VOL. 100

2004

NO. 1

ZEROS OF QUADRATIC FUNCTIONALS ON NON-SEPARABLE SPACES

BҮ

T. BANAKH (Lviv and Kielce), A. PLICHKO (Kirovograd and Kraków) and A. ZAGORODNYUK (Lviv and Saskatoon)

Abstract. We construct non-separable subspaces in the kernel of every quadratic functional on some classes of complex and real Banach spaces.

1. Introduction. Investigation of quadratic functionals is an old story [12], [6], [7]. According to [11], for any polynomial functional p with p(0) = 0 defined on an infinite-dimensional complex linear space X there is an infinite-dimensional subspace X_0 in the kernel ker $(p) = p^{-1}(0)$ of p. Quantitative finite-dimensional versions of this fact (estimations of dim X_0 depending on dim X and the degree of the polynomial) are contained in [1], [4], [5], [14].

The paper [2] started the consideration of subspaces in kernels of polynomials on non-separable spaces. In particular, the authors of [2] proved that if a real Banach space X admits no positive quadratic continuous functional, then every quadratic continuous functional on X vanishes on some infinite-dimensional subspace. They pose the problem of whether in this statement one can replace "infinite-dimensional" by "non-separable" (see also [1, Question 4.8]). Our note continues the investigations of [2]. In particular, we shall construct a non-separable subspace in the kernel of every quadratic functional on a complex Banach space having weak^{*} non-separable dual and on a real Banach space which has controlled separable projection property and admits no positive quadratic continuous functional. On the other hand, we construct a CH-example of a quadratic functional on the normed space $l_1^f(\omega_1)$ whose kernel contains no non-separable linear subspace.

We use the standard notation; in particular dens X stands for the density of a Banach space $X, F^{\perp} = \{x \in X : \forall f \in F \ f(x) = 0\}$ is the annihilator of a subspace $F \subset X^*$ in X, S(X) is the unit sphere of X, and [M] denotes the closed linear span of a subset $M \subset X$. We shall identify cardinals with initial ordinals and will denote by $\overline{\alpha}$ the cardinality of an ordinal α . Elements $x_{\alpha} \in X$ form a *transfinite basic sequence* if there is a constant c > 0 such

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B28; Secondary 46B04.

that $\|\sum_{i=1}^{m} a_i x_{\alpha_i}\| \leq c \|\sum_{i=1}^{n} a_i x_{\alpha_i}\|$ for any $\alpha_1 < \cdots < \alpha_m < \cdots < \alpha_n$ and any numbers (a_i) . A homogeneous quadratic functional is a functional q(x) = B(x, x), where B(x, y) is a symmetric bilinear form defined on a linear space X.

2. Complex case. In this section we consider Banach spaces with the following property:

(1) $\operatorname{dens} X/F^{\perp} \leq \operatorname{card} F$ for any infinite subset $F \subset X^*$.

In particular, all WCG spaces have this property (1) (see e.g. [10]).

PROPOSITION 1. Let q be a continuous homogeneous quadratic functional defined on a non-separable (real or complex) Banach space X with property (1). Then there exists a transfinite basic sequence $x_{\alpha} \in S(X)$, $\omega_0 \leq \alpha < \text{dens } X$, such that for every finite collection of scalars (a_{α}) ,

(2)
$$q\left(\sum a_{\alpha}x_{\alpha}\right) = \sum a_{\alpha}^{2}q(x_{\alpha}).$$

Proof. We construct the x_{α} by transfinite induction. Take an arbitrary $x_{\omega_0} \in S(X)$.

If the elements $x_{\alpha} : \alpha < \beta$ are already constructed, choose a dense subset Y_{β} of the sphere $S[x_{\alpha} : \alpha < \beta]$ with card $Y_{\beta} = \overline{\beta}$. Let B(x, y) be the symmetric bilinear form corresponding to the functional q. Take $x_{\beta} \in S(X)$ so that

(3)
$$B(x_{\alpha}, x_{\beta}) = 0$$
 for all $\alpha < \beta$

and

(4)
$$f_y(x_\beta) = 0$$
 for all $y \in Y_\beta$,

where f_y is a functional attaining its norm at y.

