left(\frac{a}{b}\right)^{s}}\right|-\log \left|\frac{1-\left(\frac{a x}{b y}\right)^{r}}{1-\left(\frac{a}{b}\right)^{r}}\right|\right)\right) \tag{6}\\
& =\operatorname{Mon}_{r, s}(-\log y+\log F)=\operatorname{Mon}_{r, s}(F) .
\end{align*}
$$

Theorem 3 (Monotonicity in a and b).

$$
\operatorname{Mon}_{a}(F)=-\operatorname{Mon}_{b}(F)=\operatorname{sgn}(x-y) \operatorname{sgn}(r+s)
$$

Proof. First observe that $F(r,-r ; a, b ; x, y)=\sqrt{x y}$, so the theorem holds if the right hand side equals 0 .

For $r \neq s$ we have

$$
\begin{aligned}
\operatorname{sgn}(x-y) \operatorname{sgn}(r+s)= & \operatorname{sgn}(x-y) \operatorname{sgn}(s-r) \operatorname{sgn}\left(s^{2}-r^{2}\right) \\
& =\operatorname{sgn}(s-r) \operatorname{sgn}\left(\log \frac{x}{y}\right) \operatorname{sgn}\left(\log ^{2} e^{s}-\log ^{2} e^{r}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\operatorname{sgn}(s-r) \operatorname{sgn}\left(\log \frac{x}{y}\right) \operatorname{Con}_{t}\left(\log \left|\frac{1-e^{s t}}{1-e^{r t}}\right|\right) \tag{13}\\
& =\operatorname{sgn}(s-r) \operatorname{sgn}\left(\log \frac{x}{y}\right) \operatorname{sgn}(z) \tag{14}\\
& \quad \times \operatorname{Mon}_{t}\left(\log \left|\frac{1-e^{s(t+z)}}{1-e^{r(t+z)}}\right|-\log \left|\frac{1-e^{s t}}{1-e^{r t}}\right|\right),
\end{align*}
$$

where (13) and (14) follow from Lemma 1 and Property 2.
Let $z=\log (x / y)$ and $t=\log (a / b)$. Note that $\operatorname{Mon}_{t}(a)=-\operatorname{Mon}_{t}(b)=1$, and (14) transforms into

$$
\begin{aligned}
\operatorname{sgn}(x & -y) \operatorname{sgn}(r+s) \\
& =\operatorname{sgn}(s-r) \operatorname{Mon}_{t}(a) \operatorname{Mon}_{a}\left(\log \left|\frac{1-\left(\frac{a x}{b y}\right)^{s}}{1-\left(\frac{a x}{b y}\right)^{r}}\right|-\log \left|\frac{1-\left(\frac{a}{b}\right)^{s}}{1-\left(\frac{a}{b}\right)^{r}}\right|\right) \\
& =\operatorname{sgn}(s-r) \operatorname{Mon}_{a}\left(\log y^{r-s}+\log F^{s-r}\right)=\operatorname{Mon}_{a}(F)
\end{aligned}
$$

and also

$$
\begin{aligned}
& \operatorname{sgn}(x-y) \operatorname{sgn}(r+s) \\
&=\operatorname{sgn}(s-r) \operatorname{Mon}_{t}(b) \operatorname{Mon}_{b}\left(\log \left|\frac{1-\left(\frac{a x}{b y}\right)^{s}}{1-\left(\frac{a x}{b y}\right)^{r}}\right|-\log \left|\frac{1-\left(\frac{a}{b}\right)^{s}}{1-\left(\frac{a}{b}\right)^{r}}\right|\right) \\
&=-\operatorname{sgn}(s-r) \operatorname{Mon}_{b}\left(\log y^{r-s}+\log F^{s-r}\right)=-\operatorname{Mon}_{b}(F)
\end{aligned}
$$

The case $s=r$ follows from continuity of F.
Theorem 4.

$$
\min (x, y) \leq F(r, s ; a, b ; x, y) \leq \max (x, y)
$$

Proof. As F is monotone in a it is enough to show that $\lim _{a \rightarrow 0} F$ and $\lim _{a \rightarrow \infty} F$ satisfy the same inequalities. But

$$
\lim _{a \rightarrow 0} F=\sqrt{x y}\left(\sqrt{\frac{y}{x}}\right)^{\frac{r+s}{|r|+|s|}}, \quad \lim _{a \rightarrow \infty} F=\sqrt{x y}\left(\sqrt{\frac{x}{y}}\right)^{\frac{r+s}{|r|+|s|}}
$$

which completes the proof.

REFERENCES

[1] L. Galvani, Dei limiti a cui tendono alcune media, Boll. Un. Mat. Ital. 6 (1927), 173-179.
[2] E. Leach and M. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
[3] —, 一, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-223.
[4] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer, Dordrecht, 1993.
[5] F. Qi, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), 2723-2732.
[6] F. Qi, J. Q. Mei and S. L. Xu, New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values, Math. Inequal. Appl. 3 (2000), 377-383; available at http://rgmia.vu.edu.au/v2n4.html.
[7] F. Qi, S. L. Xu and L. Debnath, A new proof of monotonicity for extended mean values, Int. J. Math. Math. Sci. 22 (1999), 415-420.
[8] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.
[9] A. Witkowski, Monotonicity of generalized extended mean values, Colloq. Math. 99 (2004), 203-206.

Mielczarskiego 4/29
85-796 Bydgoszcz, Poland
E-mail: alfred.witkowski@atosorigin.com

Received 16 February 2004;
revised 17 April 2004

