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Abstract. We investigate Hyers–Ulam stability of non-surjective ε-isometries of Ba-
nach spaces. We also pose and discuss an open problem.

1. Introduction. The classical theorem of Mazur and Ulam [MU] as-
serts that a surjective isometry between real normed spaces is affine. The
hypothesis that an isometry is surjective is essential in general, but can be
dropped if the target space is strictly convex, or it can be weakened as shown
in [FŠV]. Note also that the Mazur–Ulam theorem is not valid for complex
normed spaces (just consider complex conjugation on C).

As real-world observations always have some minimal error, one may not
be able to deduce from measurements whether a given mapping is indeed
isometric or surjective. Thus it is natural to ask if a mapping which only
nearly preserves distances and only almost covers the target space can be
well approximated by a surjective (affine) isometry.

In this paper we deal with ε-isometries of one normed space into another
which almost cover (in some sense) the target space. Throughout, except in
Lemma 5, X and Y denote real normed spaces.

Definition. Let ε ≥ 0. A map f : X → Y is called an ε-isometry if
∣∣‖f(y)− f(x)‖ − ‖y − x‖

∣∣ ≤ ε
for all x, y ∈ X.

There is an extensive literature on such mappings, starting with the in-
fluential paper [HU] of Hyers and Ulam. They proved that every surjective
ε-isometry between real Hilbert spaces can be uniformly approximated to
within 10ε by an affine surjective isometry. Later this result has been ex-
tended to all pairs of real Banach spaces (see [G]), and the constant 10

2000 Mathematics Subject Classification: Primary 46B20.
Key words and phrases: Banach spaces, isometry, ε-isometry, non-surjectivity, Hyers–

Ulam stability.
The author was supported by the Edmund Landau Center for Research in Mathemat-

ical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

[17]



18 I. A. VESTFRID

has been reduced to 2, which is sharp (see [OŠ]). The example of the map
x 7→ (x, p

√
pε‖x‖(p−1)/p) from lnp to ln+1

p (which is ε-isometric for 1 ≤ p <∞,
but far from any affine map) shows that the surjectivity assumption is in-
dispensable in this theorem even for Minkowski spaces.

On the other hand, after some recent partial results ([BŠ], [D] and [T]),
Šemrl and Väisälä [ŠV] showed that this theorem remains true when the
surjectivity condition is replaced by

sup
y∈Y
{dist(y, f(X))} <∞.

Väisälä [Va] also showed that in the case when X and Y are real Hilbert
spaces, the last condition can be replaced by

sup
y 6=0∈Y

lim inf
|t|→∞

dist(ty, f(X))
‖ty‖ < 1.

Our main result (Theorem 3) extends the Väisälä theorem to the case
when Y is a uniformly convex Banach space and X is a Banach space. Also,
we pose and discuss a problem concerning this result.

Note that when studying approximations of ε-isometries there is no loss
of generality in assuming that f(0) = 0. Indeed, if f is an ε-isometry then
so is f − f(0), and f can be approximated by an isometry U iff f − f(0) is
close to the isometry U − f(0).

2. Results. In this section, we investigate ε-isometries into real uni-
formly convex Banach spaces.

From the proof of Proposition 2.3 of Šemrl and Väisälä [ŠV] one can
conclude:

Proposition 1. Let Y be a uniformly convex Banach space with mod-
ulus of convexity δ = δY (ε). Let f : X → Y be an ε-isometry with f(0) = 0.
Then the limit Uf (x) = lim|t|→∞ f(tx)/t exists for each x ∈ X, the map
Uf : X → Y is a linear isometry , and

‖f(x)− Ufx‖ ≤ (‖x‖+ ε)δ−1
(

3ε
‖x‖+ ε

)
(1)

for every x ∈ X with ‖x‖ > 2ε (where δ−1 is the inverse function of δ).

We also need the next statement which follows from an inspection of the
proof of [ŠV, Theorem 3.2]; we give the details for the convenience of the
reader.