Since X has property (1), this process can be continued up to dens X. Condition (2) follows from (3). Condition (4) guarantees that (x_{α}) is a transfinite basic sequence.

Note that results similar to Proposition 1 for usual sequences but for functionals of arbitrary degree were obtained in [11], [9]. Unfortunately, the methods of [11], [9] do not work for transfinite sequences. It is easy to modify the proof of Proposition 1 for usual sequences.

PROPOSITION 2. The kernel ker(q) of a continuous homogeneous quadratic functional q defined on an infinite-dimensional complex Banach space X with property (1) contains a subspace $X_0 \subset \text{ker}(q)$ with dens $X_0 = \text{dens } X$.

Proof. Let (x_{α}) be the transfinite sequence from Proposition 1. We can find a subset $I \subset \{\alpha : \alpha < \text{dens } X\}$ of size |I| = dens X such that either $q(x_{\alpha}) = 0$ for all $\alpha \in I$ or else $q(x_{\alpha}) \neq 0$ for all $\alpha \in I$.

In the first case put $X_0 = [x_\alpha : \alpha \in I]$. By (2), $X_0 \subset \ker(q)$. Since (x_α) is a transfinite basic sequence, dens $X_0 = \operatorname{dens} X$.

In the second case put $z_{\alpha} = x_{\alpha}/q(x_{\alpha})$ for $\alpha \in I$. Let X_0 be the closed linear span of the elements

$$z_{\omega_0} + i z_{\omega_0+1}, \quad z_{\omega_0+2} + i z_{\omega_0+3}, \ \dots, \ z_{2\beta} + i z_{2\beta+1}, \ \dots$$

(we suppose the limit ordinals to be even). Condition (2) guarantees that $X_0 \subset \ker(q)$. Since (z_β) is a transfinite basic sequence, dens $X_0 = \operatorname{dens} X$.

The proofs of Propositions 1 and 2 imply

PROPOSITION 2'. If X^* is weak^{*} non-separable, then the kernel of any complex homogeneous quadratic continuous functional on X contains a non-separable subspace.

REMARK 1. We cannot improve the condition dens $X_0 = \text{dens } X$ in Proposition 2 to, for example, separability of X/X_0 . As a counterexample, take $X = l_2(\omega_1)$ and $q(x) = \sum a_{\alpha}^2$, where $x = (a_{\alpha} : \alpha < \omega_1)$. Every separablecodimensional subspace $X_0 \subset X$ contains uncountably many unit norm elements, so cannot be contained in ker(q).

Moreover, we shall show that the normed space $l_1^{f}(\omega_1)$ of complex functions on $(0, \omega_1)$ with finite support and endowed with the l_1 -norm has the following surprising property.

PROPOSITION 3. Under the Continuum Hypothesis there is a continuous quadratic functional q on $l_1^{f}(\omega_1)$ whose kernel contains separable linear subspaces only.

LEMMA 1. Suppose X is a complex normed space such that the kernel of each continuous quadratic functional q on X contains a non-separable linear subspace. Then for each bounded linear operator $T: X \to l_2$ there is a non-separable subspace $Y \subset X$ such that the closure H of T(Y) in l_2 has infinite codimension in l_2 .

