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WEIGHTED EXTENDED MEAN VALUES

BY

ALFRED WITKOWSKI (Bydgoszcz)

Abstract. The author generalizes Stolarsky’s Extended Mean Values to a four-
parameter family of means F (r, s;a, b;x, y) = E(r, s; ax, by)/E(r, s; a, b) and investigates
their monotonicity properties.

1. Introduction. The inequalities
√
xy ≤ y − x

log y − log x
≡ L(x, y) ≤ x+ y

2
,

and the observation that for natural s the inequalities

min(x, y) ≤
(
xs + xs−1y + · · ·+ xys−1 + ys

s+ 1

)1/s

≤ max(x, y)(1)

hold, led Galvani [1] to the investigation of the one-parameter family of
means defined as

Sp(x, y) =
(
yp − xp
p(y − x)

)1/(p−1)

,

S0(x, y) = L(x, y), S1(x, y) = e−1
(
yy

xx

)1/(y−x)

.

Observe that for p = −1 and 2 we obtain the geometric and the arithmetic
means. It has been proved that Sp(x, y)≤Sq(x, y) for p<q and that Sp is in-
creasing in both variables. Stolarsky [8] and later Leach and Sholander [2, 3]
extended this family to a two-parameter family of extended mean values by

E(r, s;x, y) =





(
r

s

ys − xs
yr − xr

)1/(s−r)
, sr(s− r)(x− y) 6= 0,

(
1
r

yr − xr
log y − log x

)1/r

, r(x− y) 6= 0, s = 0,

e−1/r(yy
r
/xx

r
)1/(yr−xr), r = s, r(x− y) 6= 0,

√
xy, r = s = 0, x− y 6= 0,

x, x = y.

(2)
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and proved that E is continuous and increasing in all variables. Other proofs
of this fact can be found in [5, 6, 7, 9].

In this paper we extend E to a four-parameter family of means and
investigate their monotonicity properties.

The inequalities

min(x, y) ≤
(

(ax)s + (ax)s−1by + · · ·+ ax(by)s−1 + (by)s

as + as−1b+ · · ·+ abs−1 + bs

)1/s

(3)

≤ max(x, y),

valid for natural s and positive x, y, a, b, will be the departure point for our
investigation.

Following Stolarsky we define

F (r, s; a, b;x, y) =
(

(ax)s − (by)s

as − bs
/(ax)r − (by)r

ar − br
)1/(s−r)

(4)

for rs(r − s)(ax− by)(a− b) 6= 0 . Note that (4) can be written as

F (r, s; a, b;x, y) =
E(r, s; ax, by)
E(r, s; a, b)

,(5)

thus extending F to a continuous function in R2 × R2
+ × R2

+.
In Section 3 we show that F is a mean of x and y and is monotone in

all variables though the monotonicity in r, s, a and b may not be the same
for different values of other parameters.

2. Tools. Before formulating our main results we define some tools and
prove a useful lemma.

For a function f(x) we write Monx(f) = 1, 0,−1 if f is increasing, con-
stant or decreasing in x, respectively. Similarly, Conx(f) = 1, 0,−1 if f is
convex, linear or concave in x. We omit the subscript for functions of one
variable. It is worth recording some basic properties of the operators Mon
and Con:

• Mon(f(g)) = Mon(f) Mon(g).
• If x = f(y) then Monx(g) = Mon(f) Mony(g(f)).
• Con(f) = Mon(f ′) = sgn(f ′′).
• For fixed c and positive f , Mon(f c) = sgn(c) Mon(f).
• Conx(xc) = sgn(c(c− 1)).
• Monx(xc) = sgn(c).
• sgn(f(x)− f(y)) = Mon(f) sgn(x− y) for strictly monotone f .

Let us now recall two properties of convex functions that will be ex-
tremely useful [4].
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Property 1. f is convex (resp. concave) if and only if the difference
quotient function f(x)−f(y)

x−y , x 6= y, is increasing (resp. decreasing) in both x
and y.