Proposition 2. Let f : X → Y be an ε-isometry with f(0) = 0. If there
is a surjective linear isometry U : X → Y such that ‖f(x) − Ux‖ = o(‖x‖)
as ‖x‖ → ∞, then ‖f(x)− Ux‖ ≤ 2ε for all x ∈ X.



ALMOST SURJECTIVE ε-ISOMETRIES 19

Proof. Replacing f by U−1f , we may assume that X = Y and that
U = id. Let x ∈ X and set λ = ‖f(x)− x‖. We have to show that

λ ≤ 2ε.(2)

If λ = 0, we have to do nothing. So, suppose that λ > 0 and put u =
(x−f(x))/λ (so ‖u‖ = 1). For s > 0, set xs = x+su and ys = f(xs)−f(x),
and

α = lim sup
s→∞

(‖f(xs)‖ − ‖ys‖).

Observe that |α| ≤ ‖f(x)‖ < ∞. Since ‖f(xs) − xs‖ = o(s) as s → ∞ by
the assumption,

lim
s→∞

ys/s = lim
s→∞

f(xs)/s = lim
s→∞

xs/s = u.

Let 0 < t < s. Then

‖f(xs)‖ −
∥∥∥∥f(x) +

t

s
ys

∥∥∥∥ ≤
∥∥∥∥f(xs)− f(x)− t

s
ys

∥∥∥∥ =
(

1− t

s

)
‖ys‖.

Consequently,

‖f(xs)‖ − ‖ys‖ ≤
∥∥∥∥f(x) + t

ys
s

∥∥∥∥− t
∥∥∥∥
ys
s

∥∥∥∥.

As s→∞, this yields

α ≤ ‖f(x) + tu‖ − t‖u‖ = ‖x+ (t− λ)u‖ − (t− λ)‖u‖ − λ.
Since f is an ε-isometry, this implies that

α ≤ ‖f(xt−λ)‖ − ‖f(xt−λ)− f(x)‖+ 2ε− λ = ‖f(xt−λ)‖ − ‖yt−λ‖+ 2ε− λ
for every t > λ. Letting t→∞ gives (2).

The next statement extends [Va, 5.4].

Theorem 3. Let X and Y be real Banach spaces, and let Y be uniformly
convex. Let f : X → Y be an ε-isometry with f(0) = 0 and

sup
y 6=0∈Y

lim inf
|t|→∞

dist(ty, f(X))
‖ty‖ = q < 1.(3)

Then there is a (unique) surjective linear isometry U : X → Y such that

‖f(x)− Ux‖ ≤ 2ε.

Proof. The desired isometry is Uf (see Proposition 1), and we only have
to show that Uf is surjective. The theorem then follows from Proposition 2,
because of (1).

Assume Uf is not surjective. Let q < q′ < 1. Since UfX is a closed linear
subspace of Y , there is a unit vector y ∈ Y such that dist(y, UfX) > q′. Then
by (3), there are two sequences {xn} ⊂ X and {tn} ⊂ R with |tn| → ∞ such
that limn→∞ ‖y − f(xn)/tn‖ < q′. Hence 2 > ‖f(xn)‖/|tn| > 1 − q′ for
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large n’s. Since
∣∣‖f(x)‖ − ‖x‖

∣∣ ≤ ε, we have ‖xn‖/|tn| < 2 + ε/|tn| and
‖xn‖ → ∞. Therefore by (1),

lim
n→∞

‖f(xn)− Ufxn‖
|tn|

= lim
n→∞

‖f(xn)− Ufxn‖
‖xn‖

‖xn‖
|tn|

= 0

and hence

lim sup
n→∞

‖y − Ufxn/tn‖

≤ lim sup
n→∞

(‖y − f(xn)/tn‖+ ‖f(xn)− Ufxn‖/|tn|) < q′,

a contradiction.

Remark 4. Theorem 3 does not hold for Y = l2∞, for instance. This
follows from the next simple example: Consider the map f(t) = (t, |t|) from
R to l2∞. This is a non-linear isometry, and it is easy to check that

sup
y 6=0∈Y

lim inf
|t|→∞

dist(ty, f(X))
‖ty‖ =

1
2
.