Proof. If T has finite-dimensional range, then it has non-separable kernel Y. Consequently, Y is a non-separable subspace of X such that H has infinite codimension in l_2 . So we can assume that T(X) is infinite-dimensional. In this case we can assume that T(X) is dense in l_2 . Consider the standard quadratic functional $q(x) = \sum a_n^2$ on l_2 , where $x = (a_1, a_2, \ldots)$. It follows from our hypothesis that X contains a non-separable subspace $Y \subset X$ lying in the kernel of the functional $q \circ T$. Then T(Y) lies in the kernel of q. We have to show that the closure H of T(Y) has infinite codimension in l_2 . For this consider the real subspace $\Re l_2 = \{x \in l_2 : x = \bar{x}\}$ of l_2 and observe that $H \cap \Re l_2 = \{0\}$. This implies that H has infinite codimension in l_2 as a real subspace, and consequently, H is infinite-codimensional in l_2 .

Proof of Proposition 3. Assume the Continuum Hypothesis. The family of closed subspaces of infinite codimension in the separable space l_2 has the size of the continuum and thus can be enumerated as $\{F_{\alpha} : \alpha < \omega_1\}$. By transfinite induction we can choose a bounded transfinite sequence $\{x_{\alpha} : \alpha < \omega_1\}$ in l_2 such that $x_{\alpha} \notin \bigcup_{\beta \leq \alpha} \ln(F_{\beta} \cup \{x_{\gamma} : \gamma < \alpha\})$ for each ordinal $\alpha < \omega_1$ (the existence of x_{α} follows from the Baire theorem since x_{α} should avoid the countable union of linear spaces of infinite codimension in l_2). Evidently, we can choose this sequence so that $[x_{\alpha} : \alpha < \omega_1] = l_2$. Now define a bounded operator $T : l_1^{\mathrm{f}}(\omega_1) \to l_2$ by letting $T(f) = \sum_{\alpha < \omega_1} f(\alpha) x_{\alpha}$ for $f \in l_1^{\mathrm{f}}(\omega_1)$. Given a countable ordinal α consider the characteristic function $e_{\alpha} : \omega_1 \to \{0, 1\}$ of $\{\alpha\}$ defined by $e_{\alpha}^{-1}(1) = \{\alpha\}$. This function e_{α} is an element of $l_1^{\mathrm{f}}(\omega_1)$. It follows from the choice of the sequence (x_{α}) that $T^{-1}(F_{\alpha}) \subset \ln\{e_{\beta} : \beta \leq \alpha\}$ is separable in $l_1^{\mathrm{f}}(\omega_1)$.

Assuming that the closure of T(Y) has infinite codimension in l_2 for some non-separable subspace $Y \subset l_1^{\mathrm{f}}(\omega_1)$, find an ordinal $\alpha < \omega_1$ with $T(Y) \subset F_{\alpha}$ and observe that $Y \subset T^{-1}(F_{\alpha})$ is separable, which is a contradiction.

We do not know if Proposition 3 is true without the Continuum Hypothesis. Also we do not know if the normed space $l_1^f(\omega_1)$ in this proposition can be replaced by the Banach space $l_1(\omega_1)$.

However the following fact is true.

PROPOSITION 4. Suppose that X is a Banach space all of whose subspaces of infinite codimension are separable. Then there is a continuous quadratic polynomial q on X whose kernel $q^{-1}(0)$ contains no non-separable linear subspace.

Proof. Assuming the converse and applying Lemma 1 we conclude that for each bounded operator $T: X \to l_2$ there is a non-separable subspace $Y \subset X$ whose image T(Y) has infinite-codimensional closure in l_2 .

Observe that the space X admits a countable family of linear functionals separating points of X. Indeed, take any countable linearly independent subset F in the unit sphere S^* of the dual space X^* . Then the subspace $F^{\perp} = \{x \in X : \forall f \in F \ f(x) = 0\}$ of X has infinite codimension and thus is separable. Take any countable subset $E \subset S^*$ separating points of F^{\perp} . Then the countable set $F \cup E$ separates points of X. Using this countable set of functionals it is easy to construct an injective continuous operator $T: X \to l_2$ (for example, put $T(x) = (2^{-n}f_n(x))_{n \in \omega}$, where $\{f_n : n \in \omega\}$ is any enumeration of $F \cup E$).

