COLLOQUIUM MATHEMATICUM

VOL. 100 2004 NO. 1

ZEROS OF QUADRATIC FUNCTIONALS ON
NON-SEPARABLE SPACES

BY

T. BANAKH (Lviv and Kielce), A. PLICHKO (Kirovograd and Krakéw) and
A. ZAGORODNYUK (Lviv and Saskatoon)

Abstract. We construct non-separable subspaces in the kernel of every quadratic
functional on some classes of complex and real Banach spaces.

1. Introduction. Investigation of quadratic functionals is an old sto-
ry [12], [6], [7]. According to [11], for any polynomial functional p with
p(0) = 0 defined on an infinite-dimensional complex linear space X there
is an infinite-dimensional subspace Xy in the kernel ker(p) = p~1(0) of p.
Quantitative finite-dimensional versions of this fact (estimations of dim X
depending on dim X and the degree of the polynomial) are contained in [1],
4], [5), [14].

The paper [2] started the consideration of subspaces in kernels of po-
lynomials on non-separable spaces. In particular, the authors of [2] proved
that if a real Banach space X admits no positive quadratic continuous func-
tional, then every quadratic continuous functional on X vanishes on some
infinite-dimensional subspace. They pose the problem of whether in this sta-
tement one can replace “infinite-dimensional” by “non-separable” (see also
[1, Question 4.8]). Our note continues the investigations of [2]. In particular,
we shall construct a non-separable subspace in the kernel of every quadratic
functional on a complex Banach space having weak* non-separable dual and
on a real Banach space which has controlled separable projection property
and admits no positive quadratic continuous functional. On the other hand,
we construct a CH-example of a quadratic functional on the normed space
I{ (w1) whose kernel contains no non-separable linear subspace.

We use the standard notation; in particular dens X stands for the density
of a Banach space X, F* = {z € X :Vf € F f(z) =0} is the annihilator
of a subspace FF C X* in X, S(X) is the unit sphere of X, and [M] denotes
the closed linear span of a subset M C X. We shall identify cardinals with
initial ordinals and will denote by & the cardinality of an ordinal «. Elements
Tqo € X form a transfinite basic sequence if there is a constant ¢ > 0 such
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that || Y0 aiza, || < cf| X0 aize,]|| for any a1 < -+ < < 00 < ay
and any numbers (a;). A homogeneous quadratic functional is a functional
q(x) = B(z,x), where B(x,y) is a symmetric bilinear form defined on a
linear space X.

2. Complex case. In this section we consider Banach spaces with the
following property:

(1) dens X/F+ < card ' for any infinite subset F C X*.
In particular, all WCG spaces have this property (1) (see e.g. [10]).

PROPOSITION 1. Let q be a continuous homogeneous quadratic func-
tional defined on a non-separable (real or complex) Banach space X with
property (1). Then there exists a transfinite basic sequence x, € S(X),
wo < a < dens X, such that for every finite collection of scalars (aq),

(2) q(Zaaa:a) = Zaiq(fva).

Proof. We construct the z, by transfinite induction. Take an arbitrary
Ty, € S(X).

If the elements z, : a < ( are already constructed, choose a dense
subset Yj of the sphere S[z, : a < ] with card Yy = (3. Let B(x,y) be the
symmetric bilinear form corresponding to the functional ¢. Take x5 € S(X)
so that

(3) B(xq,z3) =0 forall a < f
and
(4) fy(xg) =0 forall y € Yg,

where f, is a functional attaining its norm at y.

Since X has property (1), this process can be continued up to dens X.
Condition (2) follows from (3). Condition (4) guarantees that (z,,) is a trans-
finite basic sequence. =

Note that results similar to Proposition 1 for usual sequences but for
functionals of arbitrary degree were obtained in [11], [9]. Unfortunately, the
methods of [11], [9] do not work for transfinite sequences. It is easy to modify
the proof of Proposition 1 for usual sequences.

PROPOSITION 2. The kernel ker(q) of a continuous homogeneous quad-
ratic functional q defined on an infinite-dimensional complex Banach space
X with property (1) contains a subspace Xo C ker(q) with dens Xy = dens X .

Proof. Let (z4) be the transfinite sequence from Proposition 1. We can
find a subset I C {a : a < dens X} of size |I| = dens X such that either
q(zq) =0 for all @ € I or else g(x,) # 0 for all a € 1.
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In the first case put Xo = [z : o € I]. By (2), X C ker(q). Since (z4)
is a transfinite basic sequence, dens Xy = dens X.

