COLLOQUIUM MATHEMATICUM

TWISTED GROUP RINGS OF STRONGLY UNBOUNDED REPRESENTATION TYPE

BY
LEONID F. BARANNYK and DARIUSZ KLEIN (Słupsk)

Abstract

Let S be a commutative local ring of characteristic p, which is not a field, S^{*} the multiplicative group of S, W a subgroup of S^{*}, G a finite p-group, and $S^{\lambda} G$ a twisted group ring of the group G and of the ring S with a 2 -cocycle $\lambda \in Z^{2}\left(G, S^{*}\right)$. Denote by $\operatorname{Ind}_{m}\left(S^{\lambda} G\right)$ the set of isomorphism classes of indecomposable $S^{\lambda} G$-modules of S-rank m. We exhibit rings $S^{\lambda} G$ for which there exists a function $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}\left(S^{\lambda} G\right)$ is an infinite set for every natural $n>1$. In special cases $f_{\lambda}(\mathbb{N})$ contains every natural number $m>1$ such that $\operatorname{Ind}_{m}\left(S^{\lambda} G\right)$ is an infinite set. We also introduce the concept of projective (S, W)-representation type for the group G and we single out finite groups of every type.

Introduction. Let $p \geq 2$ be a prime. A finite group whose order is a positive power of p is called a p-group. Suppose G is a p-group, G^{\prime} the commutant of $G, \operatorname{rad} A$ the Jacobson radical of a $\operatorname{ring} A, \bar{A}=A / \operatorname{rad} A$ the factor ring of the $\operatorname{ring} A$ by $\operatorname{rad} A, S$ a commutative local ring with an identity element of characteristic $p^{k}, S^{p}=\left\{a^{p}: a \in S\right\}, S^{*}$ the multiplicative group of S, and $Z^{2}\left(G, S^{*}\right)$ the group of all S^{*}-valued normalized 2-cocycles of the group G that acts trivially on S^{*}. A twisted group ring $S^{\lambda} G$ of the group G and of the ring S with $\lambda \in Z^{2}\left(G, S^{*}\right)$ is the S-algebra with S-basis $\left\{u_{g}: g \in G\right\}$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G([31, \mathrm{pp} .2-4])$. Let e be the identity element of G. We have $u_{a} u_{e}=u_{e} u_{a}=u_{a}$ for all $a \in G$. The S-basis $\left\{u_{g}: g \in G\right\}$ of $S^{\lambda} G$ will be called natural. If H is a subgroup of G, then the restriction of a cocycle $\lambda: G \times G \rightarrow S^{*}$ to $H \times H$ will also be denoted by λ. In this case $S^{\lambda} H$ is a subring of $S^{\lambda} G$. By an $S^{\lambda} G$-module we mean a finitely generated left $S^{\lambda} G$-module which is S-free, that is, an $S^{\lambda} G$-lattice (see [10, p. 140]). The study of S-representations of $S^{\lambda} G$ is essentially equivalent to the study of $S^{\lambda} G$-modules (see $[9, \S 10] ;[12$, p. 74]). The module corresponding to a representation is called the underlying module of that representation ([12, p. 74]).

[^0]Following the terminology of [26], we say that $S^{\lambda} G$ is of finite (resp. infinite) representation type if the set of all isomorphism classes of indecomposable $S^{\lambda} G$-modules is finite (resp. infinite). Let $D\left(S^{\lambda} G\right)$ be the set of S-ranks of all indecomposable $S^{\lambda} G$-modules. If $D\left(S^{\lambda} G\right)$ is finite (resp. infinite), then $S^{\lambda} G$ is of bounded (resp. unbounded) representation type. Let $\operatorname{Ind}_{d}\left(S^{\lambda} G\right)$ be the set of isomorphism classes of indecomposable $S^{\lambda} G$-modules of S-rank d and let \mathbb{N} be the set of positive integers. We say that $S^{\lambda} G$ is of $S U R$ type (Strongly Unbounded Representation type) if there exists a function $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}\left(S^{\lambda} G\right)$ is an infinite set for every $n>1$. A function f_{λ} will be called an $S U R$-dimension-valued function.