Property 2. If f is convex and z > 0 (resp. z < 0), then the function
g(x) = f(x+z)−f(x) is increasing (resp. decreasing). For concave functions,
the monotonicities reverse.

The above properties can be written as

Con(f) = Monx

(
f(x)− f(y)

x− y

)
= Mony

(
f(x)− f(y)

x− y

)
,(6)

Con(f) = sgn(z) Monx(f(x+ z)− f(x)).(7)

Lemma 1. If A,B > 0, A,B 6= 1, A 6= B, A 6= B−1, then the function

H(t) = log
∣∣∣∣
1− At
1−Bt

∣∣∣∣, H(0) = log
∣∣∣∣
logA
logB

∣∣∣∣,

is strictly convex or concave and

Con(H) = sgn(log2A− log2B).(8)

Proof. We have

H ′′(t) =
Bt log2B

(1−Bt)2 −
At log2A

(1− At)2(9)

= C(t)
(
At − 2 + A−t

log2A
− Bt − 2 +B−t

log2B

)

= 2C(t)
∞∑

k=2

(log2A)k−1 − (log2B)k−1

(2k)!
t2k

= 2C(t)(log2A− log2B)
∞∑

k=2

∑k−2
j=0(log2A)j(log2B)k−2−j

(2k)!
t2k,

where C(t) = Bt log2 B
(1−Bt)2

At log2A
(1−At)2 is positive.

3. Monotonicity of F (r, s; a, b;x, y)

Theorem 1 (Monotonicity in x and y).

Monx(F ) = Mony(F ) = 1.

Proof. The result follows immediately from (5) and monotonicity of E,
but we will give an independent proof.

Suppose first that rs(r − s)(a− b)(x− y) 6= 0 and write F as
(

((ax)r)s/r − ((by)r)s/r

(ax)r − (by)r
ar − br
as − bs

)1/(s−r)
.
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One can see immediately that F as a function of x is a composition of four
monotone functions: f1(t) = (at)r, f2 is the difference quotient function
obtained from ts/r (see Property 1), f3(t) = ar−br

as−bs t, and f4(t) = t1/(s−r). So
F is monotone and

Monx(F ) = sgn(r) Con(ts/r) sgn
ar − br
as − bs sgn

1
s− r

= sgn
(
r
s

r

(
s

r
− 1
)
r

s

1
s− r

)
= 1.

If r = 0 then

F (s, 0) = F (0, s) =
(

exp(s log(ax))− exp(s log(by))
log(ax)− log(by)

log a− log b
as − bs

)1/s

and we have a similar situation with f1(t) = log(at) and f2 coming from est.
So

Monx(F ) = Mon(f1) Cont(est) sgn
(

log a− log b
as − bs

)
sgn

1
s

= 1.

In the case r = s,

logF = −1
s

+
1
s

(ax)s log(ax)s − (by)s log(by)s

(ax)s − (by)s
− logE(s, s; a, b)

is monotone in x for the same reason as above, and

Monx(F ) = Monx(logF ) = Mont(ts) Cont(s−1t log t) = 1.

We leave the case a = b to the reader.
The proof of the monotonicity in y is exactly the same.

Theorem 2 (Monotonicity in r and s).

Monr(F ) = Mons(F ) = sgn(x− y) sgn(a2x− b2y).(10)

Proof. We consider four cases:

Case 1: x = y or a2x = b2y. In this case the right hand side of (10)
equals 0. An easy calculation shows that

F (r, s; a, b;x, y) =
{
x if x = y,
√
xy if a2x = b2y,

(11)

is constant in r and s, so our theorem holds.

