VOL. 100

2004

NO. 2

TWISTED GROUP RINGS OF STRONGLY UNBOUNDED REPRESENTATION TYPE

ΒY

LEONID F. BARANNYK and DARIUSZ KLEIN (Słupsk)

Abstract. Let S be a commutative local ring of characteristic p, which is not a field, S^* the multiplicative group of S, W a subgroup of S^* , G a finite p-group, and $S^{\lambda}G$ a twisted group ring of the group G and of the ring S with a 2-cocycle $\lambda \in Z^2(G, S^*)$. Denote by $\operatorname{Ind}_m(S^{\lambda}G)$ the set of isomorphism classes of indecomposable $S^{\lambda}G$ -modules of S-rank m. We exhibit rings $S^{\lambda}G$ for which there exists a function $f_{\lambda} : \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}(S^{\lambda}G)$ is an infinite set for every natural n > 1. In special cases $f_{\lambda}(\mathbb{N})$ contains every natural number m > 1 such that $\operatorname{Ind}_m(S^{\lambda}G)$ is an infinite set. We also introduce the concept of projective (S, W)-representation type for the group G and we single out finite groups of every type.

Introduction. Let $p \ge 2$ be a prime. A finite group whose order is a positive power of p is called a p-group. Suppose G is a p-group, G' the commutant of G, rad A the Jacobson radical of a ring A, $\overline{A} = A/\text{rad}A$ the factor ring of the ring A by rad A, S a commutative local ring with an identity element of characteristic p^k , $S^p = \{a^p : a \in S\}$, S^* the multiplicative group of S, and $Z^2(G, S^*)$ the group of all S^{*}-valued normalized 2-cocycles of the group G that acts trivially on S^* . A twisted group ring $S^{\lambda}G$ of the group G and of the ring S with $\lambda \in Z^2(G, S^*)$ is the S-algebra with S-basis $\{u_q : q \in G\}$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$ ([31, pp. 2–4]). Let e be the identity element of G. We have $u_a u_e = u_e u_a = u_a$ for all $a \in G$. The S-basis $\{u_a : g \in G\}$ of $S^{\lambda}G$ will be called *natural*. If H is a subgroup of G, then the restriction of a cocycle $\lambda : G \times G \to S^*$ to $H \times H$ will also be denoted by λ . In this case $S^{\lambda}H$ is a subring of $S^{\lambda}G$. By an $S^{\lambda}G$ -module we mean a finitely generated left $S^{\lambda}G$ -module which is S-free, that is, an $S^{\lambda}G$ -lattice (see [10, p. 140]). The study of S-representations of $S^{\lambda}G$ is essentially equivalent to the study of $S^{\lambda}G$ -modules (see [9, §10]; [12, p. 74]). The module corresponding to a representation is called the underlying module of that representation ([12, p. 74]).

²⁰⁰⁰ Mathematics Subject Classification: 16G30, 20C20, 20C25.

Key words and phrases: crossed group rings, modular representations, projective representations, twisted group rings.

Following the terminology of [26], we say that $S^{\lambda}G$ is of finite (resp. infinite) representation type if the set of all isomorphism classes of indecomposable $S^{\lambda}G$ -modules is finite (resp. infinite). Let $D(S^{\lambda}G)$ be the set of S-ranks of all indecomposable $S^{\lambda}G$ -modules. If $D(S^{\lambda}G)$ is finite (resp. infinite), then $S^{\lambda}G$ is of bounded (resp. unbounded) representation type. Let $\mathrm{Ind}_d(S^{\lambda}G)$ be the set of isomorphism classes of indecomposable $S^{\lambda}G$ -modules of S-rank d and let \mathbb{N} be the set of positive integers. We say that $S^{\lambda}G$ is of SURtype (Strongly Unbounded Representation type) if there exists a function $f_{\lambda}: \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\mathrm{Ind}_{f_{\lambda}(n)}(S^{\lambda}G)$ is an infinite set for every n > 1. A function f_{λ} will be called an SUR-dimension-valued function.

Higman [25] proved that if S is a field of characteristic p, then a group algebra SG is of finite representation type if and only if SG is of bounded representation type. This does not hold in the case when S is not a field [17], [32]. Gudivok [16] and Janusz [27], [28] showed that if S is an infinite field of characteristic p and G is a non-cyclic p-group for which $|G/G'| \neq 4$, then $\operatorname{Ind}_n(SG)$ is an infinite set for every natural n > 1. Let G be a finite *p*-group of order |G| > 2, S a commutative local ring of characteristic p^k , and rad $S \neq 0$. Gudivok and Chukhray [19], [20] proved that if \bar{S} is an infinite field or S is an integral domain, then $\operatorname{Ind}_n(SG)$ is infinite for every natural n > 1. In paper [24], joint with Sygetij, they obtained a similar result in the case where G is a non-cyclic p-group, $p \neq 2$ and S is an infinite ring of characteristic p or \overline{S} is an infinite field. We note that in [22], [23], Gudivok and Pogorilyak investigate group rings SG of bounded representation type for the case when G is a p-group and S is an arbitrary commutative local ring of characteristic p^k with rad $S \neq 0$. The similar problem was studied in [4] for twisted group rings $S^{\lambda}G$, where S is a Dedekind domain of characteristic p.

We remark that the investigations mentioned above were considerably stimulated by the well-known Brauer–Thrall conjectures [26] for finite-dimensional algebras over an arbitrary field. For a complete discussion of related problems in the modern representation theory of finite groups, algebras, quivers and vector space categories the reader is referred to the monographs [11], [13] and [33].

In the present paper we describe twisted group rings $S^{\lambda}G$ of SURtype. We shall also characterize finite *p*-groups depending on a projective (S, W)-representation type. Our investigations extend the results of [4], [19] and [20]. We obtain indecomposable $S^{\lambda}G$ -modules of *S*-rank $f_{\lambda}(n)$ by applying induction from $S^{\lambda}H$ -modules to $S^{\lambda}G$ -modules, where *H* is a subgroup of *G*. If *M* is an indecomposable $S^{\lambda}G$ -module then the induced module $M^{S^{\lambda}G}$ is also an indecomposable $S^{\lambda}G$ -module under some assumptions which generalize the hypotheses of the Green Theorems [14], [15]. When $S^{\lambda}H$ is a group ring and |H| > 2, we make use of the indecomposable $S^{\lambda}H$ - modules which are constructed in [19] (see also [18]) as initial $S^{\lambda}H$ -modules. If $S^{\lambda}H$ is not a group ring then first we find $\mu \in Z^2(H, S^*)$ such that $S^{\lambda}H = S^{\mu}H$ and $S^{\mu}H$ contains a group ring $S^{\mu}B$, where B is a subgroup of H and |B| > 2. In this case we obtain indecomposable $S^{\lambda}H$ -modules by applying induction from $S^{\mu}B$ -modules to $S^{\mu}H$ -modules.

Let us briefly present the results obtained. In Section 1, we define the kernel of a cocycle and prove its properties. In Section 2, we obtain further information on the infinite series of indecomposable modules of R-rank n over a group ring RH studied in [19], where $n \geq 2$ is an arbitrary natural number, R is a commutative local ring of characteristic p, and H is a cyclic p-group of order |H| > 2 or a group of type (2, 2). In particular, we prove that, for every such module V, the ring $\operatorname{End}_{RH}(V)$ is finitely generated as an R-module.

In Section 3, we single out rings $S^{\lambda}G$ of SUR-type for the case when S is an arbitrary local integral domain of characteristic p, and, in Section 4, for the case when S is a commutative local noetherian ring of characteristic p. We prove that if S is a local integral domain of characteristic p, H the kernel of $\lambda \in Z^2(G, S^*)$, and |H:G'| > 2, then for $S^{\lambda}G$ one can construct the SURdimension-valued function $f_{\lambda}(n) = nd$, where d = |G:H| (Theorem 1). If S is a local noetherian integral domain of characteristic p then in the above statement we can assume that |H| > 2 (see Corollary to Theorem 4). Let S be a local integral domain of characteristic p, F a subfield of S, and $\lambda \in Z^2(G, F^*)$ such that $F^{\lambda}G$ is a non-semisimple algebra. Then for $S^{\lambda}G$ there exists an SUR-dimension-valued function $f_{\lambda}(n) = nd$, where $d = \dim_F \overline{F^{\lambda}G}$. In addition, one should assume that one of the following conditions holds:

- 1) $p \neq 2, d < |G:G'|$ (Theorem 2);
- 2) $p = 2, d < \frac{1}{2}|G:G'|$ (Theorem 3);
- 3) $p \neq 2$, S is a noetherian ring (Theorem 6).

We remark that if $S^{\lambda}G = SG$, then d = 1 and $f_{\lambda}(n) = n$, in each of the above cases, and we recover the results of [19], [20]. In Theorem 5, we prove the existence of a ring $S^{\lambda}G$ with SUR-dimension-valued function $f_{\lambda}(n) = n \cdot |G:B|$, where B can be an arbitrary subgroup with $G' \subset B \subset G$, and moreover the S-rank of every indecomposable $S^{\lambda}G$ -module is a value of the function f_{λ} .

In Section 5, we introduce the concept of projective (S, W)-representation type for a finite group (finite, infinite, purely infinite, bounded, unbounded, purely unbounded, strongly unbounded, purely strongly unbounded). We prove a number of propositions about *p*-groups with a given projective (S, W)-representation type over a ring S = F[[X]] (Propositions 5–8).

