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GLOBAL EXISTENCE OF AXIALLY SYMMETRIC SOLUTIONS
TO NAVIER–STOKES EQUATIONS

WITH LARGE ANGULAR COMPONENT OF VELOCITY

BY

WOJCIECH M. ZAJĄCZKOWSKI (Warszawa)

Abstract. Global existence of axially symmetric solutions to the Navier–Stokes equa-
tions in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the
ideal slip conditions on the boundary. We underline that there is no restriction on the
angular component of velocity. We obtain two kinds of existence results. First, under as-
sumptions necessary for the existence of weak solutions, we prove that the velocity belongs
to W 2,1

4/3(Ω × (0, T )), so it satisfies the Serrin condition. Next, increasing regularity of the

external force and initial data we prove existence of solutions (by the Leray–Schauder
fixed point theorem) such that v ∈ W 2,1

r (Ω × (0, T )) with r > 4/3, and we prove their
uniqueness.

1. Introduction. We consider the motion of a viscous incompressible
fluid described by the Navier–Stokes equations in a bounded cylinder, with
ideal boundary slip conditions (see [17]):

(1.1)

v,t + v · ∇v − divT(v, p) = f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),

n · T(v, p) · τα = 0, α = 1, 2, on ST ,

v|t=0 = v(0) in Ω,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity vector,
p = p(x, t) ∈ R the pressure, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3

the external force field, n is the unit outward vector normal to S, τα, α =
1, 2, are tangent vectors to S.

By T(v, p) we denote the stress tensor of the form

(1.2) T(v, p) = νD(v)− pI,
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where ν is the constant viscosity coefficient, D(v) = {vi,xj + vj,xi}i,j=1,2,3 is
the dilatation tensor and I is the unit matrix.

Finally, dot denotes the scalar product in R3.
To describe the domain Ω and the motion, we introduce the cylindrical

coordinates r, ϕ, z by the relations x1 = r cosϕ, x2 = r sinϕ, x3 = z, where
x1, x2, x3 are the Cartesian coordinates.

We assume that Ω = {x ∈ R3 : R1 < r < R2, −a < z < a, ϕ ∈ [0, 2π]}.
Then ∂Ω = S = S1 ∪ S2, where S1 = {x ∈ R3 : r is either R1 or R2,
−a < z < a, ϕ ∈ [0, 2π]} and S2 = {x ∈ R3 : z is either −a or a and
R1 < r < R2, ϕ ∈ [0, 2π]}.

Let u be any vector. We introduce the cylindrical coordinates of u in the
following way: ur = u·er, uϕ = u·eϕ, uz = u·ez, where er = (cosϕ, sinϕ, 0),
eϕ = (− sinϕ, cosϕ, 0), ez = (0, 0, 1).

Definition 1.1. By an axially symmetric solution to (1.1) we mean
a solution such that the cylindrical components of v, f, v(0) and p do not
depend on ϕ. Then, instead of Ω and S, we consider the intersections of Ω
and S with the plane ϕ = const ∈ [0, 2π].

Following [17] we introduce the following notation. We distinguish the
angular component of the velocity, vϕ, by writing vϕ = w. Let α = rot v
be the vorticity vector. Its cylindrical coordinates in the case of the axially
symmetric solution take the form

(1.3) αr = −w,z, αϕ = vr,z − vz,r ≡ χ, αz =
w

r
+ w,r.

To prove the existence of global axially symmetric solutions to (1.1) more
regular than weak solutions, we follow the ideas of Ladyzhenskaya [5] and
Ukhovskĭı–Yudovich [16] to obtain an energy estimate for χ. For this purpose
we need

Lemma 1.2 (see also [17, 18]). Let v, w, Fϕ = (rot f)ϕ be given. Then χ
is a solution to the problem

(1.4)

χ,t + v · ∇χ+ (vr,r + vz,z)χ

= ν

[(
r

(
χ

r

)

,r

)

,r

+ χ,zz + 2
(
χ

r

)

,r

]

+
2
r
ww,z + Fϕ in ΩT ,

χ = 0 on ST ,

χ|t=0 = χ(0) in Ω.
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Proof. First we show (1.4)1. For axially symmetric solutions we express
the r and z components of (1.1)1 in the form

(1.5)
vr,t + vrvr,r + vzvr,z −

v2
ϕ

r
+ p,r = ν∆vr −

2ν
r2 vr + fr,

vz,t + vrvz,r + vzvz,z + p,z = ν∆vz + fz,

where

(1.6) ∆u =
1
r

(ru,r),r + u,zz .

Differentiating (1.5)1 with respect to z, (1.5)2 with respect to r and sub-
tracting yields (1.4)1.

To find the boundary condition (1.4)2 we express the boundary condi-
tions (1.1)3,4 for axially symmetric solutions in cylindrical coordinates. They
take the form

(1.7)

vr = 0,

vϕ,r −
1
r
vϕ = 0,

vz,r + vr,z = 0,
on S1, and

(1.8)

vz = 0,

vϕ,z = 0,

vz,r + vr,z = 0,

on S2. Since χ= vr,z−vz,r, we have χ|S1 = 0 in view of (1.7)1,3 and vr,z|S1 = 0.
Next, in view of (1.8)1,3, we see that χ|S2 = 0 because vz,r|S2 = 0. Hence
(1.4)2 is established, which ends the proof.

Lemma 1.3 (see also [17, 18]). Let v and fϕ be given. Then w is a solu-
tion to the problem

(1.9)

w,t + v · ∇w +
vr
r
w − ν∆w + ν

w

r2 = fϕ in ΩT ,

w,r|r=Ri =
1
Ri

w|r=Ri , i = 1, 2, on ST1 ,

w,z = 0 on ST2 ,

w|t=0 = w(0) in Ω.

Proof. Taking the ϕ-component of (1.1)1 we obtain (1.9)1. The condi-
tions (1.7)2, (1.8)2 imply (1.9)2 and (1.9)3, respectively. This ends the proof.