Higman [25] proved that if S is a field of characteristic p, then a group algebra $S G$ is of finite representation type if and only if $S G$ is of bounded representation type. This does not hold in the case when S is not a field [17], [32]. Gudivok [16] and Janusz [27], [28] showed that if S is an infinite field of characteristic p and G is a non-cyclic p-group for which $\left|G / G^{\prime}\right| \neq 4$, then $\operatorname{Ind}_{n}(S G)$ is an infinite set for every natural $n>1$. Let G be a finite p-group of order $|G|>2, S$ a commutative local ring of characteristic p^{k}, and $\operatorname{rad} S \neq 0$. Gudivok and Chukhray [19], [20] proved that if \bar{S} is an infinite field or S is an integral domain, then $\operatorname{Ind}_{n}(S G)$ is infinite for every natural $n>1$. In paper [24], joint with Sygetij, they obtained a similar result in the case where G is a non-cyclic p-group, $p \neq 2$ and S is an infinite ring of characteristic p or \bar{S} is an infinite field. We note that in [22], [23], Gudivok and Pogorilyak investigate group rings $S G$ of bounded representation type for the case when G is a p-group and S is an arbitrary commutative local ring of characteristic p^{k} with $\operatorname{rad} S \neq 0$. The similar problem was studied in [4] for twisted group rings $S^{\lambda} G$, where S is a Dedekind domain of characteristic p.

We remark that the investigations mentioned above were considerably stimulated by the well-known Brauer-Thrall conjectures [26] for finite-dimensional algebras over an arbitrary field. For a complete discussion of related problems in the modern representation theory of finite groups, algebras, quivers and vector space categories the reader is referred to the monographs [11], [13] and [33].

In the present paper we describe twisted group rings $S^{\lambda} G$ of SURtype. We shall also characterize finite p-groups depending on a projective (S, W)-representation type. Our investigations extend the results of [4], [19] and [20]. We obtain indecomposable $S^{\lambda} G$-modules of S-rank $f_{\lambda}(n)$ by applying induction from $S^{\lambda} H$-modules to $S^{\lambda} G$-modules, where H is a subgroup of G. If M is an indecomposable $S^{\lambda} H$-module then the induced module $M^{S^{\lambda} G}$ is also an indecomposable $S^{\lambda} G$-module under some assumptions which generalize the hypotheses of the Green Theorems [14], [15]. When $S^{\lambda} H$ is a group ring and $|H|>2$, we make use of the indecomposable $S^{\lambda} H$ -
modules which are constructed in [19] (see also [18]) as initial $S^{\lambda} H$-modules. If $S^{\lambda} H$ is not a group ring then first we find $\mu \in Z^{2}\left(H, S^{*}\right)$ such that $S^{\lambda} H=S^{\mu} H$ and $S^{\mu} H$ contains a group ring $S^{\mu} B$, where B is a subgroup of H and $|B|>2$. In this case we obtain indecomposable $S^{\lambda} H$-modules by applying induction from $S^{\mu} B$-modules to $S^{\mu} H$-modules.

Let us briefly present the results obtained. In Section 1, we define the kernel of a cocycle and prove its properties. In Section 2, we obtain further information on the infinite series of indecomposable modules of R-rank n over a group ring $R H$ studied in [19], where $n \geq 2$ is an arbitrary natural number, R is a commutative local ring of characteristic p, and H is a cyclic p-group of order $|H|>2$ or a group of type $(2,2)$. In particular, we prove that, for every such module V, the ring $\operatorname{End}_{R H}(V)$ is finitely generated as an R-module.

In Section 3, we single out rings $S^{\lambda} G$ of SUR-type for the case when S is an arbitrary local integral domain of characteristic p, and, in Section 4, for the case when S is a commutative local noetherian ring of characteristic p. We prove that if S is a local integral domain of characteristic p, H the kernel of $\lambda \in Z^{2}\left(G, S^{*}\right)$, and $\left|H: G^{\prime}\right|>2$, then for $S^{\lambda} G$ one can construct the SUR-dimension-valued function $f_{\lambda}(n)=n d$, where $d=|G: H|$ (Theorem 1). If S is a local noetherian integral domain of characteristic p then in the above statement we can assume that $|H|>2$ (see Corollary to Theorem 4). Let S be a local integral domain of characteristic p, F a subfield of S, and $\lambda \in Z^{2}\left(G, F^{*}\right)$ such that $F^{\lambda} G$ is a non-semisimple algebra. Then for $S^{\lambda} G$ there exists an SUR-dimension-valued function $f_{\lambda}(n)=n d$, where $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$. In addition, one should assume that one of the following conditions holds:

1) $p \neq 2, d<\left|G: G^{\prime}\right|$ (Theorem 2);
2) $p=2, d<\frac{1}{2}\left|G: G^{\prime}\right|$ (Theorem 3);
3) $p \neq 2, S$ is a noetherian ring (Theorem 6).