In the second case put z, = z4/q(x4) for a € I. Let X be the closed
linear span of the elements

Zwg + 120o+1s  Zwor2 12w+, .-y 228 122841, -

(we suppose the limit ordinals to be even). Condition (2) guarantees that
Xo C ker(q). Since (z3) is a transfinite basic sequence, dens Xo = dens X. =

The proofs of Propositions 1 and 2 imply

PROPOSITION 2'. If X* is weak® non-separable, then the kernel of any
complex homogeneous quadratic continuous functional on X contains a non-
separable subspace.

REMARK 1. We cannot improve the condition dens Xy = dens X in Pro-
position 2 to, for example, separability of X/X(. As a counterexample, take
X = la(wy) and g(z) = Y a2, where = (as : @ < wy). Every separable-
codimensional subspace Xg C X contains uncountably many unit norm
elements, so cannot be contained in ker(q).

Moreover, we shall show that the normed space I} (w;) of complex func-
tions on (0,w;) with finite support and endowed with the /;-norm has the
following surprising property.

PROPOSITION 3. Under the Continuum Hypothesis there is a continu-
ous quadratic functional q on l{ (w1) whose kernel contains separable linear
subspaces only.

LEMMA 1. Suppose X is a complexr normed space such that the kernel
of each continuous quadratic functional ¢ on X contains a non-separable
linear subspace. Then for each bounded linear operator T : X — ly there is
a non-separable subspace Y C X such that the closure H of T(Y) in ly has
infinite codimension in ls.

Proof. If T has finite-dimensional range, then it has non-separable kernel
Y. Consequently, Y is a non-separable subspace of X such that H has infinite
codimension in /3. So we can assume that 7'(X) is infinite-dimensional. In
this case we can assume that 7'(X) is dense in ly. Consider the standard
quadratic functional ¢(z) = 3" a2 on ly, where x = (a1, az,...). It follows
from our hypothesis that X contains a non-separable subspace Y C X lying
in the kernel of the functional g o T. Then T'(Y') lies in the kernel of q. We
have to show that the closure H of T'(Y') has infinite codimension in [. For
this consider the real subspace Rly = {z € ly : © = &} of Iy and observe that
H N Rly = {0}. This implies that H has infinite codimension in ls as a real
subspace, and consequently, H is infinite-codimensional in [5. m
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Proof of Proposition 3. Assume the Continuum Hypothesis. The family
of closed subspaces of infinite codimension in the separable space [l has the
size of the continuum and thus can be enumerated as {Fy, : @ < wi}. By
transfinite induction we can choose a bounded transfinite sequence {z, :
@ < wi} in lg such that x4 ¢ U<, lin(Fp U {z, : v < a}) for each ordinal
a < wy (the existence of z,, follows from the Baire theorem since x,, should
avoid the countable union of linear spaces of infinite codimension in [3).
Evidently, we can choose this sequence so that [z, : @ < w1] = lo. Now define
a bounded operator T' : If(w1) — I by letting T(f) = Y 4cu, f(@)zq for
f € I} (w1). Given a countable ordinal a consider the characteristic function
ea : w1 — {0,1} of {a} defined by e;'(1) = {a}. This function e, is
an element of If(w;). It follows from the choice of the sequence (z,) that
T~Y(F,) Clin{eg : B < a} is separable in I} (w;).

Assuming that the closure of T'(Y") has infinite codimension in /5 for some
non-separable subspace Y C If (w1), find an ordinal o < wy with T(Y) C F,
and observe that Y C T~!(F,) is separable, which is a contradiction. m

We do not know if Proposition 3 is true without the Continuum Hypo-
thesis. Also we do not know if the normed space l{(wl) in this proposition
can be replaced by the Banach space 1 (wy).

However the following fact is true.

PROPOSITION 4. Suppose that X is a Banach space all of whose sub-
spaces of infinite codimension are separable. Then there is a continuous
quadratic polynomial ¢ on X whose kernel ¢~*(0) contains no non-separable
linear subspace.

Proof. Assuming the converse and applying Lemma 1 we conclude that
for each bounded operator T' : X — [ there is a non-separable subspace
Y C X whose image T'(Y") has infinite-codimensional closure in ls.

