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ON CONVOLUTION SQUARES OF SINGULAR MEASURES

BY

SANJIV K. GUPTA (Al Khodh) and KATHRYN E. HARE (Waterloo, ON)

Abstract. We prove that for every compact, connected group G there is a singular
measure µ such that the Fourier series of µ ∗ µ converges uniformly on G. Our results
extend the earlier results of Saeki and Dooley–Gupta.

1. Introduction. A classical result of Wiener and Wintner [12] (see
also [11]) asserts that there exists a singular measure µ on the circle group
T such that µ̂(n) = o(|n|−1/2+ε) as n→∞ for every ε > 0. Such a measure
µ has the following property (P ): µ2 = µ ∗ µ is absolutely continuous and
its Radon–Nikodym derivative with respect to Lebesgue measure belongs
to Lp(T ) for all real numbers p ≥ 1. Measures with property (P ) have
been constructed by Hewitt and Zuckerman [6] on any nondiscrete, locally
compact, abelian group. Property (P ) has also been explored in [1], [2], [6],
[7], [9], [10].

Saeki [10] showed that there exists a singular measure µ on the circle
group such that µ ∗ µ is absolutely continuous and its Radon–Nikodym
derivative with respect to Lebesgue measure has a uniformly convergent
Fourier series. Such a measure µ clearly has property (P ).

In [2], a central, singular, continuous measure µ having property (P ) was
constructed on any infinite, compact, connected group or infinite, compact
Lie group. The authors mentioned that they were unable to construct a
singular measure µ such that µ∗µ has a uniformly convergent Fourier series.

In this article, we construct a singular measure µ on any infinite, com-
pact, connected group or infinite, compact Lie group, with µ ∗ µ having a
uniformly convergent Fourier series. The proof is similar to Saeki’s [10] and
we will only provide details of the steps which are different.

2. Main result. LetG be a compact group and Ĝ its dual. Letm denote
the Haar measure on G, normalized so that m(G) = 1. Given f ∈ L1(G),
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the Fourier series of f is:

f ∼
∑

σ∈Ĝ

dσ Tr(f̂(σ)Uσ(x)).

For unexplained notation see [4], [5].
Our main results can be stated as follows:

Theorem 2.1. Let G be an infinite, compact Lie group and let K be a
measurable subset of G having positive measure. Then there exists a singular
probability measure µ on G satisfying :

(i) supp(µ) ⊂ K and m(supp(µ)) = 0;
(ii) the Fourier series of µ ∗ µ ≡ µ2 converges uniformly.

Corollary 2.2. Let G be an infinite, compact , connected group. Then
there is a singular probability measure µ on G such that the Fourier series
of µ ∗ µ converges uniformly.

The corollary will be seen to follow from the theorem by an application
of the structure theorem for compact, connected groups.

In order to prove the theorem we need some notation and lemmas: For
f ∈ C(G), we consider the norms given by

‖f‖A =
∑

σ∈Ĝ

dσ‖f̂(σ)‖1,

‖f‖u = sup
{∥∥∥
∑

σ∈F
dσ Tr(f̂(σ)Uσ(x))

∥∥∥
∞

: F is a finite subset of Ĝ
}
.

Recall that the set of all f ∈ C(G) with ‖f‖A <∞ (respectively, ‖f‖u <∞)
forms a Banach space. For f ∈ L1(G), let f2 = f ∗ f and let supp(f) denote
the closed support of f .

In the lemmas which follow, G will be a compact Lie group and g will
denote its Lie algebra. Assume the dimension of g is n and identify g ' Rn
as a vector space. We will call A ⊂ g an n-cell if under this identification

A = {(x1, . . . , xn) : a ≤ xi ≤ b, i = 1, . . . , n}
for some real numbers a, b. We denote the exponential of A by exp(A).

We begin with a technical lemma which is needed to prove an analogue
of Lemma 3 of [10] for a compact Lie group G.

Lemma 2.3. Suppose A ⊂ g is an n-cell and that the exponential map
is injective on A + A. Let f ∈ L2(G) be such that supp(f) ⊂ exp(A) and
assume ε > 0 is given. Then there exists an integer q and pairwise disjoint
sets Bj ⊂ G for j = 1, . . . , q, such that supp(f) ⊂ ⋃q

j=1Bj , BiBi∩BjBj = ∅
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if i 6= j, and �
Bj

|f |2 dx < ε, i = 1, . . . , q.