We remark that if $S^{\lambda} G=S G$, then $d=1$ and $f_{\lambda}(n)=n$, in each of the above cases, and we recover the results of [19], [20]. In Theorem 5, we prove the existence of a ring $S^{\lambda} G$ with SUR-dimension-valued function $f_{\lambda}(n)=n \cdot|G: B|$, where B can be an arbitrary subgroup with $G^{\prime} \subset B \subset G$, and moreover the S-rank of every indecomposable $S^{\lambda} G$-module is a value of the function f_{λ}.

In Section 5, we introduce the concept of projective (S, W)-representation type for a finite group (finite, infinite, purely infinite, bounded, unbounded, purely unbounded, strongly unbounded, purely strongly unbounded). We prove a number of propositions about p-groups with a given projective (S, W)-representation type over a ring $S=F[[X]$ (Propositions 5-8).

1. Non-semisimple twisted group algebras

Lemma 1. Let G be a p-group, R an integral domain of characteristic p, R^{*} the multiplicative group of R, W a subgroup of $R^{*}, \lambda: G \times G \rightarrow W a$ 2 -cocycle, and A the union of all cyclic subgroups $\langle g\rangle$ of G such that the restriction of λ to $\langle g\rangle \times\langle g\rangle$ is a W-valued coboundary. Then $G^{\prime} \subset A, A$ is a normal subgroup of G, and up to cohomology in $Z^{2}(G, W)$,

$$
\begin{equation*}
\lambda_{g, a}=\lambda_{a, g}=1 \tag{1}
\end{equation*}
$$

for all $g \in G, a \in A$.
Proof. Evidently if T is a subgroup of G and the restriction of λ : $G \times G \rightarrow W$ to $T \times T$ is a W-valued coboundary then $T \subset A$. By [29, Corollary 4.10, p. 42], the restriction of λ to $G^{\prime} \times G^{\prime}$ is a W-valued coboundary. Hence, $G^{\prime} \subset A$. Let B be a normal subgroup of G with $G^{\prime} \subset B$ and suppose the restriction of λ to $B \times B$ is a W-valued coboundary. We may assume $\lambda_{b, b^{\prime}}=1$ for all $b, b^{\prime} \in B$. Let $\left\{u_{g}: g \in G\right\}$ be a natural R-basis of $R^{\lambda} G$. For any $b \in B, g \in G$ we have

$$
u_{g} u_{b} u_{g}^{-1}=\gamma u_{b^{\prime}}
$$

where $\gamma \in W, b^{\prime}=g b g^{-1}$. Then

$$
u_{g} u_{b}^{|b|} u_{g}^{-1}=\gamma^{|b|} u_{b^{\prime}}^{|b|}
$$

whence $\gamma=1$. Consequently, $\lambda_{g, b}=\lambda_{b^{\prime}, g}$. Let $\left\{g_{1}=e, g_{2}, \ldots, g_{n}\right\}$ be a cross section of B in $G\left([12\right.$, p. 79] $)$. We set $v_{g_{i} b}=\lambda_{g_{i}, b} u_{g_{i} b}$ for every $i \in\{1, \ldots, n\}$ and $b \in B$. Then $v_{g_{i}}=u_{g_{i}}, v_{b}=u_{b}, v_{g_{i}} v_{b}=v_{g_{i} b}$ and for any $g=g_{j} c, c \in B$, we have

$$
v_{g} v_{b}=v_{g_{j}} v_{c} v_{b}=v_{g_{j}} v_{c b}=v_{g_{j}(c b)}=v_{g b}, \quad v_{b} v_{g}=v_{b g}
$$