Observe that the space X admits a countable family of linear functionals
separating points of X. Indeed, take any countable linearly independent
subset F' in the unit sphere S* of the dual space X*. Then the subspace
Ft={r e X:VfeF f(x)=0} of X has infinite codimension and thus
is separable. Take any countable subset £ C S* separating points of F.
Then the countable set F'U E separates points of X. Using this countable
set of functionals it is easy to construct an injective continuous operator
T : X — Iy (for example, put T'(x) = (27" fn(x))new, where {f, : n € w} is
any enumeration of F'U E).

It follows from the above discussion that X contains a non-separable
subspace Y such that the closure of T(Y) has infinite codimension in Ils.
Then Y has infinite codimension in X and hence must be separable. This is
a contradiction. m
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In light of the previous proposition it should be mentioned that the
existence of a non-separable Banach space without non-separable infinite-
codimensional subspaces is a well-known open problem.

Now we consider the zeros of functionals generated by sequences of linear
functionals.

PROPOSITION 5. Let X be a (real or complex) Banach space with proper-
ty (1) and @(t1,ta,...) be an arbitrary function of countably many variables
such that ©(0,0,...) = 0. Then for any sequence f1, fa,... from X* the ker-
nel of the functional o(f1(x), fa(x),...) contains a separable-codimensional
subspace.

Proof. Let Xg be the subspace of common zeros of all f,,. It is clear that
Xo C ker p(fi(x), fa(z),...). Since X has property (1), X/X is separable. m

Given a (real or complex) Banach space X denote by P4(X) the space
of approximable functionals equal to the completion of finite sums of finite
products of linear functionals in the uniform topology [8, p. 85].

COROLLARY. If X is a (real or complex) Banach space X with property
(1), then the kernel of each functional from Pa(X) contains a separable-
codimensional subspace.

3. Real case. In this section we consider real Banach spaces.

Following [13] we say that a Banach space X has the controlled separable
projection property (CSPP) if for any countable subsets £ C X and F' C X*
there exists a separable-valued projection P in X with [|P|| =1, PX D E
and P*X* D F.

However, the condition || P|| = 1 is not essential (see [10]). Every WCG
space has CSPP. This property is stronger than separable complementation
property; as an example one can take [j(wj). This space, as any space with
unconditional basis, has the separable complementation property, but be-
cause l1(w1)* is weak® separable, /1(w;) does not have CSPP. We do not
know about the connection between CSPP and property (1).

Let us make two simple observations.

LEMMA 2. Let X =Y & Z, where Y and Z admit positive quadra-
tic continuous functionals. Then X admits a positive quadratic continuous
functional as well. In particular, if Y is separable and Z admits a positive
quadratic continuous functional, then so does X.

LEMMA 3. If a real-valued continuous function f on a two-dimensional
normed space takes values of distinct signs, then f vanishes at some nonzero
element.
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PROPOSITION 6. Let X be a real Banach space with CSPP. If X admits
no positive quadratic continuous functional, then every quadratic continuous
functional ¢ on X wvanishes on some non-separable subspace.

Proof. Let B(zx,y) be the symmetric bilinear form corresponding to g.
Let us construct, by induction, a transfinite basic sequence of elements z, :
1 <o <wpin X such that for all o > (3,

(5) B(zq,z5) = 0.

By Lemma 3, there exists x1 # 0 for which B(x1,x1) = 0.

Suppose the elements x5 : 1 < 8 < a, a < wi, are already constructed.
Putting £ = {z3: < a} and F = {f3 : § < a}, where fg(z) = B(zg, ),
we find a separable-valued projection P in X with ||P| = 1, PX D E
and P*X™* D F. Since X admits no positive quadratic continuous functio-
nal, by Lemmas 2 and 3, there is an element x, € ker P, x, # 0, for which
B(xs,2q) = 0 for § < a. Obviously, condition (5) for zg is satisfied. By con-
struction, the z,, form a transfinite basic sequence, hence Xy = [z, : o < w1]
is non-separable. Condition (5) guarantees that Xy C ker(q). =

REMARK 3. One cannot improve w1 to a larger cardinal in Proposition 6.
As a counterexample we can take [3(w1) @ l2(w2). Proposition 6 is connected
with the following three-space problem: Assume that for a subspace Y of
a Banach space X there exist continuous linear injective operators from 'Y
and X/Y into a Hilbert space. Does there exist a continuous linear injective
operator from X into a Hilbert space? In particular, suppose X/Y has weak*
separable dual and there is a continuous linear injective operator from Y
into a Hilbert space. Does there exist a continuous linear injective operator
from X into a Hilbert space?
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