Case 2: a = b. The right hand side of (10) equals 1 and from (2) and
(5) we obtain

logF (r, s; a, a;x, y) = logE(r, s;x, y)(12)

=
log
∣∣ys−xs

s

∣∣− log
∣∣yr−xr

r

∣∣
s− r .
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As the function f(s) = log
∣∣ys−xs

s

∣∣ is convex (the proof is almost the same
as the proof of Lemma 1), it follows from (12) and Property 1 that logF
and logE, hence F and E are increasing in r and s.

Case 3: ax = by. Then

sgn((x− y)(a2x− b2y)) = sgn((x− y)(ax)2(x−1 − y−1)) = −1.

By (12) and (5),

F (r, s; a, b;x, y) =
√
abxy

E(r, s; a, b)
,

hence from Monr,s(E) = 1 it follows that Monr,s(F ) = −1.

Case 4: all other cases. We have

sgn(x− y) sgn(a2x− b2y) = sgn
(

log
x

y

)
sgn
(

log
a2x

b2y

)

= sgn
(

log
x

y

)
sgn
(

2 log
a

b
+ log

x

y

)

= sgn
(

log2 ax

by
− log2 a

b

)

= Cont

(
log
∣∣∣∣
1−

(
ax
by

)t

1−
(
a
b

)t
∣∣∣∣
)

(by Lemma 1)

= Monr,s

(
1

s− r

(
log

∣∣∣∣
1−

(
ax
by

)s

1−
(
a
b

)s
∣∣∣∣− log

∣∣∣∣
1−

(
ax
by

)r

1−
(
a
b

)r
∣∣∣∣
))

(by (6))

= Monr,s(− log y + logF ) = Monr,s(F ).

Theorem 3 (Monotonicity in a and b).

Mona(F ) = −Monb(F ) = sgn(x− y) sgn(r + s).

Proof. First observe that F (r,−r; a, b;x, y) =
√
xy, so the theorem holds

if the right hand side equals 0.

For r 6= s we have

sgn(x− y) sgn(r + s) = sgn(x− y) sgn(s− r) sgn(s2 − r2)

= sgn(s− r) sgn
(

log
x

y

)
sgn(log2 es − log2 er)
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(13) = sgn(s− r) sgn
(

log
x

y

)
Cont

(
log
∣∣∣∣
1− est
1− ert

∣∣∣∣
)

(14) = sgn(s− r) sgn
(

log
x

y

)
sgn(z)

× Mont

(
log

∣∣∣∣
1− es(t+z)
1− er(t+z)

∣∣∣∣− log

∣∣∣∣
1− est
1− ert

∣∣∣∣
)
,

where (13) and (14) follow from Lemma 1 and Property 2.
Let z = log(x/y) and t = log(a/b). Note that Mont(a) = −Mont(b) = 1,

and (14) transforms into

sgn(x− y) sgn(r + s)

= sgn(s− r) Mont(a) Mona

(
log
∣∣∣∣
1−

(
ax
by

)s

1−
(
ax
by

)r
∣∣∣∣− log

∣∣∣∣
1−

(
a
b

)s

1−
(
a
b

)r
∣∣∣∣
)

= sgn(s− r) Mona(log yr−s + logF s−r) = Mona(F )

and also

sgn(x− y) sgn(r + s)

= sgn(s− r) Mont(b) Monb

(
log
∣∣∣∣
1−

(
ax
by

)s

1−
(
ax
by

)r
∣∣∣∣− log

∣∣∣∣
1−

(
a
b

)s

1−
(
a
b

)r
∣∣∣∣
)

= − sgn(s− r) Monb(log yr−s + logF s−r) = −Monb(F ).

The case s = r follows from continuity of F .

Theorem 4.

min(x, y) ≤ F (r, s; a, b;x, y) ≤ max(x, y).

Proof. As F is monotone in a it is enough to show that lima→0 F and
lima→∞ F satisfy the same inequalities. But

lim
a→0

F =
√
xy

(√
y

x

) r+s
|r|+|s|

, lim
a→∞

F =
√
xy

(√
x

y

) r+s
|r|+|s|

,

which completes the proof.
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