Therefore, up to cohomology, $\lambda_{g, b}=\lambda_{b, g}=1$ for all $g \in G, b \in B$.
Let H be a cyclic subgroup of G such that the restriction of λ to $H \times H$ is a W-valued coboundary. Let $D=B H$ and suppose $D \neq B$. Because $G^{\prime} \subset B, D$ is a normal subgroup of G. By hypothesis,

$$
\lambda_{h, h^{\prime}}=\frac{\alpha_{h} \cdot \alpha_{h^{\prime}}}{\alpha_{h h^{\prime}}}
$$

for any $h, h^{\prime} \in H$, where α is a mapping of H into W. If $x, y \in B \cap H$ then

$$
\lambda_{x, y}=1 \quad \text { and } \quad \lambda_{x, y}=\frac{\alpha_{x} \cdot \alpha_{y}}{\alpha_{x y}}
$$

whence $\alpha_{x y}=\alpha_{x} \alpha_{y}$. It follows that $\alpha_{x}=1$ for any $x \in B \cap H$.
Let $h_{1}=e, h_{2}, \ldots, h_{m} \in H$ and $\left\{h_{1}, \ldots, h_{m}\right\}$ be a cross section of B in D. If $d \in D$ and $d=b h_{i}, b \in B$, then we set

$$
v_{d}=\alpha_{h_{i}}^{-1} u_{d}
$$

Let $d_{1}=x h_{i}$ and $d_{2}=y h_{j}$, where $x, y \in B$, be arbitrary elements of D. Assume that $h_{i} h_{j}=b h_{r}, b \in B$, and $z=h_{i} y h_{i}^{-1}$. Then $\lambda_{b, h_{r}}=1$, and hence
$\alpha_{b h_{r}}=\alpha_{b} \alpha_{h_{r}}=\alpha_{h_{r}}$, whence $\alpha_{h_{i} h_{j}}=\alpha_{h_{r}}$. Thus, we get

$$
\begin{aligned}
v_{d_{1}} \cdot v_{d_{2}} & =\alpha_{h_{i}}^{-1} u_{x} u_{h_{i}} \cdot \alpha_{h_{j}}^{-1} u_{y} u_{h_{j}}=\alpha_{h_{i}}^{-1} \alpha_{h_{j}}^{-1} u_{x} u_{z} \lambda_{h_{i}, h_{j}} u_{h_{i} h_{j}} \\
& =\alpha_{h_{i} h_{j}}^{-1} u_{d_{1} d_{2}}=\alpha_{h_{r}}^{-1} u_{d_{1} d_{2}}=v_{d_{1} d_{2}}
\end{aligned}
$$

This proves that the restriction of λ to $D \times D$ is a W-valued coboundary. Let $a_{i} \in A, H_{i}=\left\langle a_{i}\right\rangle, 1 \leq i \leq n$, and $D_{n}=G^{\prime} H_{1} \cdots H_{n}$. Applying induction on n, we conclude in view of the above arguments that D_{n} is a normal subgroup of $G, D_{n} \subset A$, and up to cohomology in $Z^{2}(G, W)$ we have $\lambda_{g, d}=\lambda_{d, g}=1$ for all $g \in G, d \in D_{n}$. This completes the proof, because $A=D_{s}$ for some s.

Definition. The subgroup A introduced in Lemma 1 is said to be the kernel of the cocycle $\lambda \in Z^{2}(G, W)$. We denote this subgroup by $\operatorname{Ker}(\lambda)$.

In what follows, we assume that every cocycle $\lambda \in Z^{2}(G, W)$ under consideration satisfies condition (1). We remark that if $\mu_{x A, y A}=\lambda_{x, y}$ for any $x, y \in G$, then $\mu \in Z^{2}(G / A, W)$ and $\operatorname{Ker}(\mu)=\{A\}$.

Let F be a field of characteristic p, and W a subgroup of F^{*}. Set $i_{F}(W)=$ $\sup \{0, m\}$, where m is a natural number such that the algebra

$$
F[x] /\left(x^{p}-\gamma_{1}\right) \otimes_{F} \cdots \otimes_{F} F[x] /\left(x^{p}-\gamma_{m}\right)
$$

is a field for some $\gamma_{1}, \ldots, \gamma_{m} \in W$. By Proposition 1.1 of [6], for any natural number t, there exists a field F such that $i_{F}\left(F^{*}\right)=t$.