Proof. Choose δ1 such that � B |f |2 dx < ε whenever m(B) < δ1 and
choose δ2 such that if A′ ⊂ A and m(exp(A′)) < δ2, then m(A′) < δ1 (see
[3]). Assume A = {(x1, . . . , xn) : a ≤ xi ≤ b} and suppose p ∈ N is given.
Set τ = (b− a)/p. For j1, . . . , jn ∈ {1, . . . , p}, define Aj1,...,jn as the product
of intervals

[a+ (j1 − 1)τ, a+ j1τ)× · · · × [a+ (jn − 1)τ, a+ jnτ).

Choose p such that m(Aj1,...,jn) < δ2 for all j1, . . . , jn.
The sets Aj1,...,jn form a disjoint decomposition of A and if (j1, . . . , jn) 6=

(k1, . . . , kn), then

(Aj1,...,jn +Aj1,...,jn) ∩ (Ak1,...,kn + Ak1,...,kn) = ∅.
Set Bj1,...,jn = exp(Aj1,...,jn). The choice of δ2 ensures that m(Bj1,...,jn) < δ1,
hence for all j1, . . . , jn ∈ {1, . . . , p},�

Bj1,...,jn

|f |2 dx < ε.

By [3],
Bj1,...,jnBj1,...,jn ⊂ exp(Aj1,...,jn +Aj1,...,jn),

and as the exponential map is injective on A+A, the sets Bj1,...,jn have the
required properties.

Next we will state three lemmas which are analogues of Lemmas 1–3
of Saeki [10]. We will not provide any details of the proofs of the first two
lemmas as these are similar to Saeki’s proofs. The proof of the third lemma
is also similar to Saeki’s, but there are some technical differences which we
think are worth presenting.

Lemma 2.4. Given g ∈ L1
+(G) and ε > 0, there exists a simple function

h ∈ L1
+(G) such that

(i) ‖h‖1 = ‖g‖1 and ‖ĝ − ĥ‖∞ < ε;
(ii) supp(h) ⊂ {g 6= 0} and m(supp(h)) ≤ 2−1m({g 6= 0});

(iii) h ≤ 2g on G.

Lemma 2.5. Let f1, . . . , fp, g ∈ L2
+(G) and suppose δ > 0 is given. There

exists a simple function h ∈ L2
+(G) satisfying ‖(g − h) ∗ fj‖A < δ and

‖fj ∗ (g − h)‖A < δ for all j1, . . . , jn ∈ {1, . . . , p}, as well as the three
properties of the lemma above.
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Lemma 2.6. Let f ∈ L2
+(G) with ‖f‖1 = 1 and assume that supp(f) ⊂

exp(A) where A is an n-cell and the exponential map is injective on A+A.
Let ε > 0 be given. There exists a simple function g ∈ L1

+(G) such that

(i) ‖g‖1 = 1 and ‖f̂ − ĝ‖∞ < ε;
(ii) supp(g) ⊂ {f 6= 0} and m(supp(g)) ≤ 2−1m({f 6= 0});

(iii) ‖f ∗ f − g ∗ g‖u < 16ε.

Proof. We begin by applying Lemma 2.3 to obtain pairwise disjoint
sets Bj , j = 1, . . . , q, such that supp(f) ⊂ ⋃q

j=1Bj , BiBi ∩ BjBj = ∅
and � Bj |f |2 dx < ε. Let gj = f |Bj .

As the dual of a compact Lie group is countable we may enumerate Ĝ
as {σn}∞n=1. Choose N0 such that for all j = 1, . . . , q,

∑

n≥N0

dσnTr(|ĝj(σn)|2) < ε/q.(2.1)

Inductively apply Lemma 2.5 to obtain simple functions h1, . . . , hq and an
increasing sequence of positive integers N1, . . . , Nq such that for each j =
1, . . . , q the following properties are satisfied:

(a) ‖hj‖1 = ‖gj‖1 and ‖ĝj−ĥj‖∞ < ε/(qNj−1 max{d2
σk

: 1 ≤ k ≤ Nj−1});
(b) supp(hj) ⊂ {gj 6= 0} and m(supp(hj)) ≤ 2−1m({gj 6= 0});
(c) hj ≤ 2gj ;
(d) for k = 1, . . . , j − 1,

‖(gj − hj) ∗ hk‖A < ε/4q2, ‖hk ∗ (gj − hj)‖A < ε/4q2,

and for k = j + 1, . . . , q,

‖(gj − hj) ∗ gk‖A < ε/4q2, ‖gk ∗ (gj − hj)‖A < ε/4q2;

(e)
∑

n≥Nj dσnTr(|ĥj(σn)|2) < ε/q.