It follows from the above discussion that X contains a non-separable subspace Y such that the closure of T(Y) has infinite codimension in l_2 . Then Y has infinite codimension in X and hence must be separable. This is a contradiction.

In light of the previous proposition it should be mentioned that the existence of a non-separable Banach space without non-separable infinitecodimensional subspaces is a well-known open problem.

Now we consider the zeros of functionals generated by sequences of linear functionals.

PROPOSITION 5. Let X be a (real or complex) Banach space with property (1) and $\varphi(t_1, t_2, ...)$ be an arbitrary function of countably many variables such that $\varphi(0, 0, ...) = 0$. Then for any sequence $f_1, f_2, ...$ from X^* the kernel of the functional $\varphi(f_1(x), f_2(x), ...)$ contains a separable-codimensional subspace.

Proof. Let X_0 be the subspace of common zeros of all f_n . It is clear that $X_0 \subset \ker \varphi(f_1(x), f_2(x), \ldots)$. Since X has property (1), X/X_0 is separable.

Given a (real or complex) Banach space X denote by $\mathcal{P}_A(X)$ the space of approximable functionals equal to the completion of finite sums of finite products of linear functionals in the uniform topology [8, p. 85].

COROLLARY. If X is a (real or complex) Banach space X with property (1), then the kernel of each functional from $\mathcal{P}_A(X)$ contains a separable-codimensional subspace.

3. Real case. In this section we consider real Banach spaces.

Following [13] we say that a Banach space X has the *controlled separable* projection property (CSPP) if for any countable subsets $E \subset X$ and $F \subset X^*$ there exists a separable-valued projection P in X with ||P|| = 1, $PX \supset E$ and $P^*X^* \supset F$.

However, the condition ||P|| = 1 is not essential (see [10]). Every WCG space has CSPP. This property is stronger than separable complementation property; as an example one can take $l_1(\omega_1)$. This space, as any space with unconditional basis, has the separable complementation property, but because $l_1(\omega_1)^*$ is weak^{*} separable, $l_1(\omega_1)$ does not have CSPP. We do not know about the connection between CSPP and property (1).

Let us make two simple observations.

LEMMA 2. Let $X = Y \oplus Z$, where Y and Z admit positive quadratic continuous functionals. Then X admits a positive quadratic continuous functional as well. In particular, if Y is separable and Z admits a positive quadratic continuous functional, then so does X.

LEMMA 3. If a real-valued continuous function f on a two-dimensional normed space takes values of distinct signs, then f vanishes at some nonzero element.

PROPOSITION 6. Let X be a real Banach space with CSPP. If X admits no positive quadratic continuous functional, then every quadratic continuous functional q on X vanishes on some non-separable subspace.

Proof. Let B(x, y) be the symmetric bilinear form corresponding to q. Let us construct, by induction, a transfinite basic sequence of elements x_{α} : $1 \leq \alpha < \omega_1$ in X such that for all $\alpha \geq \beta$,

(5)
$$B(x_{\alpha}, x_{\beta}) = 0.$$

By Lemma 3, there exists $x_1 \neq 0$ for which $B(x_1, x_1) = 0$.

Suppose the elements $x_{\beta} : 1 \leq \beta < \alpha$, $\alpha < \omega_1$, are already constructed. Putting $E = \{x_{\beta} : \beta < \alpha\}$ and $F = \{f_{\beta} : \beta < \alpha\}$, where $f_{\beta}(x) = B(x_{\beta}, x)$, we find a separable-valued projection P in X with ||P|| = 1, $PX \supset E$ and $P^*X^* \supset F$. Since X admits no positive quadratic continuous functional, by Lemmas 2 and 3, there is an element $x_{\alpha} \in \ker P$, $x_{\alpha} \neq 0$, for which $B(x_{\beta}, x_{\alpha}) = 0$ for $\beta < \alpha$. Obviously, condition (5) for x_{β} is satisfied. By construction, the x_{α} form a transfinite basic sequence, hence $X_0 = [x_{\alpha} : \alpha < \omega_1]$ is non-separable. Condition (5) guarantees that $X_0 \subset \ker(q)$.