Proposition 1. Let G be a finite p-group, F a field of characteristic p, W a subgroup of $F^{*}, \lambda \in Z^{2}(G, W)$, and $B=\operatorname{Ker}(\lambda)$. Then the set $V=F^{\lambda} G \cdot \operatorname{rad} F^{\lambda} B$ is a nilpotent ideal of the algebra $F^{\lambda} G$, and the quotient algebra $F^{\lambda} G / V$ is isomorphic to $F^{\pi} H$, where $H=G / B$ and $\pi_{x B, y B}=\lambda_{x, y}$ for any $x, y \in G$. If $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$ then d is a divisor of $|G: B|$. Suppose that $i_{F}(W) \geq k$, where k is the number of invariants of the group G / G^{\prime}. Then for every subgroup B of G containing G^{\prime} there exists a cocycle $\lambda \in Z^{2}(G, W)$ such that $B=\operatorname{Ker}(\lambda)$ and $\operatorname{dim}_{F} \overline{F^{\lambda} G}=|G: B|$.

Proof. Let $\lambda \in Z^{2}(G, W)$ and $B=\operatorname{Ker}(\lambda)$. By Lemma $1, B$ is a normal subgroup of $G, G^{\prime} \subset B$, and $\lambda_{g, b}=\lambda_{b, g}=1$ for all $g \in G, b \in B$. It follows that $F^{\lambda} B$ is the group algebra of B over the field F and

$$
\operatorname{rad} F^{\lambda} B=\bigoplus_{b \in B, b \neq e} F\left(u_{b}-u_{e}\right)
$$

Then $V=F^{\lambda} G \cdot \operatorname{rad} F^{\lambda} B$ is a nilpotent ideal of $F^{\lambda} G$. The quotient algebra $F^{\lambda} G / V$ is the commutative twisted group algebra $F^{\pi} H$ of the group $H=G / B$ and the field F with the 2-cocycle $\pi \in Z^{2}(H, W)$, where $\pi_{x B, y B}$ $=\lambda_{x, y}$ for any $x, y \in G$. A natural F-basis of $F^{\lambda} G / V$ is formed by elements of the form $u_{g}+V$.

Let $H=\left\langle h_{1}\right\rangle \times \cdots \times\left\langle h_{r}\right\rangle$ be a group of type $\left(p^{s_{1}}, \ldots, p^{s_{r}}\right)$. The algebra $F^{\pi} H$ has a natural F-basis $\left\{v_{h}: h \in H\right\}$ satisfying the following conditions:

1) if

$$
h=h_{1}^{j_{1}} \cdots h_{r}^{j_{r}}
$$

and $0 \leq j_{i}<p^{s_{i}}$ for every $i=1, \ldots, r$, then

$$
v_{h}=v_{h_{1}}^{j_{1}} \cdots v_{h_{r}}^{j_{r}}
$$

2) $v_{h_{i}}^{p^{s_{i}}}=\alpha_{i} v_{e}, \alpha_{i} \in W(i=1, \ldots, r)$.

We denote the algebra $F^{\pi} H$ also by $\left[H, F, \alpha_{1}, \ldots, \alpha_{r}\right]$. In view of [5, Theorem 1] we have $\overline{F^{\pi} H} \cong K$, where K is a finite purely inseparable extension of F and $[K: F]$ divides $|H|$. Since $\overline{F^{\lambda} G} \cong \overline{F^{\pi} H}, d$ divides $|G: B|$.

Now we prove the final statement. Let B be the subgroup of G with $G^{\prime} \subset B$ and set $H=G / B$. Assume $H=\left\langle h_{1}\right\rangle \times \cdots \times\left\langle h_{r}\right\rangle$. Then $r \leq k$. Since $i_{F}(W) \geq k$,

$$
F[x] /\left(x^{p}-\gamma_{1}\right) \otimes_{F} \cdots \otimes_{F} F[x] /\left(x^{p}-\gamma_{r}\right)
$$

is a field for some $\gamma_{1}, \ldots, \gamma_{r} \in W$. The twisted group algebra $F^{\mu} H=$ $\left[H, F, \gamma_{1}, \ldots, \gamma_{r}\right]$ is a field. Let $\lambda_{x, y}=\mu_{x B, y B}$ for all $x, y \in G$. Then $\lambda \in$ $Z^{2}(G, W)$ and $\operatorname{Ker}(\lambda)=B$. Let $V=F^{\lambda} G \cdot \operatorname{rad} F^{\lambda} B$. Because $F^{\lambda} G / V \cong$ $F^{\mu} H$ and $F^{\mu} H$ is a field, we have $V=\operatorname{rad} F^{\lambda} G$ and $\operatorname{dim}_{F} \overline{F^{\lambda} G}=|G: B|$.

