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Abstract. We construct non-separable subspaces in the kernel of every quadratic
functional on some classes of complex and real Banach spaces.

1. Introduction. Investigation of quadratic functionals is an old sto-
ry [12], [6], [7]. According to [11], for any polynomial functional p with
p(0) = 0 defined on an infinite-dimensional complex linear space X there
is an infinite-dimensional subspace X0 in the kernel ker(p) = p−1(0) of p.
Quantitative finite-dimensional versions of this fact (estimations of dimX0
depending on dimX and the degree of the polynomial) are contained in [1],
[4], [5], [14].

The paper [2] started the consideration of subspaces in kernels of po-
lynomials on non-separable spaces. In particular, the authors of [2] proved
that if a real Banach space X admits no positive quadratic continuous func-
tional, then every quadratic continuous functional on X vanishes on some
infinite-dimensional subspace. They pose the problem of whether in this sta-
tement one can replace “infinite-dimensional” by “non-separable” (see also
[1, Question 4.8]). Our note continues the investigations of [2]. In particular,
we shall construct a non-separable subspace in the kernel of every quadratic
functional on a complex Banach space having weak∗ non-separable dual and
on a real Banach space which has controlled separable projection property
and admits no positive quadratic continuous functional. On the other hand,
we construct a CH-example of a quadratic functional on the normed space
lf1(ω1) whose kernel contains no non-separable linear subspace.

We use the standard notation; in particular densX stands for the density
of a Banach space X, F⊥ = {x ∈ X : ∀f ∈ F f(x) = 0} is the annihilator
of a subspace F ⊂ X∗ in X, S(X) is the unit sphere of X, and [M ] denotes
the closed linear span of a subset M ⊂ X. We shall identify cardinals with
initial ordinals and will denote by α the cardinality of an ordinal α. Elements
xα ∈ X form a transfinite basic sequence if there is a constant c > 0 such

2000 Mathematics Subject Classification: Primary 46B28; Secondary 46B04.

[141]



142 T. BANAKH ET AL.

that ‖∑m
i=1 aixαi‖ ≤ c‖∑n

i=1 aixαi‖ for any α1 < · · · < αm < · · · < αn
and any numbers (ai). A homogeneous quadratic functional is a functional
q(x) = B(x, x), where B(x, y) is a symmetric bilinear form defined on a
linear space X.

2. Complex case. In this section we consider Banach spaces with the
following property:

(1) densX/F⊥ ≤ cardF for any infinite subset F ⊂ X∗.
In particular, all WCG spaces have this property (1) (see e.g. [10]).

Proposition 1. Let q be a continuous homogeneous quadratic func-
tional defined on a non-separable (real or complex ) Banach space X with
property (1). Then there exists a transfinite basic sequence xα ∈ S(X),
ω0 ≤ α < densX, such that for every finite collection of scalars (aα),

(2) q
(∑

aαxα
)

=
∑

a2
αq(xα).

Proof. We construct the xα by transfinite induction. Take an arbitrary
xω0 ∈ S(X).

If the elements xα : α < β are already constructed, choose a dense
subset Yβ of the sphere S[xα : α < β] with cardYβ = β. Let B(x, y) be the
symmetric bilinear form corresponding to the functional q. Take xβ ∈ S(X)
so that

(3) B(xα, xβ) = 0 for all α < β

and

(4) fy(xβ) = 0 for all y ∈ Yβ,
where fy is a functional attaining its norm at y.

Since X has property (1), this process can be continued up to densX.
Condition (2) follows from (3). Condition (4) guarantees that (xα) is a trans-
finite basic sequence.

Note that results similar to Proposition 1 for usual sequences but for
functionals of arbitrary degree were obtained in [11], [9]. Unfortunately, the
methods of [11], [9] do not work for transfinite sequences. It is easy to modify
the proof of Proposition 1 for usual sequences.

Proposition 2. The kernel ker(q) of a continuous homogeneous quad-
ratic functional q defined on an infinite-dimensional complex Banach space
X with property (1) contains a subspace X0 ⊂ ker(q) with densX0 = densX.

Proof. Let (xα) be the transfinite sequence from Proposition 1. We can
find a subset I ⊂ {α : α < densX} of size |I| = densX such that either
q(xα) = 0 for all α ∈ I or else q(xα) 6= 0 for all α ∈ I.
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In the first case put X0 = [xα : α ∈ I]. By (2), X0 ⊂ ker(q). Since (xα)
is a transfinite basic sequence, densX0 = densX.

In the second case put zα = xα/q(xα) for α ∈ I. Let X0 be the closed
linear span of the elements

zω0 + izω0+1, zω0+2 + izω0+3, . . . , z2β + iz2β+1, . . .

