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ON THE NUMBER OF NONQUADRATIC RESIDUES
WHICH ARE NOT PRIMITIVE ROOTS

BY

FLORIAN LUCA (Morelia) and P. G. WALSH (Ottawa)

Abstract. We show that there exist infinitely many positive integers r not of the
form (p − 1)/2 − φ(p − 1), thus providing an affirmative answer to a question of Neville
Robbins.

For every positive integer n let φ(n) be the Euler function of n. For an
odd prime number p put f(p) = (p− 1)/2−φ(p− 1). Note that f(p) counts
the number of quadratic nonresidues modulo p which are not primitive roots.
At the 2002 Western Number Theory Conference in San Francisco Neville
Robbins asked if there exist infinitely many positive integers r such that
f(p) = r has no solution. In this note, we show that the answer to this
question is affirmative. Throughout, we use p and q for prime numbers.
A related question from [3] regarding whether or not there exist infinitely
many positive integers m not in the range of the function n−φ(n) has been
treated in [1] and [2].

Theorem 1. For every odd integer w > 1 there exist infinitely many
positive integers r = 2γw not represented by the function f(p) = (p−1)/2−
φ(p− 1) with an odd prime number p.

Proof. We let r = 2γw. We shall show that there exist infinitely many
values of γ such that r is not of the form f(p) for some prime p. Let us
assume that f(p) = r. Write p− 1 = 2αm with some positive integers α and
m where m is odd. Then f(p) = 2α−1(m − φ(m)), and we are led to the
equation m− φ(m) = 2γ−(α−1)w. Since m− φ(m) is odd (because m is odd
and m > 1 because if m = 1 then m− φ(m) = 0 contradicting the fact that
w > 1), it follows that the only possibility is γ = α−1, i.e., α = γ+1. Further,
let m1, . . . ,mk be all the solutions to the equation m−φ(m) = w. It is clear
that this equation has only finitely many solutions. Indeed, any such solution
m is composite (because w > 1), therefore w = m−φ(m) ≥ m/p(m) ≥ m1/2,
where p(m) is the smallest prime factor of m. Thus, w = m− φ(m) implies
m ≤ w2, which shows that k is finite. If k = 0, then we are through. Assume
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now that k ≥ 1 (this is always the case when w is prime because m = w2

is such a solution in this case). In fact, by letting m = p1p2 with distinct
primes p1 and p2 the equation m− φ(m) = w leads to p1 + p2 = w + 1 and
Goldbach’s conjecture would seem to suggest that such primes p1 and p2

should always exist, therefore that k ≥ 1 holds always.
Backtracking, it follows that every solution of f(p) = r is of the form

p − 1 = 2γ+1mi for some i = 1, . . . , k. We conclude the proof with the
following result.

Lemma 2. Let m1, . . . ,mk be odd positive integers. Then there exist in-
finitely many positive integers n such that 2nmi + 1 is composite for all
i = 1, . . . , k.

Proof. We will prove more than asserted, namely that the positive inte-
gers n can be chosen to be primes. Assume that this is not true. Then there
exists a positive constant c1 such that if p > c1 is a prime, then 2pmi + 1 is
prime for some i = 1, . . . , k. We let M = lcm[m1, . . . ,mk]. We may assume
that c1 > M . We set Π = {p > c1} and Πi = {p > c1 | 2pmi + 1 is prime}
for i = 1, . . . , k. Assume that Π =

⋃k
i=1Πi. Let p1 be the first prime num-

ber in Π. Up to relabeling the mi’s, we may assume that P1 = 2p1m1 + 1
is prime. Let A1 = {p > p1 | p ≡ p1 (mod 2p1M)}. Since p1 > c1 > M , it
follows, by Dirichlet’s theorem on primes in arithmetic progressions, that A1
is infinite. Note that P1− 1 | 2p1M , and therefore, by Fermat’s Little Theo-
rem, if p ∈ A1, then 2p ≡ 2p1 (modP1). In particular, 2pm1 + 1 ≡ 2p1m1 + 1
(modP1) ≡ 0 (modP1), and since p > p1 it follows that 2pm1 + 1 is com-
posite. Thus, if p ∈ A1 it follows that p 6∈ Π1. Hence, A1 ⊆ (

⋃k
i=2Πi) \Π1.

Now let p2 be the first prime in A1. We may assume that p2 ∈ Π2.
Write P2 = 2p2m2 + 1 and let A2 = {p > p2 | p ≡ p2 (mod 2p2M)}.
It is easy to see that A2 ⊂ A1. Moreover, the previous argument shows
that P2 − 1 | 2p2M , therefore 2p ≡ 2p2 (modP2) holds for all p ∈ A2.
In particular, 2pm2 + 1 is a multiple of P2, and therefore p 6∈ Π2. Hence,
A2 ⊆ (

⋃k
i=3Πi)\ (Π1∪Π2). Inductively, we construct infinite sets of primes

Aj such that Aj ⊆ (
⋃k
i=j+1Πi) \ (

⋃j
i=1Πi). Of course, this is absurd for

j = k, which completes the proof of Lemma 2 and hence of Theorem 1.

Example 3. Let w = 3. The only solution of the equation m−φ(m) = 3
is m = 9. Thus, if r = 2γ ·3, then p = 2γ+1 ·9 + 1. Taking γ = 4t−1 we note
that 2γ+1 · 9 + 1 is always a multipe of 5, therefore it cannot be a prime.
Hence, numbers of the form 24t−1 · 3 are not of the form f(p) with any odd
prime number p. Similarly, taking w = 5, the only m such that m−φ(m) = 5
is m = 25. Thus, p = 2γ+1 · 25 + 1. Taking γ = 2t, we find that 2γ+1 · 25 + 1
is a multiple of 3, therefore it cannot be prime. Hence, numbers of the form
22t · 5 are not of the form f(p) with any odd prime number p either.
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Remarks 4. The conclusion of Theorem 1 is probably false when w = 1.
Indeed, let γ ≥ 0. The well known Prime k-Tuplets Conjecture suggests that
there should exist a pair of primes (p, q) (in fact, infinitely many such) with
p = 2γ+1q + 1 and for such primes p and q we certainly have f(p) = 2γ .
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C.P. 58180, Morelia, Michoacán, México
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