REMARK 3. One cannot improve ω_1 to a larger cardinal in Proposition 6. As a counterexample we can take $l_3(\omega_1) \oplus l_2(\omega_2)$. Proposition 6 is connected with the following three-space problem: Assume that for a subspace Y of a Banach space X there exist continuous linear injective operators from Y and X/Y into a Hilbert space. Does there exist a continuous linear injective operator from X into a Hilbert space? In particular, suppose X/Y has weak* separable dual and there is a continuous linear injective operator from Y into a Hilbert space. Does there exist a continuous linear injective operator from X into a Hilbert space? In particular, suppose X/Y has weak*

REFERENCES

- R. M. Aron, An introduction to polynomials on Banach spaces, Extracta Math. 17 (2002), 303–329.
- [2] R. M. Aron, C. Boyd, R. A. Ryan and I. Zalduendo, Zeros of polynomials on Banach spaces: the real story, Positivity 7 (2003), 285–295.
- [3] R. Aron, D. Garcia and M. Maestre, *Linearity in non-linear problems*, Rev. Acad. Ciencias Madrid Ser. A. 95 (2001), 1–5.
- [4] R. M. Aron, R. Gonzalo and A. Zagorodnyuk, Zeros of real polynomials, Linear Multilinear Algebra 48 (2000), 107–115.
- [5] R. M. Aron and M. P. Rueda, A problem concerning zero-subspaces of homogeneous polynomials, Linear Topol. Spaces Complex Anal. 3 (1997), 20–23.
- [6] N. Aronszajn, Quadratic forms on vector spaces, in: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Academic Press, Oxford, 1961, 29–87.
- [7] J. Bognar, Indefinite Inner Product Spaces, Springer, Berlin, 1974.
- [8] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999.

- [9] M. Fernández-Unzueta, On a normal form for non-weakly sequentially continuous polynomials on Banach spaces, to appear.
- [10] A. M. Plichko and D. Yost, Complemented and uncomplemented subspaces of Banach spaces, Extracta Math. 15 (2000), 335–371.
- [11] A. Plichko and A. Zagorodnyuk, On automatic continuity and three problems of "The Scottish Book" concerning the boundedness of polynomial functionals, J. Math. Anal. Appl. 220 (1998), 477–494.
- K. Weierstrass, Zur Theorie der bilinearen und quadratischen Formen, Monatsber. Acad. Wiss. Berlin 1868, 310–338.
- [13] M. Wójtowicz, Generalizations of the c₀-l₁-l_∞ theorem of Bessaga and Pełczyński, Bull. Polish Acad. Sci. Math. 50 (2002), 373–382.
- [14] A. Zagorodnyuk, Existence of linear manifolds in kernels of complex polynomial functionals on infinite-dimensional spaces, Mat. Studii 8 (1997), 115–118 (in Ukrainian).

T. Banakh

Department of Mathematics Department of Mechanics and Mathematics Ivan Franko Lviv National University Kirovograd State Pedagogical University Lviv 79000, Ukraine 1. Shevchenko St. E-mail: tbanakh@franko.lviv.ua Kirovograd 25006, Ukraine and and Institute of Mathematics Institute of Mathematics Świetokrzyska Academy Cracow University of Technology Kielce, Poland Warszawska 24 31-155 Kraków, Poland A. Zagorodnyuk E-mail: aplichko@usk.pk.edu.pl Institute for Applied Problems of

Institute for Applied Problems of Mechanics and Mathematics of NASU 3 b, Naukova St. Lviv, 79601 Ukraine E-mail: andriy@mebm.litech.net and University of Saskatchewan Saskatoon SK S7N 5E6 Canada

> Received 10 December 2003; revised 20 April 2004

(4403)

A. Plichko