There are numerous results concerning axially symmetric motions with
vϕ = 0. The first results were established by Ladyzhenskaya [5] and
Ukhovskĭı–Yudovich [16]. Ladyzhenskaya proved the global existence of ax-
ially symmetric solutions with vϕ = 0 in a cylinder with the axis of sym-
metry removed. To prove the global existence, Ladyzhenskaya assumed that
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v · n|S = 0, χ = vr,z − vz,r|S = 0, which follows from the ideal boundary
slip conditions (1.1)3,4 (see Lemma 1.2). However, the boundary condition
(1.4)2 is crucial for the proof of global existence in [5] as well as in this pa-
per. Global existence for the Cauchy problem only was proved in [16]. In this
case the behaviour of solutions in a neighbourhood of the axis of symmetry
was described in weighted Sobolev spaces. An improved version of the proof
in [16] was given in [7, 8]. Again, we underline that all the above results
were obtained for axially symmetric solutions with vϕ = 0 (see also [4]).

In this paper we consider the case vϕ 6= 0. By the abstract technique
of semigroups, global existence of regular solutions to the Navier–Stokes
equations with Dirichlet boundary conditions was proved by Ströhmer–
Zajączkowski [15]. The result was obtained for solutions with some invari-
ance property. In particular, the case of axial symmetry was covered. After
small modifications, that result is also valid for problem (1.1). In this paper
we remove the axis of symmetry for simplicity only. The existence in a full
cylinder will be considered elsewhere. Finally, the slip boundary conditions
were also considered in [3, 9, 17, 18].

Now we formulate the main results of this paper.

Theorem 1 (existence and uniqueness). Let k0 ∈ R+ and T > 0 be
given. Let f ∈ L∞(0,∞;L1′(Ω)), 1′ > 1, v(0) ∈ W 1/2

4/3 (Ω), χ(0) ∈ L2(Ω),
f ∈ L4/3(Ω × (k0, k0 + T )), supt |

�
Ωt
fη dx dt

′| < ∞, |
�
Ω
vη(0) dx| < ∞,

η = reϕ, fη = f ·η, vη = v ·η. Then there exists a unique solution to problem
(1.1) such that v ∈W 2,1

4/3(Ω× (k0, k0 +T )), ∇p ∈ L4/3(Ω× (k0, k0 +T )) and

(1.10) ‖v‖2,4/3,Ω×(k0,k0+T ) + |∇p|4/3,Ω×(k0,k0+T )

≤ ϕ1

(
T, ‖f‖L∞(0,∞;L1′ (Ω)), |f |4/3,Ω×(k0,k0+T ),

‖v(0)‖1/2,4/3,Ω ,
∣∣∣ �
Ω

vη(0) dx
∣∣∣, sup

t

∣∣∣ �
Ωt

fη dx dt
′
∣∣∣
)
≡ A,

where ϕ1 is an increasing positive function.

Theorem 2 (existence and regularity). Let the assumptions of The-
orem 1 hold. Let f ′ ∈ L∞(0,∞;L2(Ω)), f ′ = (fr, fz), χ(0) ∈ L2(Ω),
f ∈ Lr(Ω × (k0, k0 + T )), v(0) ∈ W

2−2/r
r (Ω), r > 4/3. Then there ex-

ists a solution to problem (1.1) such that v ∈ W 2,1
r (Ω × (k0, k0 + T )),

∇p ∈ Lr(Ω × (k0, k0 + T )) and

(1.11) ‖v‖2,r,Ω×(k0,k0+T ) + |∇p|r,Ω×(k0,k0+T )

≤ ϕ2(A, ‖f ′‖L∞(0,∞;L2(Ω)), |χ(0)|2,Ω,
|f |r,Ω×(k0,k0+T ), ‖v(0)‖2−2/r,r,Ω),

where ϕ2 is an increasing positive function.
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Theorem 3 (uniqueness). Assume that there exists a solution to prob-
lem (1.1) such that v ∈ L2(0,∞;L∞(Ω)). Then uniqueness of solutions to
problem (1.1) holds in this class.

Theorem 3 implies that uniqueness holds for v ∈ W 2,1
r (ΩT ), r > 4/3.

Hence, Theorem 2 yields uniqueness too. Uniqueness in Theorem 1 follows
from the Serrin argument (see [11]). The following lemma corresponds to
the results from [12, 13] (see [1]).

Lemma 1.4. Assume that f ∈ Lr(ΩT ), v(0) ∈ W
2−2/r
r (Ω), S ∈ C2;

r > 1. Then there exists a solution to the problem

(1.12)

v,t − divT(v, p) = f in ΩT ,

div v = 0 in ΩT ,

v · n = 0 on ST ,

n · T(v, p) · τα = 0, α = 1, 2, on ST ,

v|t=0 = v(0) in Ω,

such that v ∈W 2,1
r (ΩT ), ∇p ∈ Lr(ΩT ) and

(1.13) ‖v‖2,r,ΩT + |∇p|r,ΩT ≤ c(|f |r,ΩT + ‖v(0)‖2−2/r,r,Ω).

The same result holds for cylindrical domains.

2. Notation and auxiliary results. To simplify notation we introduce

|u|p,Q = ‖u‖Lp(Q), Q ∈ {Ω,S,ΩT, ST }, p ∈ [1,∞],

‖u‖s,Q = ‖u‖Hs(Q), Q ∈ {Ω,S}, 0 ≤ s ∈ R+,

‖u‖s,Q = ‖u‖
W
s,s/2
2 (Q), Q ∈ {ΩT , ST }, 0 ≤ s ∈ R+,

‖u‖s,p,Q = ‖u‖W s
p (Q), Q ∈ {Ω,S}, 0 ≤ s ∈ R+, p∈ [1,∞],

‖u‖s,p,Q = ‖u‖
W
s,s/2
p (Q), Q ∈ {ΩT , ST }, 0 ≤ s ∈ R+, p∈ [1,∞],

|u|p1,p2,ΩT = ‖u‖Lp2 (0,T ;Lp1 (Ω)).

By c we denote generic constants. To distinguish a certain constant we
denote it by ck, k ∈ N.

For bounded Ω⊂R2 the following interpolation inequality holds (see [2]):

(2.1) |w|4,Ω ≤ c|∇w|1/22,Ω|w|
1/2
2,Ω + c|w|2,Ω.