1. Non-semisimple twisted group algebras

LEMMA 1. Let G be a p-group, R an integral domain of characteristic p, R^* the multiplicative group of R, W a subgroup of R^* , $\lambda : G \times G \to W$ a 2-cocycle, and A the union of all cyclic subgroups $\langle g \rangle$ of G such that the restriction of λ to $\langle g \rangle \times \langle g \rangle$ is a W-valued coboundary. Then $G' \subset A$, A is a normal subgroup of G, and up to cohomology in $Z^2(G, W)$,

(1)
$$\lambda_{g,a} = \lambda_{a,g} = 1$$

for all $g \in G$, $a \in A$.

Proof. Evidently if T is a subgroup of G and the restriction of λ : $G \times G \to W$ to $T \times T$ is a W-valued coboundary then $T \subset A$. By [29, Corollary 4.10, p. 42], the restriction of λ to $G' \times G'$ is a W-valued coboundary. Hence, $G' \subset A$. Let B be a normal subgroup of G with $G' \subset B$ and suppose the restriction of λ to $B \times B$ is a W-valued coboundary. We may assume $\lambda_{b,b'} = 1$ for all $b, b' \in B$. Let $\{u_g : g \in G\}$ be a natural R-basis of $R^{\lambda}G$. For any $b \in B, g \in G$ we have

$$u_g u_b u_g^{-1} = \gamma u_{b'},$$

where $\gamma \in W$, $b' = gbg^{-1}$. Then

$$u_g u_b^{|b|} u_g^{-1} = \gamma^{|b|} u_{b'}^{|b|},$$

whence $\gamma = 1$. Consequently, $\lambda_{g,b} = \lambda_{b',g}$. Let $\{g_1 = e, g_2, \ldots, g_n\}$ be a cross section of B in G ([12, p. 79]). We set $v_{g_ib} = \lambda_{g_i,b}u_{g_ib}$ for every $i \in \{1, \ldots, n\}$ and $b \in B$. Then $v_{g_i} = u_{g_i}, v_b = u_b, v_{g_i}v_b = v_{g_ib}$ and for any $g = g_jc, c \in B$, we have

$$v_g v_b = v_{g_j} v_c v_b = v_{g_j} v_{cb} = v_{g_j(cb)} = v_{gb}, \quad v_b v_g = v_{bg}.$$

Therefore, up to cohomology, $\lambda_{g,b} = \lambda_{b,g} = 1$ for all $g \in G, b \in B$.

Let *H* be a cyclic subgroup of *G* such that the restriction of λ to $H \times H$ is a *W*-valued coboundary. Let D = BH and suppose $D \neq B$. Because $G' \subset B$, *D* is a normal subgroup of *G*. By hypothesis,

$$\lambda_{h,h'} = \frac{\alpha_h \cdot \alpha_{h'}}{\alpha_{hh'}}$$

for any $h, h' \in H$, where α is a mapping of H into W. If $x, y \in B \cap H$ then $\lambda_{x,y} = 1$ and $\lambda_{x,y} = \frac{\alpha_x \cdot \alpha_y}{\alpha_{xy}}$,

whence $\alpha_{xy} = \alpha_x \alpha_y$. It follows that $\alpha_x = 1$ for any $x \in B \cap H$.

Let $h_1 = e, h_2, \ldots, h_m \in H$ and $\{h_1, \ldots, h_m\}$ be a cross section of B in D. If $d \in D$ and $d = bh_i, b \in B$, then we set

$$v_d = \alpha_{h_i}^{-1} u_d.$$

Let $d_1 = xh_i$ and $d_2 = yh_j$, where $x, y \in B$, be arbitrary elements of D. Assume that $h_ih_j = bh_r$, $b \in B$, and $z = h_iyh_i^{-1}$. Then $\lambda_{b,h_r} = 1$, and hence $\alpha_{bh_r} = \alpha_b \alpha_{h_r} = \alpha_{h_r}$, whence $\alpha_{h_i h_i} = \alpha_{h_r}$. Thus, we get

$$v_{d_1} \cdot v_{d_2} = \alpha_{h_i}^{-1} u_x u_{h_i} \cdot \alpha_{h_j}^{-1} u_y u_{h_j} = \alpha_{h_i}^{-1} \alpha_{h_j}^{-1} u_x u_z \lambda_{h_i, h_j} u_{h_i h_j}$$
$$= \alpha_{h_i h_j}^{-1} u_{d_1 d_2} = \alpha_{h_r}^{-1} u_{d_1 d_2} = v_{d_1 d_2}.$$

This proves that the restriction of λ to $D \times D$ is a *W*-valued coboundary. Let $a_i \in A$, $H_i = \langle a_i \rangle$, $1 \leq i \leq n$, and $D_n = G'H_1 \cdots H_n$. Applying induction on n, we conclude in view of the above arguments that D_n is a normal subgroup of G, $D_n \subset A$, and up to cohomology in $Z^2(G, W)$ we have $\lambda_{g,d} = \lambda_{d,g} = 1$ for all $g \in G$, $d \in D_n$. This completes the proof, because $A = D_s$ for some s.

DEFINITION. The subgroup A introduced in Lemma 1 is said to be the kernel of the cocycle $\lambda \in Z^2(G, W)$. We denote this subgroup by $\text{Ker}(\lambda)$.

In what follows, we assume that every cocycle $\lambda \in Z^2(G, W)$ under consideration satisfies condition (1). We remark that if $\mu_{xA,yA} = \lambda_{x,y}$ for any $x, y \in G$, then $\mu \in Z^2(G/A, W)$ and $\operatorname{Ker}(\mu) = \{A\}$.

Let F be a field of characteristic p, and W a subgroup of F^* . Set $i_F(W) = \sup\{0, m\}$, where m is a natural number such that the algebra

$$F[x]/(x^p - \gamma_1) \otimes_F \cdots \otimes_F F[x]/(x^p - \gamma_m)$$

is a field for some $\gamma_1, \ldots, \gamma_m \in W$. By Proposition 1.1 of [6], for any natural number t, there exists a field F such that $i_F(F^*) = t$.

PROPOSITION 1. Let G be a finite p-group, F a field of characteristic p, W a subgroup of F^* , $\lambda \in Z^2(G, W)$, and $B = \text{Ker}(\lambda)$. Then the set $V = F^{\lambda}G \cdot \text{rad } F^{\lambda}B$ is a nilpotent ideal of the algebra $F^{\lambda}G$, and the quotient algebra $F^{\lambda}G/V$ is isomorphic to $F^{\pi}H$, where H = G/B and $\pi_{xB,yB} = \lambda_{x,y}$ for any $x, y \in G$. If $d = \dim_F \overline{F^{\lambda}G}$ then d is a divisor of |G:B|. Suppose that $i_F(W) \geq k$, where k is the number of invariants of the group G/G'. Then for every subgroup B of G containing G' there exists a cocycle $\lambda \in Z^2(G, W)$ such that $B = \text{Ker}(\lambda)$ and $\dim_F \overline{F^{\lambda}G} = |G:B|$.

Proof. Let $\lambda \in Z^2(G, W)$ and $B = \text{Ker}(\lambda)$. By Lemma 1, B is a normal subgroup of $G, G' \subset B$, and $\lambda_{g,b} = \lambda_{b,g} = 1$ for all $g \in G, b \in B$. It follows that $F^{\lambda}B$ is the group algebra of B over the field F and

rad
$$F^{\lambda}B = \bigoplus_{b \in B, b \neq e} F(u_b - u_e).$$

Then $V = F^{\lambda}G \cdot \operatorname{rad} F^{\lambda}B$ is a nilpotent ideal of $F^{\lambda}G$. The quotient algebra $F^{\lambda}G/V$ is the commutative twisted group algebra $F^{\pi}H$ of the group H = G/B and the field F with the 2-cocycle $\pi \in Z^2(H, W)$, where $\pi_{xB,yB} = \lambda_{x,y}$ for any $x, y \in G$. A natural F-basis of $F^{\lambda}G/V$ is formed by elements of the form $u_q + V$.

Let $H = \langle h_1 \rangle \times \cdots \times \langle h_r \rangle$ be a group of type $(p^{s_1}, \ldots, p^{s_r})$. The algebra $F^{\pi}H$ has a natural *F*-basis $\{v_h : h \in H\}$ satisfying the following conditions:

1) if

$$h = h_1^{j_1} \cdots h_r^{j_r}$$

and $0 \le j_i < p^{s_i}$ for every $i = 1, \dots, r$, then
 $v_h = v_{h_1}^{j_1} \cdots v_{h_r}^{j_r};$

2)
$$v_{h_i}^{p^{\sigma_i}} = \alpha_i v_e, \ \alpha_i \in W \ (i = 1, \dots, r).$$

We denote the algebra $F^{\pi}H$ also by $[H, F, \alpha_1, \ldots, \alpha_r]$. In view of [5, Theorem 1] we have $\overline{F^{\pi}H} \cong K$, where K is a finite purely inseparable extension of F and [K:F] divides |H|. Since $\overline{F^{\lambda}G} \cong \overline{F^{\pi}H}$, d divides |G:B|.