(we suppose the limit ordinals to be even). Condition (2) guarantees that
X0 ⊂ ker(q). Since (zβ) is a transfinite basic sequence, densX0 = densX.

The proofs of Propositions 1 and 2 imply

Proposition 2′. If X∗ is weak∗ non-separable, then the kernel of any
complex homogeneous quadratic continuous functional on X contains a non-
separable subspace.

Remark 1. We cannot improve the condition densX0 = densX in Pro-
position 2 to, for example, separability of X/X0. As a counterexample, take
X = l2(ω1) and q(x) =

∑
a2
α, where x = (aα : α < ω1). Every separable-

codimensional subspace X0 ⊂ X contains uncountably many unit norm
elements, so cannot be contained in ker(q).

Moreover, we shall show that the normed space lf1(ω1) of complex func-
tions on (0, ω1) with finite support and endowed with the l1-norm has the
following surprising property.

Proposition 3. Under the Continuum Hypothesis there is a continu-
ous quadratic functional q on lf1(ω1) whose kernel contains separable linear
subspaces only.

Lemma 1. Suppose X is a complex normed space such that the kernel
of each continuous quadratic functional q on X contains a non-separable
linear subspace. Then for each bounded linear operator T : X → l2 there is
a non-separable subspace Y ⊂ X such that the closure H of T (Y ) in l2 has
infinite codimension in l2.

Proof. If T has finite-dimensional range, then it has non-separable kernel
Y . Consequently, Y is a non-separable subspace ofX such thatH has infinite
codimension in l2. So we can assume that T (X) is infinite-dimensional. In
this case we can assume that T (X) is dense in l2. Consider the standard
quadratic functional q(x) =

∑
a2
n on l2, where x = (a1, a2, . . . ). It follows

from our hypothesis that X contains a non-separable subspace Y ⊂ X lying
in the kernel of the functional q ◦ T . Then T (Y ) lies in the kernel of q. We
have to show that the closure H of T (Y ) has infinite codimension in l2. For
this consider the real subspace <l2 = {x ∈ l2 : x = x̄} of l2 and observe that
H ∩ <l2 = {0}. This implies that H has infinite codimension in l2 as a real
subspace, and consequently, H is infinite-codimensional in l2.
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Proof of Proposition 3. Assume the Continuum Hypothesis. The family
of closed subspaces of infinite codimension in the separable space l2 has the
size of the continuum and thus can be enumerated as {Fα : α < ω1}. By
transfinite induction we can choose a bounded transfinite sequence {xα :
α < ω1} in l2 such that xα /∈ ⋃β≤α lin(Fβ ∪ {xγ : γ < α}) for each ordinal
α < ω1 (the existence of xα follows from the Baire theorem since xα should
avoid the countable union of linear spaces of infinite codimension in l2).
Evidently, we can choose this sequence so that [xα : α < ω1] = l2. Now define
a bounded operator T : lf1(ω1) → l2 by letting T (f) =

∑
α<ω1

f(α)xα for
f ∈ lf1(ω1). Given a countable ordinal α consider the characteristic function
eα : ω1 → {0, 1} of {α} defined by e−1

α (1) = {α}. This function eα is
an element of lf1(ω1). It follows from the choice of the sequence (xα) that
T−1(Fα) ⊂ lin{eβ : β ≤ α} is separable in lf1(ω1).

Assuming that the closure of T (Y ) has infinite codimension in l2 for some
non-separable subspace Y ⊂ lf1(ω1), find an ordinal α < ω1 with T (Y ) ⊂ Fα
and observe that Y ⊂ T−1(Fα) is separable, which is a contradiction.

We do not know if Proposition 3 is true without the Continuum Hypo-
thesis. Also we do not know if the normed space lf1(ω1) in this proposition
can be replaced by the Banach space l1(ω1).

However the following fact is true.

Proposition 4. Suppose that X is a Banach space all of whose sub-
spaces of infinite codimension are separable. Then there is a continuous
quadratic polynomial q on X whose kernel q−1(0) contains no non-separable
linear subspace.

Proof. Assuming the converse and applying Lemma 1 we conclude that
for each bounded operator T : X → l2 there is a non-separable subspace
Y ⊂ X whose image T (Y ) has infinite-codimensional closure in l2.