For functions from W 2,1
s (ΩT ), Ω ⊂ R2, s > 1, we have the interpolation

inequality

(2.2) |∇ru|q,ΩT ≤ c|u|1−θσ,ΩT
‖u‖θ2,s,ΩT ,



248 W. M. ZAJĄCZKOWSKI

where r is either 1 or 0, and

θ =
r + 4/σ − 4/q
2 + 4/σ − 4/s

.

Moreover, θ satisfies the condition

(2.3) r/2 < θ < 1.

In the case r = 1, the left inequality in (2.3) takes the form

(2.4) 4/q − 2/s < 2/σ.

The inequality (2.2) is equivalent to

(2.5) |∇ru|q,ΩT ≤ ε1−θ‖u‖2,s,ΩT + cε−θ|u|σ,ΩT ,
where ε is any positive parameter.

To examine the existence of weak solutions we need the space

V 1
2 (ΩT ) = {u : ess sup

t≤T
|u(t)|2,Ω + |∇u|2,ΩT <∞},

where u is a scalar or vector-valued function.
By l.h.s. (r.h.s.) we denote the left-hand side (right-hand side), respec-

tively.

3. A priori estimates. In this section we find some a priori estimates
for axially symmetric solutions to problem (1.1).

Lemma 3.1. Assume that w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), f ′ =
(fr, fz) ∈ L2(ΩT ) and χ(0) ∈ L2(Ω). Then

(3.1)
∣∣∣∣
χ

r

∣∣∣∣
2

2,Ω
+ ν

t

�
0

∣∣∣∣∇
χ

r

∣∣∣∣
2

2,Ω
dt′ ≤ c

R4
1

sup
t
|w|22,Ω

t

�
0

|∇w(t′)|22,Ω dt′

+
c

R4
1

sup
t
|w|22,Ω

t

�
0

‖w(t′)‖21,Ω dt′ +
c

R2
1
|f ′|22,Ωt +

∣∣∣∣
χ(0)
r

∣∣∣∣
2

2,Ω

for all t ≤ T .

Proof. Multiplying (1.4)1 by χ/r2 and integrating over Ω we get

(3.2)
1
2
d

dt
�
Ω

∣∣∣∣
χ

r

∣∣∣∣
2

dx+ ν �
Ω

∣∣∣∣∇
χ

r

∣∣∣∣
2

dx = �
Ω

1
r

(w2),z
χ

r2 dx+ �
Ω

Fϕ
χ

r2 dx,

where the last integral equals

�
Ω

(fr,z − fz,r)
χ

r2 dx = � (fr,z − fz,r)
χ

r
dr dz

= �
Ω

(
− fr

(
χ

r

)

,z

+ fz

(
χ

r

)

,r

)
1
r
dx.
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Integrating by parts in the first term on the r.h.s., using χ|S = 0 and ap-
plying the Hölder and Young inequalities we obtain

(3.3)
1
2
d

dt

∣∣∣∣
χ

r

∣∣∣∣
2

2,Ω
+

3
4
ν

∣∣∣∣∇
χ

r

∣∣∣∣
2

2,Ω
≤ c

R4
1
|w|44,Ω +

c

R2
1
|f ′|22,Ω ,

where the structure of Ω was utilized. Using (2.1) in (3.3) and integrating
the result with respect to time, we obtain (3.1), which concludes the proof.

To prove the Korn inequality we introduce

(3.4) EΩ(v) = �
Ω

(vi,xj + vj,xi)
2 dx,

where summation over repeated indices is assumed.

Lemma 3.2. Suppose |
�
Ω
vη dx| <∞ and EΩ(v) <∞. Then

(3.5) ‖v‖21,Ω ≤ c
(
EΩ(v) +

∣∣∣ �
Ω

vη dx
∣∣∣
2)
,

where vη = v · η and η = reϕ.

Proof. Multiplying (1.1)1 by η = (−x2, x1, 0), integrating the result over
Ωt, using η · n|S = 0 and (1.1)3,4, and the fact that ∇η is an antisymmetric
tensor, we obtain

(3.6) �
Ω

v · η dx = �
Ωt

f · η dx dt′ + �
Ω

v(0) · η dx.

To show (3.5), we express v in the form

(3.7) v = v′ +
α

|η|22,Ω
η,

where

v′ = vrer +
(
vϕ −

αr

|η|22,Ω

)
eϕ + vzez ≡ v′′ +

(
vϕ −

α

|η|22,Ω
r

)
eϕ ≡ v′′ + v∗,

α = �
Ω

v · η dx, �
Ω

v′ · η dx = 0.

First, we shall obtain a relation between EΩ(v) and |∇v|2,Ω. Write

(3.8) EΩ(v) = �
Ω

(vi,xj + vj,xi)
2 dx = 2 �

Ω

v2
i,xj dx+ 2 �

Ω

vi,xjvj,xi dx,

where the second integral equals

�
Ω

(vi,xjvj),xi dx = �
S

nivi,xjvj dS = �
S

nivi,xjvταταj dS ≡ I,

where vτα = v · τα, and summation over all repeated indices is assumed.
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In view of (1.1)3 we have

I = − �
S

ni,xjviταjvτα dS = − �
S1

ni,xjviταjvτα dS1 − �
S2

ni,xjviταjvτα dS2

≡ I1 + I2.

Since n|S1 = (cosϕ, sinϕ, 0) = er, τ1|S1 = (− sinϕ, cosϕ, 0) = eϕ, τ2|S1 =
(0, 0, 1) = ez, n|S2 = (0, 0, 1) = ez , τ1|S2 = (cosϕ, sinϕ, 0) = er, and
τ2|S2 = (− sinϕ, cosϕ, 0) = eϕ, we have I2 = 0 and

I1 =
2∑

σ=1

(−1)σ+1 �
S1

1
Rσ

eri,ϕvivϕ|r=RσRσ dϕdz

=
2∑

i=1

(−1)i+1
2π

�
0

dϕ

a

�
−a
dz v2

ϕ|r=Ri.

where eri, i = 1, 2, 3, are the Cartesian coordinates of er. Summing (3.8)
implies

(3.9) |∇v|22,Ω =
1
2
EΩ(v) +

2∑

i=1

(−1)i+1
2π

�
0

dϕ

a

�
−a

dz v2
ϕ|r=Ri .