3. Open problem. The results above raise the following geometric
problem.

Problem 1. Describe all Banach spaces Y with the following property :
If X is a Banach space and f : X → Y is an ε-isometry such that

dist(y, f(X)) = o(‖y‖),(4)

then it necessarily follows that

sup
y∈Y
{dist(y, f(X))} <∞(5)

(and so, by the result of Šemrl and Väisälä [ŠV] mentioned in the In-
troduction, there exists a surjective linear isometry U : X → Y such that
‖f(x)− f(0)− Ux‖ ≤ 2ε).

We do not know whether (4) implies that X and Y are linearly isomor-
phic.

We do not know whether every ε-isometry f : Y → Y (i.e., the special
case X = Y ) which satisfies (4) satisfies also (5).

In addition to uniformly convex spaces, all finite-dimensional spaces also
have the property from Problem 1.

Indeed, if dimX = dimY < ∞, the assertion follows from [D, Theo-
rem 1].

If dimX < dimY , then there is no ε-isometry f : X → Y satisfying (4).
This follows, for instance, from the next lemma (as well as from other simple
topological considerations).
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Lemma 5. Let X and Y be normed spaces (not necessarily real). Let
dimX < ∞ and Y be separable. If there exists a map f : X → Y satisfy-
ing (4) and

lim sup
x,y∈X

‖f(x)‖+‖f(y)‖→∞

∣∣∣∣
‖f(x)− f(y)‖
‖x− y‖ − 1

∣∣∣∣ = q < 1,

then Y is (1− q)−1-bi-Lipschitz embeddable into X.

Proof. Assume f(0) = 0. Let y 6= 0 ∈ Y . By (4), there is a sequence
{xn} in X such that ‖ny − f(xn)‖ = o(n). Hence limn→∞ f(xn)/n = y,
and it follows that {xn/n} is a bounded sequence. Indeed, otherwise we
could choose a subsequence {xjn} such that ‖xjn‖ > 4jn‖y‖/(1 − q) and
‖f(xjn)‖ < 2jn‖y‖, which gives

1− ‖f(xjn)‖
‖xjn‖

>
1 + q

2
> q,

a contradiction. It follows that there is an increasing sequence {kn(y)} ⊂ N
so that the limit ϕ(y) = limn→∞ xkn(y)/kn(y) exists.

Choosing a dense subset S = {y1, y2, . . .} in Y \ {0}, applying this pro-
cedure to find sequences {xi,n} in X such that limn→∞ f(xi,n)/n = yi and
using the Cantor diagonal procedure we can find an increasing sequence
{kn} ⊂ N so that the limit

ϕ(yi) = lim
n→∞

xi,kn
kn

exists for all i. Then it follows from the assumption that∣∣∣∣
‖yi − yj‖

‖ϕ(yi)− ϕ(yj)‖
− 1

∣∣∣∣ = lim
n→∞

∣∣∣∣
‖f(xi,kn)− f(xj,kn)‖
‖xi,kn − xj,kn‖

− 1

∣∣∣∣ ≤ q.

Thus ϕ is (1−q)−1-bi-Lipschitz on S, and extends by continuity to all of Y .

Note that Lemma 5 fails if X is infinite-dimensional. Indeed, by an ex-
ample of Lindenstrauss and Szankowski [LS, Theorem 2], there exist a
Hilbert space X, a non-Hilbert space Y and a surjective map f : X → Y
such that

∣∣‖f(y) − f(x)‖ − ‖y − x‖
∣∣= o(‖y − x‖) as ‖y − x‖ → ∞ (thus

q = 0, but Y is not isometrically embeddable into X).
Note also that if we replace “an ε-isometry” by “a true isometry” in the

formulation of Problem 1, then such an isometry is necessarily surjective.
More precisely, it follows from a result of Figiel, Šemrl and Väisälä [FŠV]
that if f is an into isometry with f(0) = 0 such that for every unit vector
y ∈ Y there exist x ∈ X and a real number s so that

‖y − sf(x)‖ < 1/2,

then f is surjective.
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