Now we prove the final statement. Let B be the subgroup of G with $G' \subset B$ and set H = G/B. Assume $H = \langle h_1 \rangle \times \cdots \times \langle h_r \rangle$. Then $r \leq k$. Since $i_F(W) \geq k$,

$$F[x]/(x^p - \gamma_1) \otimes_F \cdots \otimes_F F[x]/(x^p - \gamma_r)$$

is a field for some $\gamma_1, \ldots, \gamma_r \in W$. The twisted group algebra $F^{\mu}H = [H, F, \gamma_1, \ldots, \gamma_r]$ is a field. Let $\lambda_{x,y} = \mu_{xB,yB}$ for all $x, y \in G$. Then $\lambda \in Z^2(G, W)$ and $\operatorname{Ker}(\lambda) = B$. Let $V = F^{\lambda}G \cdot \operatorname{rad} F^{\lambda}B$. Because $F^{\lambda}G/V \cong F^{\mu}H$ and $F^{\mu}H$ is a field, we have $V = \operatorname{rad} F^{\lambda}G$ and $\operatorname{dim}_F \overline{F^{\lambda}G} = |G:B|$.

PROPOSITION 2. Let G be a finite p-group, F a field of characteristic p, $\lambda \in Z^2(G, F^*)$, and $d = \dim_F \overline{F^{\lambda}G}$.

(i) There exists a homomorphism of $F^{\lambda}G$ onto a twisted group algebra of the form

(2)
$$A = \bigoplus_{j=0}^{p^m-1} K v_a^j, \quad v_a^{p^m} = \alpha^{p^l} v_e \ (\alpha \in K^*),$$

where m > 0, K is a finite purely inseparable extension of F; $d = [K:F] \cdot p^{m-l}$, l = 0 for d = |G:G'| and $1 \le l \le m$ for d < |G:G'|; $\alpha \notin K^p$ for $0 \le l < m$ and $\alpha = 1$ for l = m.

 (ii) If d < 1/p|G: G'|, then there exists a homomorphism of F^λG onto A with 2 ≤ l ≤ m or onto a twisted group algebra of the form

(3)
$$A' = \bigoplus_{i,j} K v_a^i v_b^j, \quad v_a v_b = v_b v_a, \quad v_a^{p^m} = \alpha^p v_e, \quad v_b^{p^n} = \beta^p v_e,$$

where $m, n > 0, K$ is a finite purely inseparable extension of F ,
 $d = [K:F] \cdot p^{m+n-2}, \text{ and rad } A' \text{ is generated by elements}$
 $v_a^{p^{m-1}} - \alpha v_e, \quad v_b^{p^{n-1}} - \beta v_e.$

Proof. We keep the notations used in the proof of Proposition 1, and we assume that G is non-abelian. Arguing as in that proof, we establish the existence of an algebra homomorphism $F^{\lambda}G$ onto the algebra $F^{\pi}H$, where

H = G/G' and $\pi_{xG',yG'} = \lambda_{x,y}$ for all $x, y \in G$. Let $H = \langle h_1 \rangle \times \cdots \times \langle h_k \rangle$ be a group of type $(p^{l_1}, \ldots, p^{l_k})$ and $\{u_h : h \in H\}$ a natural *F*-basis of $F^{\pi}H$. If $F^{\pi}H$ is semisimple then $F^{\pi}H$ is a field and d = |G:G'|. We have

$$F^{\pi}H = \bigoplus_{j=0}^{p^m-1} Kv_a^j, \quad v_a^{p^m} = \alpha v_e \ (\alpha \in F^*),$$

where $m = l_k$, $K = F[u_{h_1}, \ldots, u_{h_{k-1}}]$, and $v_a = u_{h_k}$. In this case $\alpha \notin K^p$. Assume now that the algebra $F^{\pi}H$ is non-semisimple. Suppose also that $F[u_{h_1}, \ldots, u_{h_{r-1}}]$ is a field and $F[u_{h_1}, \ldots, u_{h_{r-1}}, u_{h_r}]$ is not. Let

$$H_1 = \prod_{i \neq r} \langle h_i \rangle, \quad H_2 = \langle h_r \rangle, \quad U = \operatorname{rad} F^{\pi} H_1, \quad W = F^{\pi} H \cdot U,$$

and $F^{\pi}H_1/U \cong K$, where K is a finite purely inseparable extension of F. Then

$$F^{\pi}H/W \cong F^{\pi}H_1/U \otimes_F F^{\pi}H_2 \cong K \otimes_F F^{\pi}H_2 \cong K^{\pi}H_2,$$

and hence, $F^{\pi}H/W$ is isomorphic to a twisted group algebra A of the form (2), where $m = l_r$. The case when $F[u_{h_i}]$ is not a field for every $i = 1, \ldots, k$ is treated similarly.

Assume that d < (1/p)|H|. Then there exists a homomorphism of the algebra $F^{\pi}H$ onto an algebra of the form (2) with $l \ge 2$ or onto an algebra A' of the form (3), where $\alpha, \beta \in K, \alpha \notin K^p$ for m > 1, and $\beta \notin K^p$ for n > 1. Let m > 1 and $L = K(\theta)$, where θ is a root of the polynomial

$$X^{p^{n-1}} - \beta.$$

If $\alpha \in L^p$ then there exists a homomorphism of A' onto

$$\bigoplus_{i=0}^{p^m-1} Lv_a^i, \quad v_a^{p^m} = \gamma^{p^2} v_e \ (\gamma \in L^*),$$

which is of the form (2).

2. Infinite sets of indecomposable underlying modules of representations of a group ring of a *p*-group. Let $H = \langle a \rangle$ be a cyclic *p*-group of order |H| > 2, and *R* a commutative local ring of characteristic *p*. Assume that there is a non-zero element $t \in \operatorname{rad} R$ which is not a zero-divisor. Let E_m be the identity matrix of order m, $J_m(0)$ the upper Jordan block of order *m* with zeros on the main diagonal, and $\langle 1 \rangle$ the $m \times 1$ -matrix of the form

$$\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}.$$

Denote by Γ_i a matrix *R*-representation of degree *n* of the group *H* defined in the following way:

1) if n = 2 then

$$\Gamma_i(a) = \begin{pmatrix} 1 & t^i \\ 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

2) if $n = 3m \ (m \ge 1)$ then

$$\Gamma_{i}(a) = \begin{pmatrix} E_{m} & t^{i}E_{m} & J_{m}(0) \\ 0 & E_{m} & t^{i}E_{m} \\ 0 & 0 & E_{m} \end{pmatrix} \quad (i \in \mathbb{N});$$

3) if $n = 3m + 1 \ (m \ge 1)$ then

$$\Gamma_i(a) = \begin{pmatrix} E_m & t^{2i}E_m & J_m(0) & t\langle 1 \rangle \\ 0 & E_m & t^iE_m & 0 \\ 0 & 0 & E_m & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

4) if $n = 3m + 2 \ (m \ge 1)$ then

$$\Gamma_i(a) = \begin{pmatrix} E_m & t^{i+2}E_m & J_m(0) & t^{2i+4}\langle 1 \rangle & t\langle 1 \rangle \\ 0 & E_m & t^{2i+4}E_m & 0 & t^2\langle 1 \rangle \\ 0 & 0 & E_m & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N}).$$

Let V_i be the underlying *RH*-module of this representation.

Note that Γ_i is a slight modification of the representation of H which was constructed in [19, Lemma 4] for the case when R is a local integral domain of characteristic p. One can obtain this representation as a result of the substitution $J_m(0) \mapsto E_m + J_m(0)$.

LEMMA 2. If $i \neq j$, then the RH-modules V_i and V_j are non-isomorphic. The algebra $\operatorname{End}_{RH}(V_i)$ is finitely generated as an R-module and there is an algebra isomorphism

 $\operatorname{End}_{RH}(V_i)/\operatorname{rad}\operatorname{End}_{RH}(V_i)\cong R/\operatorname{rad} R$ for every $i\in\mathbb{N}$.

Proof. By direct calculations we find that if $i \neq j$ and $C\Gamma_i(a) = \Gamma_j(a)C$ for some $C \in \mathbb{R}^{n \times n}$, then det $C \notin \mathbb{R}^*$. Hence the modules V_i and V_j are non-isomorphic for $i \neq j$. We prove the second and third statement only for the case n = 3m + 2, because the proof in the remaining cases is similar.