Proposition 2. Let G be a finite p-group, F a field of characteristic p, $\lambda \in Z^{2}\left(G, F^{*}\right)$, and $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$.
(i) There exists a homomorphism of $F^{\lambda} G$ onto a twisted group algebra of the form

$$
\begin{equation*}
A=\bigoplus_{j=0}^{p^{m}-1} K v_{a}^{j}, \quad v_{a}^{p^{m}}=\alpha^{p^{l}} v_{e}\left(\alpha \in K^{*}\right) \tag{2}
\end{equation*}
$$

where $m>0, K$ is a finite purely inseparable extension of $F ; d=$ $[K: F] \cdot p^{m-l}, l=0$ for $d=\left|G: G^{\prime}\right|$ and $1 \leq l \leq m$ for $d<\left|G: G^{\prime}\right|$; $\alpha \notin K^{p}$ for $0 \leq l<m$ and $\alpha=1$ for $l=m$.
(ii) If $d<1 / p\left|G: G^{\prime}\right|$, then there exists a homomorphism of $F^{\lambda} G$ onto A with $2 \leq l \leq m$ or onto a twisted group algebra of the form

$$
\begin{equation*}
A^{\prime}=\bigoplus_{i, j} K v_{a}^{i} v_{b}^{j}, \quad v_{a} v_{b}=v_{b} v_{a}, \quad v_{a}^{p^{m}}=\alpha^{p} v_{e}, \quad v_{b}^{p^{n}}=\beta^{p} v_{e} \tag{3}
\end{equation*}
$$

where $m, n>0, K$ is a finite purely inseparable extension of F, $d=[K: F] \cdot p^{m+n-2}$, and $\operatorname{rad} A^{\prime}$ is generated by elements

$$
v_{a}^{p^{m-1}}-\alpha v_{e}, \quad v_{b}^{p^{n-1}}-\beta v_{e}
$$

Proof. We keep the notations used in the proof of Proposition 1, and we assume that G is non-abelian. Arguing as in that proof, we establish the existence of an algebra homomorphism $F^{\lambda} G$ onto the algebra $F^{\pi} H$, where
$H=G / G^{\prime}$ and $\pi_{x G^{\prime}, y G^{\prime}}=\lambda_{x, y}$ for all $x, y \in G$. Let $H=\left\langle h_{1}\right\rangle \times \cdots \times\left\langle h_{k}\right\rangle$ be a group of type ($p^{l_{1}}, \ldots, p^{l_{k}}$) and $\left\{u_{h}: h \in H\right\}$ a natural F-basis of $F^{\pi} H$. If $F^{\pi} H$ is semisimple then $F^{\pi} H$ is a field and $d=\left|G: G^{\prime}\right|$. We have

$$
F^{\pi} H=\bigoplus_{j=0}^{p^{m}-1} K v_{a}^{j}, \quad v_{a}^{p^{m}}=\alpha v_{e}\left(\alpha \in F^{*}\right),
$$

where $m=l_{k}, K=F\left[u_{h_{1}}, \ldots, u_{h_{k-1}}\right]$, and $v_{a}=u_{h_{k}}$. In this case $\alpha \notin K^{p}$. Assume now that the algebra $F^{\pi} H$ is non-semisimple. Suppose also that $F\left[u_{h_{1}}, \ldots, u_{h_{r-1}}\right]$ is a field and $F\left[u_{h_{1}}, \ldots, u_{h_{r-1}}, u_{h_{r}}\right]$ is not. Let

$$
H_{1}=\prod_{i \neq r}\left\langle h_{i}\right\rangle, \quad H_{2}=\left\langle h_{r}\right\rangle, \quad U=\operatorname{rad} F^{\pi} H_{1}, \quad W=F^{\pi} H \cdot U,
$$

and $F^{\pi} H_{1} / U \cong K$, where K is a finite purely inseparable extension of F. Then

$$
F^{\pi} H / W \cong F^{\pi} H_{1} / U \otimes_{F} F^{\pi} H_{2} \cong K \otimes_{F} F^{\pi} H_{2} \cong K^{\pi} H_{2},
$$

and hence, $F^{\pi} H / W$ is isomorphic to a twisted group algebra A of the form (2), where $m=l_{r}$. The case when $F\left[u_{h_{i}}\right]$ is not a field for every $i=1, \ldots, k$ is treated similarly.