Hence, by the trace theorem we have

(3.10) |∇v|22,Ω ≤ c(EΩ(v) + |v|22,Ω).

Since vr|S1 = 0 and vz|S2 = 0 we obtain

|vr|2,Ω ≤ c|∂rvr|2,Ω ≤ c|∂rv′|2,Ω ≤ c|∇v′|2,Ω ,(3.11)

|vz|2,Ω ≤ c|∂zvz|2,Ω ≤ c|∂zv′|2,Ω ≤ c|∇v′|2,Ω .(3.12)

To obtain an estimate for |vϕ|2,Ω we have to prove that there exists constant
M = M(δ) such that

(3.13) |v′|22,Ω ≤ δ|∇v′|22,Ω +MEΩ(v′),

where δ > 0 can be chosen as small as we wish.
Assume that such an M does not exist. Then for any m ∈ N there exists

v′m ∈ H1(Ω) such that

|v′m|22,Ω ≥ δ|∇v′m|22,Ω +mEΩ(v′m) ≡ Gm(v′m).

For um = v′m/|v′m|2,Ω we have

|um|2,Ω = 1, Gm(um) =
Gm(v′m)
|v′m|2,Ω

≤ 1.

Therefore, we can choose a subsequence {umk} which converges weakly in
H1(Ω) and strongly in L2(Ω) to a limit u ∈ H1(Ω). Moreover, EΩ(umk) ≤
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1/mk → 0. Hence EΩ(u) = 0, so u = cη. But c = 0 because u ⊥ η in L2(Ω).
This contradicts

|u|2,Ω = lim
mk→∞

|umk |2,Ω = 1.

Hence, (3.13) holds.
In view of (3.7) inequality (3.13) takes the form

(3.14) |v|22,Ω ≤ δ|∇v|22,Ω +MEΩ(v) + c
∣∣∣ �
Ω

vη dx
∣∣∣
2
,

where we used the fact that EΩ(v′) = EΩ(v). Utilizing (3.14) in (3.10) yields

(3.15) |∇v|22,Ω ≤ c
(
EΩ(v) +

∣∣∣ �
Ω

vη dx
∣∣∣
2)
.

From the form of v′ we have

|vϕ|22,Ω ≤ c
(
|vr|22,Ω + |vz|22,Ω + |v′|22,Ω +

∣∣∣ �
Ω

vη dx
∣∣∣
2)

(3.16)

≤ c
(
EΩ(v) +

∣∣∣ �
Ω

vη dx
∣∣∣
2)
,

where we used (3.11), (3.12), (3.13) and (3.15) to obtain the last inequality.
Summing up, from (3.11), (3.12), (3.15) and (3.16) we obtain (3.5), which

ends the proof.

Lemma 3.3. Assume that there exist constants a1, a2 such that
supt |f(t)|1′,Ω ≡ a1 < ∞, 1′ > 1 but close to 1, and supt |

�
Ωt
fη dx dt

′| ≡
a2 <∞. Then there exist constants

(3.17)
d2

1 =
c

ν1

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)

+ |v(0)|22,Ω,

d2
2(T ) = (eν1T + 3)d2

1,

independent of k0 = kT such that

(3.18)

|v(t)|2,Ω ≤ d1 for any t > 0,

|v(t)|2,Ω +
( t

�
kT

‖v(t′)‖21,Ωdt′
)1/2

≤ d2 for t ∈ (kT, (k + 1)T ).

Proof. Multiplying (1.1)1 by v and integrating over Ω we obtain

(3.19)
1
2
d

dt
|v|22,Ω + νEΩ(v) = �

Ω

f · v dx.

Utilizing (3.5) yields

(3.20)
1
2
d

dt
|v|22,Ω + ν‖v‖21,Ω ≤ c

( �
Ω

f · v dx+
∣∣∣ �
Ω

vη dx
∣∣∣
2)
.
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Expressing (3.6) in the form

(3.21) �
Ω

vη dx = �
Ωt

fη dx dt
′ + �

Ω

vη(0) dx

we replace (3.20) by

(3.22)
1
2
d

dt
|v|22,Ω+ν‖v‖21,Ω ≤ c �

Ω

f ·v dx+c
∣∣∣ �
Ωt

fη dx dt
′
∣∣∣
2
+c
∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
.

Applying the Hölder and Young inequalities to the first term on the r.h.s. of
(3.22) and using the imbedding |v|q,Ω ≤ c‖v‖1,Ω for any finite q, we rewrite
the estimate (3.22) in the form

(3.23)
d

dt
|v|22,Ω + ν‖v‖21,Ω ≤ c|f |21′,Ω + c

∣∣∣ �
Ωt

fη dx dt
′
∣∣∣∣
2

+ c
∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
,

where 1′ is any number greater than 1 but close to 1.
For ν = ν1 + ν2, (3.23) takes the form

(3.24)
d

dt
|v|22,Ω + ν1|v|22,Ω + ν2‖v‖21,Ω

≤ c|f |21′,Ω + c
∣∣∣ �
Ωt

fη dx dt
′
∣∣∣
2

+ c
∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
.

Now, (3.24) implies

(3.25)
d

dt
(|v|22,Ωeν1t) + ν2‖v‖21,Ωeν1t

≤ c|f |21′,Ωeν1t +
∣∣∣ �
Ωt

fη dx dt
′
∣∣∣
2
eν1t + c

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
eν1t.

Integrating (3.25) with respect to time yields

(3.26) |v(t)|22,Ω + ν2e
−ν1t

t

�
0

‖v(t′)‖21,Ωeν1t
′
dt′

≤ ce−ν1t
t

�
0

|f(t′)|21′,Ωeν1t
′
dt′ + ce−ν1t

t

�
0

∣∣∣ �
Ωt
′

fηdxdt
′′
∣∣∣
2
eν1t

′
dt′

+ e−ν1t
t

�
0

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
eν1t

′
dt′ + e−ν1t|v(0)|22,Ω.