Suppose that

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} \end{pmatrix}$$

is a square matrix of order n = 3m + 2 with entries from the ring R. In addition, we assume that C_{11} , C_{22} , C_{33} are square matrices of order m and C_{44} , C_{55} square matrices of order 1. If $\Gamma_i(a)C = C\Gamma_i(a)$, then

$$C_{21} = 0, \quad C_{31} = 0, \quad C_{32} = 0, \quad C_{34} = 0,$$

$$C_{41} = 0, \quad C_{51} = 0, \quad C_{52} = 0, \quad C_{54} = 0;$$

$$C_{22} = C_{11} - t^{i+2} \langle 1 \rangle C_{42}; \quad C_{33} = C_{11} - (t^{i+2} + t^2) \langle 1 \rangle C_{42};$$

$$C_{53} = t^{2i+4} C_{42}; \quad C_{24} + t^{i+2} \langle 1 \rangle C_{44} = t^{i+2} C_{11} \langle 1 \rangle;$$

$$(4) \quad C_{55} = t^2 C_{42} \langle 1 \rangle + C_{44}; \quad C_{24} = t^{2i+4} C_{35} + t^2 \langle 1 \rangle C_{55} - t^2 C_{22} \langle 1 \rangle;$$

$$C_{11} J_m(0) - J_m(0) C_{11}$$

$$= t^{i+2} (C_{23} + t^{i+2} \langle 1 \rangle C_{43} + t^{i+3} \langle 1 \rangle C_{42} - t^{i+2} C_{12});$$

$$C_{14} = t^{i+2} C_{25} + J_m(0) C_{35}$$

$$+ t^{2i+4} \langle 1 \rangle C_{45} + t \langle 1 \rangle C_{55} - t C_{11} \langle 1 \rangle - t^2 C_{12} \langle 1 \rangle.$$

We can find all solutions of this system if we know the solutions of the following system:

(5)
$$t^{2i+2}C_{35} + (1+t^i)\langle 1\rangle C_{55} - (1+t^i)C_{11}\langle 1\rangle = 0,$$

(6)
$$C_{11}J_m(0) - J_m(0)C_{11} = t^{i+2}(C_{23} + t^{i+2}\langle 1 \rangle C_{43} + t^{i+3}\langle 1 \rangle C_{42} - t^{i+2}C_{12}).$$

Define

$$B = C_{23} + t^{i+2} \langle 1 \rangle C_{43} + t^{i+3} \langle 1 \rangle C_{42} - t^{i+2} C_{12}; \quad C_{55} = (\alpha);$$

$$B = (b_{kl}), \quad C_{11} = (x_{kl}), \quad 1 \le k, l \le m; \quad C_{35} = \begin{pmatrix} \delta_1 \\ \vdots \\ \delta_m \end{pmatrix}.$$

Equation (5) yields

$$x_{11} = \alpha + \frac{t^{2i+2}}{1+t^i}\delta_1; \quad x_{j1} = \frac{t^{2i+2}}{1+t^i}\delta_j, \quad 2 \le j \le m.$$

We declare α, δ_j for all j = 1, ..., m to be free unknowns. Equation (6) can be written in the form

$$(7) \quad \begin{pmatrix} 0 & x_{11} & x_{12} & \cdots & x_{1,m-1} \\ 0 & x_{21} & x_{22} & \cdots & x_{2,m-1} \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 0 & x_{m-1,1} & x_{m-1,2} & \cdots & x_{m-1,m-1} \\ 0 & x_{m1} & x_{m2} & \cdots & x_{m,m-1} \end{pmatrix} - \begin{pmatrix} x_{21} & x_{22} & \cdots & x_{2m} \\ x_{31} & x_{32} & \cdots & x_{3m} \\ \cdot & \cdot & \cdots & \cdot \\ x_{m1} & x_{m2} & \cdots & x_{mm} \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\ = t^{i+2} \begin{pmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1m} \\ b_{21} & b_{22} & b_{23} & \cdots & b_{2m} \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ b_{m-1,1} & b_{m-1,2} & b_{m-1,3} & \cdots & b_{m-1,m} \\ b_{m1} & b_{m2} & b_{m3} & \cdots & b_{mm} \end{pmatrix}.$$

Equate the first columns on the left side of (7) with those on the right, thereby obtaining

$$b_{k1} = -\frac{t^i}{1+t^i}\delta_{k+1}$$
 for $k \in \{1, \dots, m-1\}, \quad b_{m1} = 0.$

Equating the second columns on both sides of (7), we get

$$\begin{pmatrix} x_{22} \\ \vdots \\ x_{m2} \end{pmatrix} = \begin{pmatrix} x_{11} \\ \vdots \\ x_{m-1,1} \end{pmatrix} - t^{i+2} \begin{pmatrix} b_{12} \\ \vdots \\ b_{m-1,2} \end{pmatrix}, \quad b_{m2} = \frac{t^i}{1+t^i} \delta_m.$$

There is no restriction on $x_{12}, b_{12}, \ldots, b_{m-1,2}$. We declare $x_{1l}, b_{1l}, \ldots, b_{m-1,l}$ for $l = 2, \ldots, m$ to be free unknowns. Taking into consideration the expression of x_{j1} for $2 \leq j \leq m$, we conclude that t^{i+2} divides x_{j2} for every $j \in \{3, \ldots, m\}$. We use induction on q, where $2 \leq q \leq m$ and q indexes columns in the matrix C_{11} . Let $q \leq m-1$, and suppose that x_{kl}, b_{kl} have been determined for all $k \in \{1, \ldots, m\}$ and $l \in \{2, \ldots, q\}$, where:

x_{kl} for 2 ≤ k ≤ m, 2 ≤ l ≤ q are linear combinations of free unknowns with coefficients in R and tⁱ⁺² divides the coefficients of x_{jl} for every j ∈ {l + 1,...,m}; moreover x_{kl} = x_{k-1,l-1} - tⁱ⁺²b_{k-1,l};
 tⁱ⁺²b_{ml} = x_{m,l-1}.

Equating the (q+1)th columns on both sides of (7), we obtain

$$t^{i+2}b_{m,q+1} = x_{mq},$$

 $x_{j,q+1} = x_{j-1,q} - t^{i+2}b_{j-1,q+1}$ for all $j \in \{2, \dots, m\}.$

Since t is not a zero-divisor and t^{i+2} divides the coefficients of x_{mq} , one can solve the first equation for $b_{m,q+1}$. The second equation implies that t^{i+2} divides the coefficients of $x_{j,q+1}$ for every $j \in \{q+2,\ldots,m\}$.

Thus the set of pairs (C_{11}, B) is finitely generated as an *R*-module. For a given matrix B,

$$C_{23} = B - t^{i+2} \langle 1 \rangle C_{43} - t^{i+3} \langle 1 \rangle C_{42} + t^{i+2} C_{12}.$$

Since the matrices C_{12}, C_{13}, C_{i5} $(i = 1, 2, 3, 4), C_{42}, C_{43}, C_{55}$ are arbitrary, the ring K of matrices C commuting with $\Gamma_i(a)$ is finitely generated as an R-module.

Let $P = \operatorname{rad} R$. We have

$$C_1 \equiv \begin{pmatrix} \alpha & & * \\ & \ddots & \\ 0 & & \alpha \end{pmatrix} \pmod{PR^{m \times m}}.$$

It follows from (4) that

$$C \equiv \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ 0 & C_{11} & C_{23} & 0 & C_{25} \\ 0 & 0 & C_{11} & 0 & C_{35} \\ 0 & C_{42} & C_{43} & C_{55} & 0 \\ 0 & 0 & 0 & 0 & C_{55} \end{pmatrix} \pmod{PR^{n \times n}},$$

and hence, det $C \equiv \alpha^n \pmod{P}$. Since C or C - E is an invertible matrix over R, it follows that C or C - E is invertible in K. Therefore, K is a local ring. We have $C = \alpha E + D$, where $D \in \operatorname{rad} K$. The mapping $f : K/\operatorname{rad} K \to \frac{R/P}{P}$ defined by $f(C + \operatorname{rad} K) = \alpha + P$ is an isomorphism. This proves that $\overline{\operatorname{End}_{RH}(V_i)} \cong \overline{R}$.

LEMMA 3. Let $H = \langle a \rangle \times \langle b \rangle$ be an abelian group of type (2,2), $t \in \operatorname{rad} R$, $t \neq 0$ and suppose t is not a zero-divisor. Denote by W_i the underlying RH-module of the matrix representation Δ_i of degree n of the group H defined as follows:

1) if
$$n = 2m \ (m \ge 1)$$
, then

$$\Delta_i(a) = \begin{pmatrix} E_m & t^i E_m \\ 0 & E_m \end{pmatrix}, \quad \Delta_i(b) = \begin{pmatrix} E_m & J_m(0) \\ 0 & E_m \end{pmatrix} \quad (i \in \mathbb{N});$$

2) if
$$n = 2m + 1 \ (m \ge 1)$$
, then

$$\Delta_i(a) = \begin{pmatrix} E_m & t^i E_m & 0\\ 0 & E_m & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \Delta_i(b) = \begin{pmatrix} E_m & J_m(0) & t^i \langle 1 \rangle\\ 0 & E_m & 0\\ 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N}).$$

If $i \neq j$, then the modules W_i and W_j are non-isomorphic. Moreover, End_{RH}(W_i) is finitely generated as an R-module and there is an algebra isomorphism

 $\operatorname{End}_{RH}(W_i)/\operatorname{rad}\operatorname{End}_{RH}(W_i)\cong R/\operatorname{rad}R$

for all $i \in \mathbb{N}$.

The proof of Lemma 3 is similar to that of Lemma 2, and we leave it to the reader.

3. Twisted group rings $S^{\lambda}G$ of SUR-type if S is an arbitrary local integral domain

LEMMA 4. Let R be a commutative local artinian ring or a complete commutative local noetherian ring of characteristic p, G a finite p-group, $\lambda \in Z^2(G, R^*)$, H a subgroup of G, and V an indecomposable $R^{\lambda}H$ -module. Assume that the quotient algebra

 $\overline{\operatorname{End}_{R^{\lambda}H}(V)}=\operatorname{End}_{R^{\lambda}H}(V)/\mathrm{rad}\operatorname{End}_{R^{\lambda}H}(V)$

is isomorphic to a field K containing \overline{R} , and one of the following conditions is satisfied:

- (i) $G = H \cdot T$, where T is a subgroup of the center of G;
- (ii) if K_s is the separable closure of $\overline{R} = R/\operatorname{rad} R$ in K, then the order of the group $\operatorname{Aut}(K_s/\overline{R})$ is not divisible by p.

