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WEIGHTED EXTENDED MEAN VALUES

BY

ALFRED WITKOWSKI (Bydgoszcz)

Abstract. The author generalizes Stolarsky’s Extended Mean Values to a four-
parameter family of means F(r, s;a,b;z,y) = E(r, s;ax, by)/E(r, s;a,b) and investigates
their monotonicity properties.

1. Introduction. The inequalities
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hold, led Galvani [1] to the investigation of the one-parameter family of
means defined as
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Observe that for p = —1 and 2 we obtain the geometric and the arithmetic
means. It has been proved that Sy(z,y) <S;(z,y) for p<q and that S), is in-
creasing in both variables. Stolarsky [8] and later Leach and Sholander [2, 3]
extended this family to a two-parameter family of extended mean values by
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and proved that F is continuous and increasing in all variables. Other proofs
of this fact can be found in [5, 6, 7, 9].

In this paper we extend E to a four-parameter family of means and
investigate their monotonicity properties.

The inequalities
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valid for natural s and positive x,y, a, b, will be the departure point for our
investigation.
Following Stolarsky we define

(4) F(r,s;a,b;x,y) = ((MC); : éls)y)s/(ami: : l()f@?“) 1/(s=r)

for rs(r — s)(ax — by)(a — b) # 0 . Note that (4) can be written as

E(r,s;ax, by)

F ca.b: —
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thus extending F' to a continuous function in R? x Ri X Ri.

In Section 3 we show that F' is a mean of x and y and is monotone in
all variables though the monotonicity in r, s, a and b may not be the same
for different values of other parameters.

2. Tools. Before formulating our main results we define some tools and
prove a useful lemma.

For a function f(x) we write Mon,(f) = 1,0, —1 if f is increasing, con-
stant or decreasing in x, respectively. Similarly, Con,(f) = 1,0,—1 if f is
convex, linear or concave in z. We omit the subscript for functions of one
variable. It is worth recording some basic properties of the operators Mon
and Con:

o Mon(f(g)) = Mon(/) Mon(g).

o If x = f(y) then Mon,(g) = Mon(f) Mony(g(f)).

o Con(f) = Mon(f") = sgn(f").

e For fixed ¢ and positive f, Mon(f¢) = sgn(c) Mon(f).

e Cong(z¢) =sgn(c(c—1)).

e Mon, (z¢) = sgn(c).

e sgn(f(z) — f(y)) = Mon(f)sgn(x — y) for strictly monotone f.

Let us now recall two properties of convex functions that will be ex-
tremely useful [4].
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PROPERTY 1. f is convex (resp. concave) if and only if the difference

quotient function %{l(y)’ x # 1y, is increasing (resp. decreasing) in both x
and y.

PROPERTY 2. If f is convex and z > 0 (resp. z < 0), then the function
g(x) = f(x+2)—f(x) is increasing (resp. decreasing). For concave functions,
the monotonicities reverse.

The above properties can be written as
=Yy r—y
(7) Con(f) = sgn(z) Mong(f(z + 2) — f(z)).
LEMMA 1. IfA,B>0, A,B#1, A# B, A# B!, then the function
1— A log A
1- Bt log B|’
is strictly convex or concave and
(8) Con(H) = sgn(log? A — log? B).
Proof. We have
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where C(t) = l(gl_kgt)l; ?llojt)é‘ is positive. m

H(t) = log ,  H(0) =log
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3. Monotonicity of F(r,s;a,b;x,y)
THEOREM 1 (Monotonicity in x and y).
Mon, (F') = Mon, (F) = 1.

Proof. The result follows immediately from (5) and monotonicity of E,
but we will give an independent proof.
Suppose first that rs(r — s)(a — b)(x — y) # 0 and write F' as

<((am)r)s/r _ ((by)r)s/r a’ — br) 1/(s—r)
(az)" = (by)"  a®—0b° ‘
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One can see immediately that F' as a function of = is a composition of four
monotone functions: fi(¢) = (at)", fo is the difference quotient function
obtained from t*/7 (see Property 1), f3(t) = %t, and f4(t) =t/ So
F' is monotone and

a" =" 1

Mon,(F) = s/
on, (F) = sgn(r) Con(t*’") sgn e S T

=sgn|{r—-(-—-1])- =
r\T ss—r
If = 0 then

B ~ (exp(slog(ax)) — exp(slog(by)) loga — logb s
F(s,0) = F(0,5) = < log(ax) — log(by) a® — b* )

and we have a similar situation with fi(¢) = log(at) and fy coming from e*t.