Observe that the space X admits a countable family of linear functionals
separating points of X. Indeed, take any countable linearly independent
subset F in the unit sphere S∗ of the dual space X∗. Then the subspace
F⊥ = {x ∈ X : ∀f ∈ F f(x) = 0} of X has infinite codimension and thus
is separable. Take any countable subset E ⊂ S∗ separating points of F⊥.
Then the countable set F ∪ E separates points of X. Using this countable
set of functionals it is easy to construct an injective continuous operator
T : X → l2 (for example, put T (x) = (2−nfn(x))n∈ω, where {fn : n ∈ ω} is
any enumeration of F ∪ E).

It follows from the above discussion that X contains a non-separable
subspace Y such that the closure of T (Y ) has infinite codimension in l2.
Then Y has infinite codimension in X and hence must be separable. This is
a contradiction.
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In light of the previous proposition it should be mentioned that the
existence of a non-separable Banach space without non-separable infinite-
codimensional subspaces is a well-known open problem.

Now we consider the zeros of functionals generated by sequences of linear
functionals.

Proposition 5. Let X be a (real or complex ) Banach space with proper-
ty (1) and ϕ(t1, t2, . . .) be an arbitrary function of countably many variables
such that ϕ(0, 0, . . .) = 0. Then for any sequence f1, f2, . . . from X∗ the ker-
nel of the functional ϕ(f1(x), f2(x), . . .) contains a separable-codimensional
subspace.

Proof. Let X0 be the subspace of common zeros of all fn. It is clear that
X0 ⊂ kerϕ(f1(x), f2(x), . . . ). SinceX has property (1),X/X0 is separable.

Given a (real or complex) Banach space X denote by PA(X) the space
of approximable functionals equal to the completion of finite sums of finite
products of linear functionals in the uniform topology [8, p. 85].

Corollary. If X is a (real or complex ) Banach space X with property
(1), then the kernel of each functional from PA(X) contains a separable-
codimensional subspace.

3. Real case. In this section we consider real Banach spaces.
Following [13] we say that a Banach space X has the controlled separable

projection property (CSPP) if for any countable subsets E ⊂ X and F ⊂ X∗
there exists a separable-valued projection P in X with ‖P‖ = 1, PX ⊃ E
and P ∗X∗ ⊃ F .

However, the condition ‖P‖ = 1 is not essential (see [10]). Every WCG
space has CSPP. This property is stronger than separable complementation
property; as an example one can take l1(ω1). This space, as any space with
unconditional basis, has the separable complementation property, but be-
cause l1(ω1)∗ is weak∗ separable, l1(ω1) does not have CSPP. We do not
know about the connection between CSPP and property (1).

Let us make two simple observations.

Lemma 2. Let X = Y ⊕ Z, where Y and Z admit positive quadra-
tic continuous functionals. Then X admits a positive quadratic continuous
functional as well. In particular , if Y is separable and Z admits a positive
quadratic continuous functional , then so does X.

Lemma 3. If a real-valued continuous function f on a two-dimensional
normed space takes values of distinct signs, then f vanishes at some nonzero
element.
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Proposition 6. Let X be a real Banach space with CSPP. If X admits
no positive quadratic continuous functional , then every quadratic continuous
functional q on X vanishes on some non-separable subspace.

Proof. Let B(x, y) be the symmetric bilinear form corresponding to q.
Let us construct, by induction, a transfinite basic sequence of elements xα :
1 ≤ α < ω1 in X such that for all α ≥ β,

(5) B(xα, xβ) = 0.

By Lemma 3, there exists x1 6= 0 for which B(x1, x1) = 0.
Suppose the elements xβ : 1 ≤ β < α, α < ω1, are already constructed.

Putting E = {xβ : β < α} and F = {fβ : β < α}, where fβ(x) = B(xβ, x),
we find a separable-valued projection P in X with ‖P‖ = 1, PX ⊃ E
and P ∗X∗ ⊃ F . Since X admits no positive quadratic continuous functio-
nal, by Lemmas 2 and 3, there is an element xα ∈ kerP, xα 6= 0, for which
B(xβ, xα) = 0 for β < α. Obviously, condition (5) for xβ is satisfied. By con-
struction, the xα form a transfinite basic sequence, hence X0 = [xα : α < ω1]
is non-separable. Condition (5) guarantees that X0 ⊂ ker(q).

Remark 3. One cannot improve ω1 to a larger cardinal in Proposition 6.
As a counterexample we can take l3(ω1)⊕ l2(ω2). Proposition 6 is connected
with the following three-space problem: Assume that for a subspace Y of
a Banach space X there exist continuous linear injective operators from Y
and X/Y into a Hilbert space. Does there exist a continuous linear injective
operator from X into a Hilbert space? In particular, suppose X/Y has weak∗

separable dual and there is a continuous linear injective operator from Y
into a Hilbert space. Does there exist a continuous linear injective operator
from X into a Hilbert space?
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