Then $V^{R^{\lambda}G}$ is an indecomposable $R^{\lambda}G$ -module, and the quotient algebra

 $\overline{\mathrm{End}_{R^{\lambda}G}(V^{R^{\lambda}G})}$

is isomorphic to a field, which is a finite purely inseparable extension of K.

LEMMA 5. Let R be a commutative local ring of characteristic p^k , Ga finite abelian p-group, H a subgroup of G, $\lambda \in Z^2(G, R^*)$, and M an indecomposable $R^{\lambda}H$ -module. Assume that $\operatorname{End}_{R^{\lambda}H}(M)$ is finitely generated as an R-module and $\operatorname{End}_{R^{\lambda}H}(M)$ is isomorphic to a field K containing \overline{R} . Then $M^{R^{\lambda}G}$ is an indecomposable $R^{\lambda}G$ -module. Moreover,

 $\operatorname{End}_{R^{\lambda}G}(M^{R^{\lambda}G})$

is finitely generated as an R-module and the quotient algebra

$$\overline{\operatorname{End}_{R^{\lambda}G}(M^{R^{\lambda}G})}$$

is isomorphic to a field, which is a finite purely inseparable extension of K.

The proofs of Lemmas 4 and 5 are similar to those of Lemma 2 of [2] and Lemma 2.2 of [3]. These lemmas generalize the results by Green [14], [15], concerning the absolutely indecomposable modules over group rings.

Until the end of this section we assume that S is an arbitrary local integral domain of characteristic $p, P = \operatorname{rad} S, P \neq 0, F$ is a subfield of S, and G a finite p-group. Denote by [M] the isomorphism class of SG-modules which contains M. Let $\mathfrak{M}_n(SG)$ be the set of all [M] satisfying the following conditions:

(i) the S-rank of M equals n;

(ii) $\operatorname{End}_{SG}(M)$ is finitely generated as an S-module;

(iii)
$$\operatorname{End}_{SG}(M) \cong \overline{S}$$
.

LEMMA 6. Let |G| > 2. Then $\mathfrak{M}_n(SG)$ is an infinite set for every n > 1.

Lemma 6 follows from Lemmas 2 and 3.

THEOREM 1. Let $\lambda \in Z^2(G, S^*)$ and $H = \text{Ker}(\lambda)$.

- (i) If |H| > 2, then $S^{\lambda}G$ is of SUR-type with $f_{\lambda}(n) = nt_n$, where $1 \le t_n \le |G:H|$.
- (ii) Assume that |H:G'| > 2. Then $f_{\lambda}(n) = nd$, where d = |G:H|, is an SUR-dimension-valued function for $S^{\lambda}G$.

Proof. (i) Let $[V] \in \mathfrak{M}_n(SH)$, $\{u_g : g \in G\}$ be a natural S-basis of $S^{\lambda}G$, and $\{g_1 = e, g_2, \ldots, g_m\}$ a cross section of H in G. Then

$$V^{S^{\lambda}G} = \bigoplus_{i=1}^{m} V_i \text{ with } V_i = u_{g_i} \otimes V.$$

Since the SH-module V_i is conjugate to V for every i, there is an algebra isomorphism

$$\operatorname{End}_{SH}(V_i) \cong \operatorname{End}_{SH}(V)$$

for each *i*. Since the ring of SH-endomorphisms of V_i is local for every $i \in \{1, \ldots, m\}$, in view of the Krull–Schmidt Theorem [30, Sect. 7.3] the SH-module $V^{S^{\lambda}G}$ has a unique decomposition into a finite sum of indecomposable SH-modules, up to isomorphism and the order of summands. Hence, in view of Lemma 6, there are infinitely many non-isomorphic indecomposable $S^{\lambda}G$ -modules M such that M is an $S^{\lambda}G$ -component of a module of the form $V^{S^{\lambda}G}$. Note that the S-rank of M is divisible by n and does not exceed $n \cdot |G : H|$. Therefore, there exists a natural number t_n such that $1 \leq t_n \leq |G : H|$ and $\operatorname{Ind}_{nt_n}(S^{\lambda}G)$ is an infinite set.

(ii) Let A = G/G' and

$$U = \bigoplus_{a \in G', a \neq e} S(u_a - u_e).$$

The set $V = S^{\lambda}G \cdot U$ is a two-sided ideal of $S^{\lambda}G$. The factor ring $S^{\lambda}G/V$ is isomorphic to $S^{\mu}A$, where $\mu_{xG',yG'} = \lambda_{x,y}$ for all $x, y \in G$. It contains the group ring SB, where B = H/G'. Since |B| > 2, by Lemma 6 the set $\mathfrak{M}_n(SB)$ is infinite for every n > 1.

Assume that $[M] \in \mathfrak{M}_n(SB)$. By Lemma 5, the induced $S^{\mu}A$ -module $M^{S^{\mu}A}$ is indecomposable. Its S-rank is equal to $n \cdot |A : B| = n \cdot |G : H|$. Arguing as in case (i), we deduce that $\operatorname{Ind}_{nd}(S^{\mu}A)$ is infinite for every n > 1. It follows that $\operatorname{Ind}_{nd}(S^{\lambda}G)$ is an infinite set for each n > 1.

THEOREM 2. Let $p \neq 2$ and $\lambda \in Z^2(G, F^*)$. If the algebra $F^{\lambda}G$ is not semisimple, then the ring $S^{\lambda}G$ is of SUR-type. Moreover, if $d = \dim_F \overline{F^{\lambda}G}$ and d < |G : G'|, then $f_{\lambda}(n) = nd$ is an SUR-dimension-valued function for $S^{\lambda}G$.

Proof. There exists an algebra homomorphism of $F^{\lambda}G$ onto $F^{\mu}\overline{G}$, where $\overline{G} = G/G'$ and $\mu_{xG',yG'} = \lambda_{x,y}$ for all $x, y \in G$. We have $d = \dim_F \overline{F^{\mu}\overline{G}}$. Taking into account this fact and Theorem 1 we can assume that G is abelian and $F^{\lambda}G$ is non-semisimple.

In view of Proposition 2, there exists an algebra homomorphism of $F^{\lambda}G$ onto a twisted group algebra

$$A = \bigoplus_{j=0}^{p^m - 1} K v_a^j, \quad v_a^{p^m} = \alpha^{p^l} v_e \ (\alpha \in K^*),$$

where K is a finite purely inseparable extension of the field F, $1 \leq l \leq m$, $\alpha \notin K^p$ for l < m and $d = [K : F] \cdot p^{m-l}$. Since $S^{\lambda}G \cong S \otimes_F F^{\lambda}G$, there is an algebra homomorphism of $S^{\lambda}G$ onto a twisted group ring

$$\Lambda = S \otimes_F A = \bigoplus_{j=0}^{p^m - 1} R(1 \otimes v_a)^j,$$

where $R = S \otimes_F Kv_e$. Note that if

$$w = 1 \otimes \alpha^{-1} v_a^{p^{m-l}},$$

then $w^{p^l} = 1 \otimes v_e$. Hence we conclude that the ring

$$\Gamma = \bigoplus_{i=0}^{p^l - 1} Rw^i$$

is a twisted group ring of a cyclic group of order p^l and of the ring R.

The ring R is a finitely generated S-free S-algebra. By [10, Proposition 5.22, p. 112], we have

$$\overline{R} = R/\mathrm{rad}\,R \cong (R/PR)/\mathrm{rad}(R/PR) \cong \overline{S} \otimes_F K,$$

but then ([11, p. 100]) R is a commutative local ring of characteristic p. Let t be a non-zero element of P. The element $t \otimes v_e$ is not a zero-divisor in R and $t \otimes v_e \in \operatorname{rad} R$. In view of Lemma 2, for every n > 1, there are infinitely many pairwise non-isomorphic indecomposable Γ -modules V_1, V_2, \ldots satisfying the following conditions:

- 1) the *R*-rank of V_i is equal to n;
- 2) $\operatorname{End}_{\Gamma}(V_i)$ is finitely generated as an *R*-module;
- 3) $\overline{\operatorname{End}_{\Gamma}(V_i)} \cong \overline{R}.$

By Lemma 5, the induced Λ -module V_i^{Λ} is an indecomposable module of R-rank np^{m-l} . Further, the algebra

$$\operatorname{End}_{\Lambda}(V_i^{\Lambda})$$

is isomorphic to a field which is a finite purely inseparable extension of the field \overline{R} . Since

$$(V_i^{\Lambda})_{\Gamma} \cong V_i \oplus \cdots \oplus V_i,$$

by the Krull–Schmidt Theorem ([30, Sect. 7.3]) the modules V_i^A and V_j^A are non-isomorphic for $i \neq j$. The module V_i^A is an indecomposable $S^{\lambda}G$ -module of S-rank $[K:F] \cdot np^{m-l} = nd$. THEOREM 3. Let $p = 2, \lambda \in Z^2(G, F^*)$, and $d = \dim_F \overline{F^{\lambda}G}$.

- (i) If the algebra $F^{\lambda}G$ is not semisimple, then the set $\operatorname{Ind}_{l}(S^{\lambda}G)$ is infinite for some $l \leq |G|$.
- (ii) If $d < \frac{1}{2}|G:G'|$, then $S^{\lambda}G$ is of SUR-type. In this case the function $f_{\lambda}(n) = nd$ is an SUR-dimension-valued function.