So
loga — log b) 1

Mon, (F) = Mon( f1) Cony(e*) sgn < P sgn — = 1.
a® — s

In the case r = s,

1 1 5] S — (by)*log(by)®
log F — — 4 1 (ax) og(afﬂ)s ( y)s og(by)® log E(s, 5: a, b)
s s (az)® — (by)

is monotone in x for the same reason as above, and

Mon,(F) = Mon,(log F) = Mon(t*) Cony(s 'tlogt) = 1.

We leave the case a = b to the reader.
The proof of the monotonicity in y is exactly the same. =

THEOREM 2 (Monotonicity in 7 and s).
(10) Mon, (F) = Mon,(F) = sgn(z — y) sgn(a®z — b?y).
Proof. We consider four cases:

CASE 1: z = y or a’x = b%y. In this case the right hand side of (10)
equals 0. An easy calculation shows that
T if x =y,
vy if a’xr = by,
is constant in r and s, so our theorem holds.

CASE 2: a = b. The right hand side of (10) equals 1 and from (2) and
(5) we obtain

(11) F(r,s;a,b;xz,y) = {

(12) log F'(r, s;a,a;x,y) =log E(r, s;x,y)
ysiws r

_log} - ‘—log
N s—r

y' -z
=
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As the function f(s) = log ‘#! is convex (the proof is almost the same
as the proof of Lemma 1), it follows from (12) and Property 1 that log F
and log F/, hence F' and FE are increasing in r and s.

CASE 3: ax = by. Then
sgu((z — y)(az — b)) = sgn((@ — y)(azx)*(z™ =y~ 1)) = —L.
By (12) and (5),

v abxy

F(r,s;a,b;z,y) = Brsiab)

hence from Mon, s(F) = 1 it follows that Mon, s(F) = —1.

CASE 4: all other cases. We have

2
sgu(z — y) sgn(a’z — b%y) = sgn <10g 5) e <10g %)

= sgn <log f) sgn <2 log a + log f)
y b y

= log? & _1pe2 ¢
sgn(og ™ og” ¢

— con 10 +—)> ) (by Lemma 1)
_ Monw(sir <log 11__(%): — log % >> (by (6))

= Mon, s(—logy + log F') = Mon, ;(F). =

THEOREM 3 (Monotonicity in a and b).
Mon, (F) = — Mony(F') = sgn(z — y) sgn(r + s).

Proof. First observe that F(r, —r;a,b;x,y) = /Ty, so the theorem holds
if the right hand side equals 0.

For r # s we have
sgn(z — y) sgn(r + s) = sgn(z — y) sgn(s — r) sgn(s — r?)

= sgn(s — r) sgn <log E) sgn(log? e — log?e")
Y
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st

x 1—e
(13) = sgn(s — r)sgn <log 5) Cony <log T ot )
(14) = sgn(s —r)sgn <log %) sgn(z)
1— es(t—i—z) 1 — st
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where (13) and (14) follow from Lemma 1 and Property 2.
Let z = log(z/y) and t = log(a/b). Note that Mon;(a) = — Mony(b) = 1,
and (14) transforms into

sgn(z — y)sgn(r + s)
1-(5)]
- (&)

= sgn(s — r) Mon;(a) Mon, <log
by
= sgn(s —r) Mon,(logy"™ % 4 log F*~") = Mon, (F)

and also

sgn(z — y) sgn(r + s)
- (%)
1= (%)

= —sgn(s —r)Mony(logy"* + log F*~") = — Mon,(F).

= sgn(s — r) Mon;(b) Mony <log

—1lo
g 11—

The case s = r follows from continuity of F'.
THEOREM 4.
min(z,y) < F(r,s;a,b;x,y) < max(z,y).

Proof. As F' is monotone in «a it is enough to show that lim, .o F' and
lim,_. o F' satisfy the same inequalities. But

lim F — y |Tﬁilss| I o \rl-‘r\s\
fi F = 7 - fm P =y ’

which completes the proof. "
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