Dropping the second term on the l.h.s. of (3.26) and utilizing the assump-
tions of the lemma we obtain
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|v(t)|22,Ω ≤ c
(
a2

1 +a2
2 +
∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)
e−ν1t

t

�
0

eν1t
′
dt′+e−ν1t|v(0)|22,Ω(3.27)

≤ c

ν1

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)

+ e−ν1t|v(0)|22,Ω

≤ c

ν1

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2
)

+ |v(0)|22,Ω ≡ d2
1.

Taking into account estimate (3.27), we consider (3.26) for t ∈ (kT, (k+1)T ),
which yields

(3.28) |v(t)|22,Ω + ν2e
−ν1t

t

�
kT

‖v(t′)‖21,Ωeν1t
′
dt′

≤ c
(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)
e−ν1t

t

�
kT

eν1t
′
dt′ + e−ν1(t−kT )|v(kT )|22,Ω.

Continuing, we get

(3.29) |v(t)|22,Ω + ν2e
−ν1(t−kT )

t

�
kT

‖v(t′)‖21,Ω dt′

≤ c

ν1

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)

+ e−ν1(t−kT )|v(kT )|22,Ω

for t ∈ (kT, (k + 1)T )). Finally, this leads to

(3.30) |v(t)|22,Ω + ν2

t

�
kT

‖v(t′)‖21,Ω dt′

≤ c

ν1
(eν1T + 1)

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0)dx
∣∣∣
2)

+ 2|v(kT )|22,Ω

≤ (eν1T + 1)d2
1 + 2d2

1 ≡ d2
2(T ).

This ends the proof.

The fact that d1 and d2 do not depend on k0 and estimates (3.18) suggest
that the proof of global existence can be done step by step.

Lemma 3.4. Assume that v(0), χ(0) ∈ L2(Ω). Assume that supt |f ′|2,Ω
≡ a3 <∞. Then ∣∣∣∣

χ(t)
r

∣∣∣∣
2,Ω
≤ d3,

∣∣∣∣
χ(t)
r

∣∣∣∣
2,Ω

+
( k0+t

�
k0

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
dt′
)1/2

≤ d4(T ),(3.31)



254 W. M. ZAJĄCZKOWSKI

where t ∈ (k0, k0 + T ), k0 ∈ R+,

(3.32)
d3 = cd1(d1 + |v(0)|2,Ω) + ca3 +

∣∣∣∣
χ(0)
r

∣∣∣∣
2,Ω

,

d4(T ) = c(d2
1 + a3)eν1T + cd3

and c is a constant.

Proof. In view of (1.6)2, (2.1), and the Poincaré inequality, we write
(3.3) in the form

d

dt

∣∣∣∣
χ

r

∣∣∣∣
2

2,Ω
+ ν1

∣∣∣∣
χ

r

∣∣∣∣
2

2,Ω
+
(
ν

2
+ ν2

)∥∥∥∥
χ

r

∥∥∥∥
2

1,Ω
≤ c|w|22,Ω‖w‖21,Ω + c|f ′|22,Ω ,

where ν = ν1 + ν2. Multiplying by eν1t and integrating with respect to time
yields

(3.33)
∣∣∣∣
χ(t)
r

∣∣∣∣
2

2,Ω
eν1t + ν3

t

�
0

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
eν1t

′
dt′

≤ c1 sup
t
|w(t)|22,Ω

t

�
0

‖w(t′)‖21,Ωeν1t
′
dt′ + c2a

2
3

t

�
0

eν1t
′
dt′ +

∣∣∣∣
χ(0)
r

∣∣∣∣
2

2,Ω
,

where ν3 = ν2 + ν/2. Integrating (3.25) with respect to time yields

(3.34) |v(t)|22,Ωeν1t + ν2

t

�
0

‖v(t′)‖21,Ωeν1t
′
dt′

≤ c

ν1

(
a2

1 + a2
2 +

∣∣∣ �
Ω

vη(0) dx
∣∣∣
2)
eν1t + |v(0)|22,Ω

≤ d2
1e
ν1t + |v(0)|22,Ω.

Applying this inequality to estimate the second factor in the first term on
the r.h.s. of (3.33) we obtain

(3.35)
∣∣∣∣
χ(t)
r

∣∣∣∣
2

2,Ω
eν1t + ν3

t

�
0

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
eν1t

′
dt′

≤ cd2
1(d2

1e
ν1t + |v(0)|22,Ω) +

c

ν1
a2

3e
ν1t +

∣∣∣∣
χ(0)
r

∣∣∣∣
2

2,Ω
.

Omitting the second term on the l.h.s. of (3.35) we obtain for any t > 0 the
estimate ∣∣∣∣

χ(t)
r

∣∣∣∣
2

2,Ω
≤ cd2

1(d2
1 + |v(0)|22,Ωe−ν1t) +

c

ν1
a2

3 +
∣∣∣∣
χ(0)
r

∣∣∣∣
2

2,Ω
e−ν1t(3.36)

≤ cd2
1(d2

1 + |v(0)|22,Ω) +
c

ν1
a2

3 +
∣∣∣∣
χ(0)
r

∣∣∣∣
2

2,Ω
≡ d2

3.
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Now we consider (3.33) in (kT, (k + 1)T ). For t in this interval, we get

(3.37)
∣∣∣∣
χ(t)
r

∣∣∣∣
2

2,Ω
eν1t + ν3

t

�
kT

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
eν1t

′
dt′

≤ c sup
kT≤t′≤(k+1)T

|w(t′)|22,Ω
t

�
kT

‖w(t′)‖21,Ωeν1t
′
dt′

+ ca2
3

t

�
kT

eν1t
′
dt′ +

∣∣∣∣
χ(kT )
r

∣∣∣∣
2

2,Ω
eν1kT .

Considering (3.34) in (kT, (k + 1)T ) we obtain

(3.38) |v(t)|22,Ωeν1t + ν2

t

�
kT

‖v(t′)‖21,Ωeν1t
′
dt′

≤ cd2
1e
ν1t + |v(kT )|22,Ωeν1kT ≤ cd2

1e
ν1t.