Proof. (i) If $|G'| \neq 1$, then by Theorem 1 we may suppose that |G'| = 2. Let $G' = \langle a \rangle, t \in \text{rad } S$, and $t \neq 0$. Denote by M_i the underlying SG'-module of the indecomposable representation

$$\Gamma_i : u_a \mapsto \begin{pmatrix} 1 & t^i \\ 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N})$$

of the ring SG'. If $i \neq j$, then the SG'-modules M_i and M_j are nonisomorphic. By the same arguments as in the proof of Theorem 1(i), we can prove that $\operatorname{Ind}_l(S^{\lambda}G)$ is infinite for some $l \leq |G|$.

Suppose that |G'| = 1, $d = \frac{1}{2}|G|$ and H is the socle of G. Then

$$S^{\lambda}H = S^{\mu}H \cong S^{\mu}H_1 \otimes_S SH_2,$$

where $\mu \in Z^2(H, F^*)$, $H = H_1 \times H_2$, $H_2 \subset \text{Ker}(\mu)$, and $H_2 = \langle a \rangle$ is a group of order 2. We assume that Γ_i is a representation of the ring SH_2 , and M_i is the underlying module of Γ_i . By Lemma 5,

$$V_i = M_i^{S^{\mu}H}$$

is an indecomposable $S^{\lambda}H$ -module and $\overline{\operatorname{End}_{S^{\lambda}H}(V_i)}$ is a finite purely inseparable extension of \overline{S} , up to isomorphism. If $i \neq j$, then the $S^{\lambda}H$ -modules V_i and V_j are non-isomorphic. Arguing as in the proof of of Theorem 1(i), we finish the proof in this case.

(ii) If $d < \frac{1}{2}|G : G'|$, then we reason as in the proof of Theorem 2. However, note that if p = 2, then there are two cases, namely that of an algebra A of the form (2), where $m \ge 2$, and of an algebra A' of the form (3). We apply Lemma 2 in the first case and Lemma 3 in the second. \blacksquare

4. Twisted group rings $S^{\lambda}G$ of SUR-type if S is a local noetherian ring. In this section we suppose that S is a commutative local noetherian ring of characteristic p, F a subfield of S, $P = \operatorname{rad} S$, and \widehat{S} is the P-adic completion of S. We also assume that S is not a field, and if S is not an integral domain then $\overline{S} = S/P$ is an infinite field. Throughout, we identify S with its canonical image in \widehat{S} . It is well known (see [8, p. 205]) that \widehat{S} is a complete commutative local noetherian ring.

Let H be a finite *p*-group. Denote by [M] the isomorphism class of the $\widehat{S}H$ -module M. Let $\mathfrak{M}_n(\widehat{S}H)$ be the set of all classes [M] satisfying the

following two conditions:

(i) the \widehat{S} -rank of M is equal to n;

(ii) $\overline{\operatorname{End}_{\widehat{S}H}(M)} \cong \widehat{S}/\operatorname{rad} \widehat{S}.$

LEMMA 7. Let H be a finite p-group of order |H| > 2, and

 $\mathfrak{M}_n^0(\widehat{S}H) = \{ (V) \in \mathfrak{M}_n(\widehat{S}H) : V \cong \widehat{S} \otimes_S M \text{ for some SH-module } M \}.$

Then $\mathfrak{M}_n^0(\widehat{S}H)$ is an infinite set for every n > 1.

Proof. If S contains a non-zero nilpotent element, then the conclusion follows from Lemma 2 in [19]. Assume that S is not an integral domain and S does not have a non-zero nilpotent element. Then S has two elements u and v such that uv = 0, $u \notin \hat{S}v$, and $v \notin \hat{S}u$. This allows us to apply the same type of argument as in the proofs of Lemmas 3 and 5 of [19]. Let S be an integral domain, $t \in P$, and $t \neq 0$. Then t is not a zero-divisor in \hat{S} ([8, p. 204]). In view of Lemmas 2 and 3, the set $\mathfrak{M}_n^0(\hat{S}H)$ is infinite.

THEOREM 4. Let G be a p-group and $\lambda \in Z^2(G, S^*)$. Assume that G contains a subgroup H such that |H| > 2 and the restriction of λ to $H \times H$ is a coboundary. Then $S^{\lambda}G$ is of SUR-type with SUR-dimension-valued function $f_{\lambda}(n) = n \cdot |G:H|$.

Proof. Without loss of generality, we can suppose that $\lambda_{a,b} = 1$ for all $a, b \in H$. In view of Lemma 7, $\mathfrak{M}_n^0(\widehat{S}H)$ is infinite for each n > 1. If $[V] \in \mathfrak{M}_n^0(\widehat{S}H)$ then, by Lemma 4, $V^{\widehat{S}^{\lambda}G}$ is an indecomposable $\widehat{S}^{\lambda}G$ -module. Since

$$(V^{\widehat{S}^{\lambda}G})_{\widehat{S}H} \cong V \oplus W,$$

where W is an $\widehat{S}H$ -module, the set of all isomorphism classes $[V^{\widehat{S}^{\lambda}G}]$ is infinite, in view of the Krull–Schmidt Theorem ([10, p. 128]). Then $V \cong \widehat{S} \otimes_S M$, where M is an indecomposable SH-module. It follows that there are infinitely many pairwise non-isomorphic indecomposable $S^{\lambda}G$ -modules of the form $M^{S^{\lambda}G}$. We also note that the S-rank of $M^{S^{\lambda}G}$ is $n \cdot |G:H|$.

COROLLARY 1. Let G be a p-group, S a local noetherian integral domain of characteristic p, rad $S \neq 0$, $\lambda \in Z^2(G, S^*)$, and H the kernel of λ . If |H| > 2, then $f_{\lambda}(n) = n \cdot |G:H|$ is an SUR-dimension-valued function.

Denote by $F[[X_1, \ldots, X_m]]$ the *F*-algebra of formal power series in the indeterminates X_1, \ldots, X_m with coefficients in the field *F* of characteristic *p*.

THEOREM 5. Let S = F[[X]], W be a subgroup of F^* , G a finite p-group, t the number of invariants of the group G/G', $i_F(W) \ge t$, and B a subgroup of G such that $G' \subset B$. If $|B| \ge 2$, then there is a cocycle $\lambda \in Z^2(G, W)$ such that $\text{Ker}(\lambda) = B$, $\dim_F \overline{F^{\lambda}G} = |G:B|$, $S^{\lambda}G$ is of SUR-type and satisfies the following conditions:

- (i) the function f_λ(n) = n · |G : B| is an SUR-dimension-valued function for S^λG;
- (ii) the S-rank of every $S^{\lambda}G$ -module is a value of f_{λ} ;
- (iii) there is only one $S^{\lambda}G$ -module of S-rank $f_{\lambda}(1)$, up to isomorphism.

Proof. In view of Proposition 1, there is a cocycle $\lambda \in Z^2(G, W)$ such that $B = \operatorname{Ker}(\lambda)$ and $\dim_F \overline{F^{\lambda}G} = |G:B|$. By Theorem 4, the function $f_{\lambda}(n) = n \cdot |G:B|$ is an SUR-dimension-valued function for $S^{\lambda}G$. Let M be an $S^{\lambda}G$ -module. Then M/XM is an $F^{\lambda}G$ -module and $\dim_F(M/XM)$ is divisible by |G:B|, because $F^{\lambda}G$ is a local algebra. Since the S-rank of M equals $\dim_F(M/XM)$, it is a value of f_{λ} .

Let K be the quotient field of S. Obviously, the ring $S^{\lambda}G$ is an S-order in the algebra $K^{\lambda}G$. Let M be an $S^{\lambda}G$ -module of S-rank $f_{\lambda}(1)$. We embed M in the irreducible $K^{\lambda}G$ -module $M^* = K \otimes_S M$. Since the set

$$U = \bigoplus_{b \in B} K^{\lambda} G(u_b - u_e)$$

is a nilpotent ideal of $K^{\lambda}G$, we have $U \subset \operatorname{rad} K^{\lambda}G$. Note also that

$$V = \bigoplus_{b \in B} S^{\lambda} G(u_b - u_e)$$

is an ideal of $S^{\lambda}G$. Since rad $K^{\lambda}G \cdot M^* = 0$ and $V \subset \operatorname{rad} K^{\lambda}G$, we have VM = 0 and M may be viewed as a module over $S^{\lambda}G/V$. But $S^{\lambda}G/V \cong S^{\mu}H$, where H = G/B and $\mu_{xB,yB} = \lambda_{x,y}$ for all $x, y \in G$. If $L = F^{\mu}H$ and T = L[[X]], then $L \cong \overline{F^{\lambda}G}$, $T \cong S^{\mu}H$, and L is a finite purely inseparable extension of F. Therefore M is T-torsion free. Since T is a principal ideal ring, we get $M \cong S^{\mu}H$.

THEOREM 6. Let $p \neq 2$, S be a local noetherian integral domain of characteristic p, rad $S \neq 0$, F a subfield of S, G a finite p-group, $\lambda \in Z^2(G, F^*)$, and $d = \dim_F \overline{F^{\lambda}G}$. If the algebra $F^{\lambda}G$ is not semisimple, then $S^{\lambda}G$ is of SUR-type with SUR-dimension-valued function $f_{\lambda}(n) = nd$.