Assume that $d<(1 / p)|H|$. Then there exists a homomorphism of the algebra $F^{\pi} H$ onto an algebra of the form (2) with $l \geq 2$ or onto an algebra A^{\prime} of the form (3), where $\alpha, \beta \in K, \alpha \notin K^{p}$ for $m>1$, and $\beta \notin K^{p}$ for $n>1$. Let $m>1$ and $L=K(\theta)$, where θ is a root of the polynomial

$$
X^{p^{n-1}}-\beta .
$$

If $\alpha \in L^{p}$ then there exists a homomorphism of A^{\prime} onto

$$
\bigoplus_{i=0}^{p^{m}-1} L v_{a}^{i}, \quad v_{a}^{p^{m}}=\gamma^{p^{2}} v_{e}\left(\gamma \in L^{*}\right),
$$

which is of the form (2).
2. Infinite sets of indecomposable underlying modules of representations of a group ring of a p-group. Let $H=\langle a\rangle$ be a cyclic p-group of order $|H|>2$, and R a commutative local ring of characteristic p. Assume that there is a non-zero element $t \in \operatorname{rad} R$ which is not a zero-divisor. Let E_{m} be the identity matrix of order $m, J_{m}(0)$ the upper Jordan block of order m with zeros on the main diagonal, and $\langle 1\rangle$ the $m \times 1$-matrix of the form

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Denote by Γ_{i} a matrix R-representation of degree n of the group H defined in the following way:

1) if $n=2$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{cc}
1 & t^{i} \\
0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

$2)$ if $n=3 m(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{ccc}
E_{m} & t^{i} E_{m} & J_{m}(0) \\
0 & E_{m} & t^{i} E_{m} \\
0 & 0 & E_{m}
\end{array}\right) \quad(i \in \mathbb{N})
$$

$3)$ if $n=3 m+1(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{cccc}
E_{m} & t^{2 i} E_{m} & J_{m}(0) & t\langle 1\rangle \\
0 & E_{m} & t^{i} E_{m} & 0 \\
0 & 0 & E_{m} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

4) if $n=3 m+2(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{ccccc}
E_{m} & t^{i+2} E_{m} & J_{m}(0) & t^{2 i+4}\langle 1\rangle & t\langle 1\rangle \\
0 & E_{m} & t^{2 i+4} E_{m} & 0 & t^{2}\langle 1\rangle \\
0 & 0 & E_{m} & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

Let V_{i} be the underlying $R H$-module of this representation.
Note that Γ_{i} is a slight modification of the representation of H which was constructed in [19, Lemma 4] for the case when R is a local integral domain of characteristic p. One can obtain this representation as a result of the substitution $J_{m}(0) \mapsto E_{m}+J_{m}(0)$.

Lemma 2. If $i \neq j$, then the $R H$-modules V_{i} and V_{j} are non-isomorphic. The algebra $\operatorname{End}_{R H}\left(V_{i}\right)$ is finitely generated as an R-module and there is an algebra isomorphism

$$
\operatorname{End}_{R H}\left(V_{i}\right) / \operatorname{rad} \operatorname{End}_{R H}\left(V_{i}\right) \cong R / \operatorname{rad} R \quad \text { for every } i \in \mathbb{N}
$$

Proof. By direct calculations we find that if $i \neq j$ and $C \Gamma_{i}(a)=\Gamma_{j}(a) C$ for some $C \in R^{n \times n}$, then $\operatorname{det} C \notin R^{*}$. Hence the modules V_{i} and V_{j} are non-isomorphic for $i \neq j$. We prove the second and third statement only for the case $n=3 m+2$, because the proof in the remaining cases is similar.