Applying (3.36) and (3.38) in (3.37) yields

(3.39)
∣∣∣∣
χ(t)
r

∣∣∣∣
2

2,Ω
eν1t+ν3

t

�
kT

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
eν1t

′
dt′ ≤ c(d4

1+a2
3)e2ν1t+cd2

3e
ν1kT .

Hence (3.39) implies

(3.40)
t

�
kT

∥∥∥∥
χ(t′)
r

∥∥∥∥
2

1,Ω
dt′ ≤ c(d4

1 + a2
3)eν1T + cd2

3 ≡ d4(T ).

Inequalities (3.36) and (3.40) give (3.31). This ends the proof.

Expressing (1.1)2 in polar coordinates

vr,r + vz,z +
vr
r

= 0

we obtain the following elliptic problem:

(3.41)

vr,z − vz,r = χ,

vr,r + vz,z = −vr/r,
n · v|S = 0.

If we introduce new quantities ur = rvr, uz = rvz, then (3.41) takes the
form

(3.42)

ur,r + uz,z = 0,

ur,z − uz,r = rχ− vz,
n · u|S = 0.
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Equation (3.42)1 implies the existence of a potential ψ such that ur = ψ,z,
uz = −ψ,r, and (3.42)3 gives

(n1ψ,z − n2ψ,r)|S = τ · ∇ψ|S = 0, so ψ|S = const .

Since ψ is determined up to an arbitrary constant, we can assume that
ψ|S = 0. Therefore (3.42) implies the following problem:

(3.43)
∆ψ = rχ− vz,
ψ|S = 0,

where ∆ = ∂2
r + ∂2

z .
Let us consider the interval Jk ≡ (kT, (k + 1)T ) = (k0, k0 + T ). From

(3.18) and (3.31) we have the estimates

(3.44)
‖v‖L2(Jk;H1(Ω)) + ‖v‖L4(Jk;L4(Ω)) + ‖v‖L∞(Jk;L2(Ω)) ≤ d2(T ),

‖χ‖L2(Jk;H1(Ω)) + ‖χ‖L4(Jk;L4(Ω)) + ‖χ‖L∞(Jk;L2(Ω)) ≤ d4(T ).

Then we have

Lemma 3.5. Let the assumptions of Lemmas 3.3 and 3.4 hold. Let t ∈
Jk = (k0, k0 + T ), k0 = kT , k ∈ N. Then (3.43) implies

‖v′‖L2(Jk;H2(Ω)) + ‖v′‖L4(Jk;W 1
4 (Ω))(3.45)

+ ‖v′‖L∞(Jk;W 1
2 (Ω)) ≤ c(d2(T ) + d4(T )),

where v′ = (vr, vz).

From (3.45) we have

(3.46) ‖v′‖L∞(Jk;Lq(Ω)) ≤ c(d2(T ) + d4(T )), q ∈ (1,∞).

Remark 3.6. Since we examine problem (3.43) in a rectangle in the
(r, z)-plane, some compatibility conditions at its vertices must be satisfied.
Since ψ,r = vz and ψ,z = −vr, we have ψ,rr = vz,r = 0 and ψ,zz = −vr,z = 0
at vertices, so∆ψ|vertex = 0. On the other hand χ = vr,z−vz,r, so χ|vertex = 0
and vz|vertex = 0. Hence (3.43)1 is satisfied in the rectangle.

To prove global existence we need additional estimates for w.

Lemma 3.7. Suppose the assumptions of Lemma 3.5, fϕ(0) ∈ Ls(Ω),
(1.6)1, and w(kT ) ∈ W

2−2/s
s (Ω), hold for some s > 1. Then there exists

a solution to problem (1.5) such that w ∈ W 2,1
s (Ω × (kT, (k + 1)T )), and

there exist positive increasing functions ϕ1(σ), c3(σ), σ ∈ R+ such that

‖w‖2,s,Ω×(kT,(k+1)T ) ≤ c3(T )[ϕ1(d2 + d4)d2 + |fϕ(0)|s,Ω(3.47)

+ ‖w(kT )‖2−2/s,s,Ω ].

Proof. The existence of w follows from potential theory. We only show
the estimate. Set again Jk = (kT, (k + 1)T ). For solutions of (1.5) we have
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(3.48) ‖w‖2,s,Ω×Jk ≤ c(T )[|v · ∇w|s,Ω×Jk
+
∣∣∣∣
vr
r
w

∣∣∣∣
s,Ω×Jk

+
∣∣∣∣
w

r2

∣∣∣∣
s,Ω×Jk

+ ‖w‖1−1/s,s,S×Jk + ‖w(kT )‖2−2/s,s,Ω + |fϕ|s,Ω×Jk ].

In virtue of (3.46) and by the interpolation inequality (2.5), the first two
terms on the r.h.s. of (3.48) are estimated by

ε1‖w‖2,s,Ω×Jk + c(1/ε1, T, d2 + d4)|w|σ,Ω×Jk ≡ I,
for any ε1 ∈ (0, 1), where c is an increasing function and σ < s. If we choose
σ ≤ 4 and apply (3.18)2, the second term is bounded by cd2.

Similarly, by (3.18)2 and (2.5), the third and the fourth terms on the
r.h.s. of (3.48) are bounded by I. Hence for sufficiently small ε1 we conclude
the proof.

Finally, we examine problem (1.1).

Lemma 3.8. Let the assumptions of Lemma 3.7, v(kT ) ∈ W
2−2/r
r (Ω)

and f |t=0 ≡ f(0) ∈ Lr(Ω), (1.6)1 hold. Assume that σ < r and v ∈ Lσ(Ω ×
(kT, (k+ 1)T )), σ ≤ 4. Then there exist increasing positive functions c4, ϕ2

such that

(3.49) ‖v‖2,r,Ω×(kT,(k+1)T )

≤ c4(T )[ϕ2(d2 + d4, T )d2 + |f(0)|r,Ω + ‖v(kT )‖2−2/r,r,Ω ].