Proof. If d = |G : G'|, then $G' \neq \{e\}$. In this case, $|\text{Ker}(\lambda)| > 2$ and Theorem 4 applies. If d < |G : G'|, then Theorem 2 applies.

PROPOSITION 3. Let $p \neq 2$, F be a perfect field of characteristic p, S = F[[X]], G an abelian p-group, \overline{G} the socle of G, and $\lambda \in Z^2(G, S^*)$. Suppose that $S^{\lambda}\overline{G}/X^2S^{\lambda}\overline{G}$ is not the group ring of \overline{G} over the ring S/X^2S . If $|\overline{G}| > p$, then $S^{\lambda}G$ is of SUR-type. If $|\overline{G}| = p$, then $S^{\lambda}G$ is of finite representation type.

Proof. Arguing as in the proof of Proposition 4.4 of [4], we show that if $|\overline{G}| > p$, then $S^{\lambda}\overline{G} = S^{\mu}\overline{G}$, where $\mu \in Z^2(\overline{G}, S^*)$ and $\operatorname{Ker}(\mu) \neq \{e\}$. Applying induction from $S^{\mu}\operatorname{Ker}(\mu)$ -modules to $S^{\mu}\overline{G}$ -modules and next from $S^{\lambda}\overline{G}$ -modules to $S^{\lambda}G$ -modules, we deduce, in view of Lemmas 5 and 7, that $S^{\lambda}G$ is of SUR-type. If $|\overline{G}| = p$ then, by Proposition 4.4 of [4], $S^{\lambda}G$ is of finite representation type.

PROPOSITION 4. Let F be a perfect field of characteristic 2, S = F[[X]], G an abelian 2-group, and $\lambda \in Z^2(G, S^*)$. Assume that G contains a cyclic subgroup H of order 4 such that $S^{\lambda}H/X^2S^{\lambda}H$ is not the group ring of H over the ring S/X^2S . Then:

- (i) the ring S^λG is of bounded representation type if and only if G is a cyclic group or a group of type (2ⁿ, 2);
- (ii) the ring $S^{\lambda}G$ is of SUR-type if and only if it is of unbounded representation type.

Proof. Let $D = \{g \in G : g^4 = e\}$. By the same type of argument as in the proof of Proposition 4.5 of [4], one can establish that if G is neither a cyclic group nor a group of type $(2^n, 2)$, then $S^{\lambda}D = S^{\mu}D$, where $|\text{Ker}(\mu)| \ge 4$. Arguing as in the proof of Proposition 3, we conclude that $S^{\lambda}G$ is of SUR-type. If G is a cyclic group or a group of type $(2^n, 2)$, then, by Proposition 4.5 of [4], $S^{\lambda}G$ is of finite representation type.

5. The projective representation type of finite groups over local rings. Let S be a commutative ring with identity, S^* the multiplicative group of S, W a subgroup of S^* , $\operatorname{GL}(n, S)$ the group of all unimodular matrices of order n over S, G a finite group, and $Z^2(G, W)$ the group of all W-valued normalized 2-cocycles of the group G that acts trivially on W. A projective (S, W)-representation of the group G of degree n is defined [1] as a mapping $\Gamma : G \to \operatorname{GL}(n, S)$ such that $\Gamma(e) = E$ and $\Gamma(a)\Gamma(b) = \lambda_{a,b}\Gamma(ab)$, where $\lambda_{a,b} \in W$ for all $a, b \in G$. It is easy to see that $\lambda : (a, b) \mapsto \lambda_{a,b}$ belongs to $Z^2(G, W)$. We also say that Γ is a projective (S, W)-representation of G with cocycle λ . Two projective (S, W)representations Γ_1 and Γ_2 of G are called equivalent if there exists a unimodular matrix C over S and elements $\alpha_q \in W$ ($g \in G$) such that

$$C^{-1}\Gamma_1(g)C = \alpha_q \Gamma_2(g)$$

for all $g \in G$. If $W = S^*$ then Γ is called a *projective S-representation* of G. If $W = \{1\}$ then Γ is said to be a *linear* or *ordinary S-representation* of G. By analogy with indecomposable projective S-representations of the group G, we can introduce the concept of an indecomposable projective (S, W)-representation of G ([9, §51]).

We say that a group G is of finite projective (S, W)-representation type if the number of (inequivalent) indecomposable projective (S, W)-representations of G with cocycle λ is finite for any $\lambda \in Z^2(G, W)$. Otherwise, G is said to be of *infinite projective* (S, W)-representation type. If the number of indecomposable projective (S, W)-representations of G with cocycle λ is infinite for every $\lambda \in Z^2(G, W)$, we say that G is of purely infinite projective (S, W)-representation type. A group G is defined to be of bounded projective (S, W)-representation type if the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is finite for each $\lambda \in Z^2(G, W)$. Otherwise, G is said to be of unbounded projective (S, W)-representation type. If the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is infinite for each $\lambda \in Z^2(G, W)$, G is defined to be of purely unbounded projective (S, W)-representation type. A group G is of strongly unbounded projective (S, W)-representation type if for some cocycle $\lambda \in Z^2(G, W)$ there is a function $f_{\lambda} : \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and the number of indecomposable projective (S, W)-representations of G with cocycle λ and of degree $f_{\lambda}(n)$ is infinite for all n > 1. If there is such a function f_{λ} for every $\lambda \in Z^2(G, W)$, then G is of purely strongly unbounded projective (S, W)-representation type.

PROPOSITION 5. Let S be a local integral domain of characteristic p, rad $S \neq 0$, F a subfield of S, W a subgroup of S^* , and G a finite p-group.

- (i) If |G| > 2, then G is of strongly unbounded projective (S, W)-representation type.
- (ii) If |G'| > 2, then G is of purely strongly unbounded projective (S, S^*) -representation type.
- (iii) Let $W \subset F^*$ and G/G' be a direct product of r cyclic subgroups, where $r \ge i_F(W) + 1$ for p > 2 and $r \ge i_F(W) + 2$ for p = 2. Then G is of purely strongly unbounded projective (S, W)-representation type.

Proof. Statement (i) follows immediately from the results of [19], [20] (see also Lemmas 2 and 3). Statement (ii) follows from Theorem 1. Now we prove (iii). Let H = G/G', and \overline{H} be the socle of H. For any cocycle $\mu \in Z^2(H,W)$ we have $S^{\mu}\overline{H} = S^{\sigma}\overline{H}$, where $\sigma \in Z^2(\overline{H},W)$ and $B := \text{Ker}(\sigma)$ satisfies the following conditions: if p > 2, then $|B| \ge p$; if p = 2, then $|B| \ge 4$. Applying induction from $S^{\sigma}B$ -modules to $S^{\sigma}\overline{H}$ -modules, and then from $S^{\mu}\overline{H}$ -modules to $S^{\mu}H$ -modules, we conclude, in view of Lemmas 5 and 7, that $S^{\mu}H$ is of SUR-type. Since for every $\lambda \in Z^2(G,W)$ there exists a homomorphism of $S^{\lambda}G$ onto $S^{\mu}H$, where $\mu_{xG',yG'} = \lambda_{x,y}$ for all $x, y \in G$, it follows that G is of purely strongly unbounded projective (S, W)-representation type.

PROPOSITION 6. Let G be a finite p-group, F a field of characteristic p, S = F[[X]], and W a subgroup of S^* .

(i) G is of bounded projective (S, W)-representation type if and only if |G| = 2. Moreover, G is of unbounded projective (S, W)-representa-

tion type if and only if G is of strongly unbounded projective (S, W)-representation type.

- (ii) Let W ⊂ F* and p ≠ 2. Then G is of purely strongly unbounded projective (S, W)-representation type if and only if |G'| ≠ 1 or G is a direct product of l cyclic subgroups and l ≥ i_F(W) + 1. In addition, G is of purely strongly unbounded projective (S, W)-representation type if and only if G is of purely unbounded projective (S, W)-representation type.
- (iii) Let p = 2 and |G'| ≠ 2. Then G is of purely strongly unbounded projective (S, F*)-representation type if and only if one of the following conditions is satisfied: 1) |G'| > 2; 2) G is a direct product of l cyclic subgroups and l ≥ i_F(F*) + 2; 3) G is a direct product of i_F(F*) + 1 cyclic subgroups whose orders are not equal to 2. Furthermore, G is of purely strongly unbounded projective (S, F*)-representation type if and only if G is of purely unbounded projective (S, F*)-representation type.