For j = 0, . . . , q, set fj = (h1+· · ·+hj)+(gj+1+· · ·+gq). As f ⊂ ⋃q
j=1Bj ,

we have f0 = f = g1 + · · ·+ gq. Put g = fq =
∑q

i=1 hi. We will only give the
proof of (iii) as (i) and (ii) are easy to verify.

Certainly

f ∗ f − g ∗ g =
q∑

j=1

{fj−1 ∗ fj−1 − fj ∗ fj}

and

fj−1 ∗ fj−1 − fj ∗ fj = [(h1 + · · ·+ hj−1) + (gj + · · ·+ gq)]2

− [(h1 + · · ·+ hj) + (gj+1 + · · ·+ gq)]2
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= gj ∗ gj − hj ∗ hj + (h1 + · · ·+ hj−1) ∗ (gj − hj)
+ (gj − hj) ∗ (h1 + · · ·+ hj−1)

+ (gj+1 + · · ·+ gq) ∗ (gj − hj) + (gj − hj) ∗ (gj+1 + · · ·+ gq).

Set Rj = f2
j−1 − f2

j − (g2
j − h2

j ).
By (d),

‖Rj‖A ≤ 2ε(j − 1)/4q2 + 2ε(q − j)/4q2 ≤ ε/q,
and since the u-norm is majorized by the A-norm we have

‖f ∗ f − g ∗ g‖u =
∥∥∥

q∑

j=1

(fj−1 ∗ fj−1 − fj ∗ fj)
∥∥∥
u

≤
∥∥∥

q∑

j=1

(gj ∗ gj − hj ∗ hj)
∥∥∥
u

+
∥∥∥

q∑

j=1

Rj

∥∥∥
u

≤
∥∥∥

q∑

j=1

(gj ∗ gj − hj ∗ hj)
∥∥∥
u

+ ε.

If we set

MN =
∥∥∥

q∑

j=1

N∑

n=1

dσn Tr((ĝj(σn)2 − ĥj(σn)2)Uσn(x))
∥∥∥
∞
,

then ∥∥∥
q∑

j=1

(gj ∗ gj − hj ∗ hj)
∥∥∥
u

= sup
N
MN .

Thus it will suffice to show that MN ≤ 15ε for each integer N .
We first claim that

∥∥∥
k∑

j=1

(g2
j − h2

j )
∥∥∥
∞
≤ 5ε for k = 1, . . . , q.(2.2)

Indeed, as
supp(gj ∗ gj − hj ∗ hj) ⊂ BjBj

and BjBj ∩BiBi = ∅ if i 6= j, it follows that

sup
x

∣∣∣
k∑

j=1

(gj ∗ gj − hj ∗ hj)(x)
∣∣∣ = sup

x
{|(gj ∗ gj − hj ∗ hj)(x)| : j = 1, . . . , k}

≤ sup
1≤j≤q

(‖gj‖22 + ‖hj‖22)

≤ 5 sup{‖gj‖22 : j = 1, . . . , q} ≤ 5ε,

proving the claim.



14 S. K. GUPTA AND K. E. HARE

Fix N ∈ N and observe that

MN ≤
q∑

j=1

N∑

n=1

dσn Tr(|ĝj(σn)2 − ĥj(σn)2|).

If A and B are d × d matrices, then by writing A = B + (A − B) one can
see that

Tr(|A2 −B2|) ≤ d‖A2 −B2‖∞ ≤ d(2‖B‖∞‖A−B‖∞ + ‖A−B‖2∞).

Consequently, if N ≤ N0, and n ∈ {1, . . . , N}, then it follows from (a) that

Tr(|ĝj(σn)2 − ĥj(σn)2|) ≤ dσn3ε/(qNj−1 max{d2
σk

: k = 1, . . . , Nj−1}).
Therefore MN ≤ 3ε.