Proof. For solutions of (1.1) we have (see Lemma 1.4)

(3.50) ‖v‖2,r,Ω×Jk ≤ c(T )[|v ·∇v|r,Ω×Jk + |f(0)|r,Ω + ‖v(kT )‖2−2/r,r,Ω ].

We estimate the first term on the r.h.s. by |v′ ·∇v|r,Ω×Jk , which is bounded
in the same way as the first term on the r.h.s. of (3.48). This concludes the
proof.

To prove global existence we need global estimates for ‖w(kT )‖2−2/s,s,Ω
and ‖v(kT )‖2−2/r,r,Ω for any k ∈ N.

To show this, we introduce a smooth function ζk = ζk(t) such that
ζk(t) = 0 for t ≤ kT − T1, ζk(t) = 1 for kT − 1

2T1 ≤ t ≤ kT + 1
2T1, and

ζk(t) = 0 for t ≥ kT + T1, where T1 is small compared to T .
Let us introduce wk = wζk and vk = vζk. In view of (1.1) and (1.5), they

solve the problems

(3.51)

vk,t + v · ∇vk − divT(vk, pk) = fk + vζ̇k in Ω × J ′k,
div vk = 0 in Ω × J ′k,
vk · n = 0 on S × J ′k,
n · T(vk, pk) · τα = 0, α = 1, 2, on S × J ′k,
vk|t=kT−T1 = 0 in Ω,
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where
J ′k = (kT − T1, kT + T1).

Here pk = pζk, fk = fζk, ζ̇k is the derivative of ζk, and

(3.52)

wk,t+v · ∇wk +
vr
r
wk−ν∆wk+ν

wk
r2 =fϕk+wζ̇k in Ω × J ′k,

wk,r|r=Ri =
1
Ri
wk|r=Ri , i = 1, 2, on S1 × J ′k,

wk,z = 0 on S2 × J ′k,
wk|t=kT−T1 = 0 in Ω,

with fϕk = fϕζk. Repeating the proofs of Lemmas 3.7 and 3.8 we obtain

‖wk‖2,s,Ω×J ′k ≤ c(T1)(ϕ1(d2 + d4)d2 + d2 + |f(0)|s,Ω) ≡ I1,(3.53)

‖vk‖2,r,Ω×J ′k ≤ c(T1)(ϕ2(d2 + d4)d2 + d2 + |f(0)|r,Ω) ≡ I2,(3.54)

where s ≤ 4 and r ≤ 4. Hence

(3.55) ‖w(kT )‖2−2/s,s,Ω ≤ I1, ‖v(kT )‖2−2/r,r,Ω ≤ I2, k ∈ N.
In view of (3.55), Lemmas 3.7 and 3.8 give global estimates for w and v.

4. Existence and uniqueness. To prove the existence of solutions to
problem (1.1), we shall distinguish two approaches. First we introduce weak
solutions to (1.1) and prove their existence. We follow Ladyzhenskaya [6,
Ch. 6].

Definition 4.1. By a weak solution to problem (1.1) we mean a function
v satisfying the integral identity

(4.1) �
Ωt

[−v · ϕ,t′ − vivjϕj,xi + D(v) · D(ϕ)] dx dt′

+ �
Ω

v · ϕ|t dx− �
Ω

v(0)ϕ|t=0 dx = �
Ωt

f · ϕdxdt′

for any ϕ ∈W 1,1
2 (ΩT ) with

(4.2)
ϕ · n|S = 0,

divϕ = 0.

Lemma 4.2. Suppose the assumptions of Lemma 3.3 hold. Then there ex-
ists a weak solution to problem (1.1) such that conditions (3.18) are satisfied.

Proof. To prove the existence we use the Galerkin method. Hence, we
are looking for approximate solutions in the form

(4.3) vn =
n∑

i=1

αni(t)ai(x),
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where the functions ai form a fundamental system in H1(Ω), orthonormal
in L2(Ω), and such that maxx∈Ω |ai(x)| < ∞. Moreover, the functions ai
satisfy

(4.4)

div ai = 0,

ai · n|S = 0,

n ·D(ai) · τα|S = 0, α = 1, 2.

The functions αni = αni(t), i = 1, . . . , n, are solutions of the following
Cauchy problem:

(4.5)
d

dt
(vn, ai) = −ν(vn,x, ai,x)− (vnk v

n
,xk
, ai) + (f, ai),

αni(0) = (v(0), ai),

i = 1, . . . , n, and (·, ·) is the scalar product in L2(Ω).
The remainder of the proof is exactly the same as in [6, Ch. 6, proof

of Theorem 20]. However, to prove the global existence we use Lemma 3.3.
Hence, we have to consider system (4.5) in the interval (k0, k0 + T ), k0 ∈
R+ ∪{0}, k0 = kT , k ∈ N. Therefore, we need appropriate initial conditions
for t = k0. For this purpose, we examine the functions

ψn,l(t) = (vn(·, t), al(·)).
For a fixed l, and n ≥ l, they form a set of uniformly bounded and uni-
formly continuous functions on [k0, k0 + T ]. The boundedness follows from
the estimate (3.18)2:

(4.6) ‖vn‖V 1
2 (ΩT ) ≤ c.

To show the uniform continuity we integrate (4.5) with respect to time
from t to t+∆t. Applying the Cauchy inequality we obtain

|ψn,l(t+∆t)− ψn,l(t)|

≤ ν
t+∆t

�
t

|vn,x|2,Ω |al,x|2,Ω dt′ + max
x∈Ω
|al|

t+∆t

�
t

(|vn|2,Ω |vn,x|2,Ω + |f |2,Ω) dt′

≤ ν|al,x|2,Ω |vn,x|2,Ω×(k0,k0+T )

√
∆t

+ max
x
|al|
(

sup
t
|vn|2,Ω |vn,x|2,Ω×(k0,k0+T )

√
∆t+

t+∆t

�
t

|f(t′)|2,Ω dt′
)

≤ c(l)
(√

∆t+
t+∆t

�
t

|f(t′)|2,Ω dt′
)
.