Proof. (i) It follows from Lemma 6 (or Lemma 7) that if G is of bounded projective (S, W)-representation type, then |G| = 2. Let us prove the sufficiency. Let |G| = 2 and $\lambda \in Z^2(G, W)$. If $S^{\lambda}G = SG$ then the S-rank of every indecomposable $S^{\lambda}G$ -module is 1 or 2 (see [17]). Assume that $S^{\lambda}G \neq SG$. Then $S^{\lambda}G \cong S[\theta]$, where θ is a root of the polynomial $Y^2 - \alpha$, $\alpha \in S^*$, which is irreducible over S. Let $\alpha = a_0 + a_1X + a_2X^2 + \cdots$, $a_i \in F$. Denote by K the quotient field of S and by T the integral closure of S in $K(\theta)$. If $a_0 \notin F^2$, then $T = S[\theta]$. Let $a_0 \in F^2$. Obviously, we can assume $a_0 = 1$. Then $T = S + S\omega$, where $\omega = X^{-n}(1 + b_1X + \cdots + b_{n-1}X^{n-1} + \theta)$ and

$$\alpha = 1 + b_1^2 X^2 + \dots + b_{n-1}^2 X^{2n-2} + \sum_{j \ge 2n} a_j X^j, \quad a_{2n} \notin F^2 \text{ or } a_{2n+1} \neq 0.$$

It is clear that the ring $S[\theta]$ is noetherian and T is finitely generated as an $S[\theta]$ -module. Since S is a principal ideal domain, every ideal in $S[\theta]$ can be generated by two elements. Moreover, any ring L with $S[\theta] \subset L \subset T$ is local. Applying Theorem 1.7 of [7], we show that each indecomposable torsion free $S[\theta]$ -module is isomorphic to a ring L with $S[\theta] \subset L \subset T$. Hence the S-rank of each indecomposable $S^{\lambda}G$ -module equals 2. The second statement follows from Theorem 1 and the first statement.

(ii) Apply Proposition 5.

(iii) Let p = 2, $m = i_F(F^*)$, and G be a direct product of m + 1 cyclic subgroups of order 4 each. We show that $\dim_F \overline{F^{\lambda}G} \leq \frac{1}{4}|G|$ for all $\lambda \in Z^2(G, F^*)$. Obviously, it is sufficient to prove this for

$$F^{\lambda}G = \bigoplus_{i_1,\dots,i_{m+1}} Fu_{a_1}^{i_1}\dots u_{a_{m+1}}^{i_{m+1}}, \quad \text{with} \quad u_{a_j}^4 = \alpha_j u_e \ (j = 1,\dots,m+1),$$

where $K = F[u_{a_1}, \ldots, u_{a_m}]$ is a field. Let $L = F[u_{a_1}^2, \ldots, u_{a_m}^2]$. For each $\alpha \in F$ there exists $\beta \in L$ such that $\alpha = \beta^2$. The element β is uniquely expressible as

$$\beta = \sum_{i_1,\dots,i_m} \gamma_{i_1,\dots,i_m} u_{a_1}^{2i_1} \cdots u_{a_m}^{2i_m},$$

where $i_j = 0, 1$ and $\gamma_{i_1,...,i_m} \in F$. However, $\gamma_{i_1,...,i_m} = \delta^2_{i_1,...,i_m}$ for some $\delta_{i_1,...,i_m} \in L$. It follows that $\beta = \varrho^2$ for $\varrho \in K$, and hence $\alpha = \varrho^4$. This allows us to assume that $\alpha_{m+1} = 1$. But then dim_F $\overline{F^{\lambda}G} = 4^m$, $4^m = \frac{1}{4}|G|$.

If condition 1) holds, we apply Proposition 5. If 2) or 3) holds, we apply Theorem 3. \blacksquare

PROPOSITION 7. Let G be a finite p-group, F a field of characteristic p, S = F[[X]], and W a subgroup of S^* .

- (a) G is of infinite projective (S, W)-representation type.
- (b) If W ⊂ F*, then G is of purely infinite projective (S, W)-representation type if and only if one of the following two conditions is satisfied: 1) |G'| ≠ 1; 2) G is a direct product of l cyclic subgroups, where l ≥ i_F(W) + 1.

Proof. Statement (a) follows from Theorems 1 and 3.

(b) Let $W \subset F^*$. If 1) or 2) is satisfied, then in view of Theorems 2 and 3, G is of purely infinite projective (S, W)-representation type. Let G be a direct product of r cyclic subgroups, where $r \leq i_F(W)$. Then there is a cocycle $\lambda \in Z^2(G, W)$ such that $F^{\lambda}G$ is a field. Let $K = F^{\lambda}G$. We have $S^{\lambda}G \cong K[[X]]$, and so every indecomposable $S^{\lambda}G$ -module is isomorphic to $S^{\lambda}G$. Hence G is not of purely infinite projective (S, W)-representation type. \blacksquare

PROPOSITION 8. Let G be a finite 2-group, |G'| = 2, F a field of characteristic 2, and $S = F[[X_1, \ldots, X_m]]$. If m > 1 then G is of purely strongly unbounded projective (S, S^*) -representation type.

Proof. By our assumption, $S^{\lambda}G' = SG'$ for every cocycle $\lambda \in Z^2(G, S^*)$, and the set $\operatorname{Ind}_n(SG')$ is infinite for each n > 1 (see [21]). Since S is a complete commutative noetherian local ring, the Krull–Schmidt Theorem holds for SG'-modules ([10, p. 128]). Then, arguing as in the proof of Theorem 1, we prove that for every n > 1 there exists a natural number t_n such that $1 \le t_n \le \frac{1}{2}|G|$ and $\operatorname{Ind}_{nt_n}(S^{\lambda}G)$ is infinite.

REFERENCES

 A. F. Barannyk and P. M. Gudivok, On the algebra of projective integral representations of finite groups, Dopov. Akad. Nauk Ukr. RSR Ser. A 1972, 291–293 (in Ukrainian).

- [2] L. F. Barannyk, On projective representations of direct products of finite groups over a complete local noetherian domain of characteristic p, Słupskie Prace Mat.-Fiz. 2 (2002), 5–16.
- [3] —, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 63 (2003), 537–554.
- [4] L. F. Barannyk and D. Klein, Crossed group rings with a finite set of degrees of indecomposable representations over Dedekind domains, Demonstratio Math. 34 (2001), 771–782.
- [5] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, Colloq. Math. 87 (2001), 181–193.
- [6] —, —, On indecomposable projective representations of finite groups over fields of characteristic p > 0, ibid. 98 (2003), 171–187.
- [7] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319–327.
- [8] N. Bourbaki, Commutative Algebra, Hermann, 1972.
- C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962 (2nd ed., 1966).
- [10] —, —, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, New York, 1981.
- [11] Yu. A. Drozd and V. V. Kirichenko, *Finite Dimensional Algebras*, Springer, Berlin, 1994.
- [12] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
- [13] P. Gabriel and A. V. Roĭter, Representations of Finite Dimensional Algebras, Springer, Berlin, 1997.
- [14] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430–445.
- [15] —, Blocks of modular representations, Math. Z. 79 (1962), 100–115.
- [16] P. M. Gudivok, On modular representations of finite groups, Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat. 4 (1961), 86–87 (in Russian).
- [17] —, On boundedness of degrees of indecomposable modular representations of finite groups over principal ideal rings, Dopov. Akad. Nauk Ukr. RSR Ser. A 1971, 683–685 (in Ukrainian).
- [18] —, Representations of finite groups over commutative local rings, Educational Text, Uzhgorod Univ., 2003 (in Russian).
- [19] P. M. Gudivok and I. B. Chukhray, On the number of indecomposable matrix representations with a given degree of a finite p-group over commutative local rings of characteristic p^s, Nauk. Visnyk Uzhgorod. Univ. Ser. Mat. 5 (2000), 33–40 (in Ukrainian).
- [20] —, —, On indecomposable matrix representations of the given degree of a finite p-group over commutative local ring of characteristic p^s, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Math. 8 (2000), 27–36.
- [21] P. M. Gudivok and E. Ya. Pogorilyak, On modular representations of finite groups over integral domains, Tr. Mat. Inst. Steklova 183 (1990), 78–86 (in Russian); English transl.: Proc. Steklov Inst. Math. 4 (1991), 87–95.
- [22] P. M. Gudivok and V. I. Pogorilyak, On indecomposable representations of finite p-groups over commutative local rings, Dopov. Nats. Akad. Nauk Ukr. 5 (1996), 7–11 (in Russian).

- [23]P. M. Gudivok and V. I. Pogorilyak, On indecomposable matrix representations of finite p-groups over commutative local rings of characteristic p^s , Nauk. Visnyk Uzhgorod Univ. Ser. Mat. 4 (1999), 43–46 (in Russian).
- [24]P. M. Gudivok, I. P. Sygetij and I. B. Chukhray, On the number of matrix representations with a given degree of a finite p-group over certain commutative rings of characteristic p^s, Nauk. Visnyk Uzhgorod Univ. Ser. Mat. 4 (1999), 47–53 (in Ukrainian).
- D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. [25]21 (1954), 377-381.
- [26]J. P. Jans, On the indecomposable representations of algebras, Ann. of Math. 66 (1957), 418-429.
- G. J. Janusz, Faithful representations of p-groups at characteristic p, I, J. Algebra [27]15 (1970), 335-351.
- [28]—, Faithful representations of p-groups at characteristic p, II, ibid. 22 (1972), 137 - 160.
- [29]G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [30]F. Kasch, Moduln und Ringe, Teubner, Stuttgart, 1977.
- [31]D. S. Passman, Infinite Crossed Products, Pure Appl. Math. 135, Academic Press, Boston, 1989.
- [32]K. W. Roggenkamp, Gruppenringe von unendlichem Darstellungstyp, Math. Z. 96 (1967), 393-398.
- [33] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Cateqories, Algebra Logic Appl. 4, Gordon & Breach, 1992.

Institute of Mathematics Pedagogical University of Słupsk Arciszewskiego 22b 76-200 Słupsk, Poland E-mail: barannyk@pap.edu.pl klein@pap.edu.pl

> Received 13 May 2004: revised 17 June 2004

(4455)