If Nk−1 < N ≤ Nk for some k = 1, . . . , q, then

MN ≤ P +Q+R

where

P = sup
x

∣∣∣
k−1∑

j=1

N∑

n=1

dσn Tr(ĝj(σn)2 − ĥj(σn)2)Uσn(x)
∣∣∣,

Q = sup
x

∣∣∣
N∑

n=1

dσn Tr(ĝk(σn)2 − ĥk(σn)2)Uσn(x)
∣∣∣,

R = sup
x

∣∣∣
N∑

j=k+1

N∑

n=1

dσn Tr(ĝj(σn)2 − ĥj(σn)2)Uσn(x)
∣∣∣.

Since hj ≤ 2gj and � g2
j = � Bj f2 ≤ ε,

Q ≤
N∑

n=1

dσn Tr(|ĝk(σn)2|+ |ĥk(σn)2|) ≤ ‖gk‖22 + ‖hk‖22 ≤ 5‖gk‖22 ≤ 5ε.

Similar arguments to those used for N ≤ N0 also show that R ≤ 3ε.
Finally, we remark that P is dominated by

∥∥∥
k−1∑

j=1

(g2
j − h2

j )(x)
∥∥∥
∞

+
∥∥∥
k−1∑

j=1

∞∑

n=N+1

dσn Tr(ĝj(σn)2 − ĥj(σn)2)Uσn(x)
∥∥∥
∞

≤ 5ε+
k−1∑

j=1

∞∑

n=N+1

dσn Tr(|ĝk(σn)2|+ |ĥk(σn)2|)

≤ 5ε+ (k − 1)(ε/q + ε/q) ≤ 7ε

by the choice of N0 (see (2.1), property (e) and (2.2)). Thus, MN ≤ 15ε for
Nk−1 < N ≤ Nk.
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If N > Nm then we simply apply the argument used to bound P but
taking k − 1 = q. This allows us to conclude that MN ≤ 7ε and completes
the proof.

The proof of Theorem 2.1 now follows from the lemmas in the same
manner as in [10].

The corollary for general compact, connected groups is based on the
following structure theorem which can be found in [8].

Structure theorem for compact, connected groups. Let T be
a compact , connected abelian group, {Gα}α∈I a family of compact , simply
connected simple Lie groups and K a finite subgroup of the centre of T ×∏
α∈I Gα. Then

G = T ×
∏

α∈I
Gα/K

is a compact , connected group and every compact , connected group is of this
form.

Proof of Corollary 2.2. Given a compact, connected group G, let

G = T ×
∏

α∈I
Gα/K,

where T, I, Gα andK are as in the structure theorem above. If I is an empty
set, then the result follows from [10]. Otherwise choose one of the factors
Gβ and set Hβ = P (K), where P is the projection of G = T ×∏α∈I Gα
onto Gβ. As Gβ/Hβ is an infinite, compact Lie group, there is a singular
measure µ on Gβ/Hβ with the Fourier series of µ ∗ µ converging uniformly.
Define µ∼ on Gβ by �

G

f dµ∼ =
�

Gβ/Hβ

F (x) dµ(x)

where F (x) = {∑ f(y) : y ∈ Gβ, y = x}.
If µ is concentrated on E, then µ∼ is concentrated on π−1

β (E) (where
πβ : Gβ → Gβ/Hβ is the quotient map) and hence is singular.

It is easily seen that µ̂∼(σ) = 0 if σ ∈ Ĝβ and σ|Hβ 6= 1. Thus the
uniform convergence of the Fourier series of µ ∗ µ is inherited by µ∼ ∗ µ∼.

Let π : T × ∏α∈I Gα → G denote the quotient map. Consider ν =
µ∼ ×m′, where m′ is the Haar measure on

∏
α6=β Gα × T , and let π(ν) be

the measure on G given by�
G

f dπ(ν) =
�

∏
Gα×T

f ◦ π dν.

The singularity of π(ν) comes from the singularity of ν and finiteness of K.
The Fourier series of π(ν)∗π(ν) takes on the same values as that of µ∼ ∗µ∼
and hence converges uniformly.
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Remark 2.1. Even on SU(2), we are unable to construct a central sin-
gular measure µ such that µ∗µ has a uniformly convergent Fourier series. A
related problem is to determine if there is a singular measure µ on T which
satisfies µ(−E) = µ(E) with µ ∗ µ having a uniformly convergent Fourier
series.
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