In view of the uniform continuity of the sequence {ψn,l}, we can choose
a subsequence {ψnk,l} which converges uniformly to a continuous function
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ψl(t). We see that v is determined for all t ∈ [kT, (k + 1)T ] in the form

v(x, t) =
∑

l

ψl(t)al(x).

In view of the above construction, we can determine initial data for the
interval ((k + 1)T, (k + 2)T ) having proved the existence of weak solutions
in (kT, (k+1)T ). This way of proving the existence of global weak solutions
is motivated by the proof of Lemma 3.3, where estimate (3.18) is obtained
step by step. This ends the proof.

Proof of Theorem 1. To increase regularity of the weak solutions we
consider problem (1.1) in the form

(4.7)

v,t − divT(v, p) = −v′ · ∇v + f,

div v = 0,

v · n|S = 0,

n · T(v, p) · τα|S = 0, α = 1, 2,

v|t=0 = v(0),

where v′ = (vr, vz). By Lemmas 4.1 and 3.3 we have

|v′ · ∇v|4/3,ΩT ≤ |v′|4,ΩT |∇v|2,ΩT ≤ d2
2.

Hence from (4.7) we have existence of weak solutions such that v∈W 2,1
4/3(ΩT ).

However, this implies only that v ∈ Lq(ΩT ), q ≤ 4, so there is no increase of
regularity. Since W 2,1

4/3(ΩT ) ⊂ L4(ΩT ), [11] yields uniqueness. This implies
Theorem 1.

To increase regularity of the weak solutions, we are looking for solutions
to problem (1.4) in the form χn =

∑n
i=1 βni(t)bi(x), where βni, i ≤ n, are

solutions to the Cauchy problem

(4.8)
d

dt
(χn, bi) + (vn · ∇χn, bi) + ((vnr,r + vnz,z)χ

n, bi)

= ν

((
r

(
χn

r

)

,r

)

,r

+ χn,zz + 2
(
χn

r

)

,r

, bi

)

+
(

2
r
wnwn,z , bi

)
+ (Fϕ, bi), βni(0) = (χ(0), bi), i ≤ n,

and the functions bi such that bi|S = 0 form a basis in H1(Ω), and vn, wn

are approximate solutions of v.
In view of Lemma 3.4 we have the estimate

(4.9) ‖χn‖V 1
2 (ΩT ) ≤ d4.
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Hence, by the usual passage to the limit we have, for a weak solution v ∈
V 1

2 (ΩT ), also a solution of (1.4) such that χ ∈ V 1
2 (ΩT ).

We prove the existence of solutions to problem (1.1) by the Leray–
Schauder fixed point theorem. For this purpose, we consider the problem

(4.10)

v,t − divT(v, p) = −λv · ∇v + f in Ω × J0,

div v = 0 in Ω × J0,

v · n = 0 on S × J0,

n · D(v) · τα = 0, α = 1, 2, on S × J0,

v|t=0 = v(k0) in Ω,

where λ ∈ [0, 1], k0 ∈ R+ and J0 = (k0, k0 + T ).
We shall try to prove existence of a fixed point of (4.10) for λ = 1 with

the least possible regularity. Let

(4.11) v = T (v, λ)

be the transformation determined by (4.10).

Lemma 4.3. Assume that v ∈ Lq(J0;W 1
p (Ω)) with 1/p − 1/4 = 1/q,

p > 8/5, q > 8/3, f(0) ∈ Lr(Ω), v(k0) ∈ W 2−2/r
r (Ω), r > 4/3. Then the

transformation

T : Lq(J0;W 1
p (Ω))× [0, 1]→ Lq(J0;W 1

p (Ω))

is compact for 4/r − 2/p− 2/q < 1.

Proof. Applying [1] we have (see Lemma 1.4)

(4.12) ‖v‖2,r,Ω×J0 ≤ c(|v · ∇v|r,Ω×J0 + |f(0)|r,Ω + ‖v(k0)‖2−2/r,r,Ω),

where the first term is bounded by

|v|λ1r,µ1r,Ω×J0 |∇v|λ2r,µ2r,Ω×J0 ≡ I,
where 1/λ1 + 1/λ2 = 1, 1/µ1 + 1/µ2 = 1, and λ1r = 2p/(2− p), λ2r = p,
µ1r = q = µ2r. In the above we used the fact that v ∈ Lq(J0;Lσ(Ω)) with
σ = 2p/(2− p) for p < 2 and σ = ∞ for p > 2. In view of the compact
imbedding

W 2,1
r (Ω × J0) ⊂ Lq(J0;W 1

p (Ω))

(which holds under the assumptions of the lemma) and

I ≤ c‖v‖2Lq(J0;W 1
p (Ω)),

the transformation (4.11) is compact. This concludes the proof.

Proof of Theorem 2. The uniform continuity of T with respect to v in
Lq(J0;W 1

p (Ω)) and with respect to λ ∈ [0, 1] is evident. The a priori bound
for a fixed point of (4.11) with λ = 1 is found in Lemma 3.8. For λ =
0 we have the unique existence (see [1]). Compactness of T follows from
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Lemma 4.3. Hence, by the Leray–Schauder fixed point theorem, we have
existence of solutions to problem (1.1). This ends the proof.

Proof of Theorem 3. We assume that we have two solutions vi, pi, i =
1, 2, of problem (1.1). Then V = v1 − v1, P = p1 − p2 are solutions to the
problem

(4.13)

V,t − divT(V, P ) = −(V · ∇v1 + v2 · ∇V ) in Ω × J0,

div V = 0 in Ω × J0,

V · n = 0 on S × J0,

n · D(v) · τα = 0, α = 1, 2, on S × J0,

V |t=k0 = 0 in Ω.

Multiplying (4.13)1 by V and integrating over Ω implies

(4.14)
1
2
d

dt
|V |22,Ω + ν‖V ‖21,Ω ≤ |v1|2∞,Ω |V |22,Ω .

From (4.14) we have uniqueness of solutions of problem (1.1) such that
v ∈ L2(J0;L∞(Ω)) for any k0 ∈ R+. This proves Theorem 3.

Remark 4.4. Weak solutions determined by Lemma 4.2 satisfy the Ser-
rin condition (see [10]).
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