Suppose that

$$
C=\left(\begin{array}{lllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55}
\end{array}\right)
$$

is a square matrix of order $n=3 m+2$ with entries from the ring R. In addition, we assume that C_{11}, C_{22}, C_{33} are square matrices of order m and C_{44}, C_{55} square matrices of order 1. If $\Gamma_{i}(a) C=C \Gamma_{i}(a)$, then

$$
\begin{align*}
& C_{21}=0, \quad C_{31}=0, \quad C_{32}=0, \quad C_{34}=0, \\
& C_{41}=0, \quad C_{51}=0, \quad C_{52}=0, \quad C_{54}=0 ; \\
& C_{22}=C_{11}-t^{i+2}\langle 1\rangle C_{42} ; \quad C_{33}=C_{11}-\left(t^{i+2}+t^{2}\right)\langle 1\rangle C_{42} ; \\
& C_{53}=t^{2 i+4} C_{42} ; \quad C_{24}+t^{i+2}\langle 1\rangle C_{44}=t^{i+2} C_{11}\langle 1\rangle ; \\
& C_{55}=t^{2} C_{42}\langle 1\rangle+C_{44} ; \quad C_{24}=t^{2 i+4} C_{35}+t^{2}\langle 1\rangle C_{55}-t^{2} C_{22}\langle 1\rangle ; \tag{4}\\
& C_{11} J_{m}(0)-J_{m}(0) C_{11} \\
& =t^{i+2}\left(C_{23}+t^{i+2}\langle 1\rangle C_{43}+t^{i+3}\langle 1\rangle C_{42}-t^{i+2} C_{12}\right) ; \\
& C_{14}=t^{i+2} C_{25}+J_{m}(0) C_{35} \\
& +t^{2 i+4}\langle 1\rangle C_{45}+t\langle 1\rangle C_{55}-t C_{11}\langle 1\rangle-t^{2} C_{12}\langle 1\rangle .
\end{align*}
$$

We can find all solutions of this system if we know the solutions of the following system:

$$
\begin{gather*}
t^{2 i+2} C_{35}+\left(1+t^{i}\right)\langle 1\rangle C_{55}-\left(1+t^{i}\right) C_{11}\langle 1\rangle=0, \tag{5}\\
C_{11} J_{m}(0)-J_{m}(0) C_{11}=t^{i+2}\left(C_{23}+t^{i+2}\langle 1\rangle C_{43}+t^{i+3}\langle 1\rangle C_{42}-t^{i+2} C_{12}\right) .
\end{gather*}
$$

Define

$$
\begin{aligned}
& B=C_{23}+t^{i+2}\langle 1\rangle C_{43}+t^{i+3}\langle 1\rangle C_{42}-t^{i+2} C_{12} ; \quad C_{55}=(\alpha) ; \\
& B=\left(b_{k l}\right), \quad C_{11}=\left(x_{k l}\right), \quad 1 \leq k, l \leq m ; \quad C_{35}=\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{m}
\end{array}\right) .
\end{aligned}
$$

Equation (5) yields

$$
x_{11}=\alpha+\frac{t^{2 i+2}}{1+t^{i}} \delta_{1} ; \quad x_{j 1}=\frac{t^{2 i+2}}{1+t^{2}} \delta_{j}, \quad 2 \leq j \leq m .
$$

We declare α, δ_{j} for all $j=1, \ldots, m$ to be free unknowns. Equation (6) can be written in the form

$$
\begin{array}{r}
\left(\begin{array}{ccccc}
0 & x_{11} & x_{12} & \cdots & x_{1, m-1} \\
0 & x_{21} & x_{22} & \cdots & x_{2, m-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
0 & x_{m-1,1} & x_{m-1,2} & \cdots & x_{m-1, m-1} \\
0 & x_{m 1} & x_{m 2} & \cdots & x_{m, m-1}
\end{array}\right)-\left(\begin{array}{ccccc}
x_{21} & x_{22} & \cdots & x_{2 m} \\
x_{31} & x_{32} & \cdots & x_{3 m} \\
\cdot & \cdot & \cdots & \cdot \\
x_{m 1} & x_{m 2} & \cdots & x_{m m} \\
0 & 0 & \cdots & 0
\end{array}\right) \tag{7}\\
\\
=t^{i+2}\left(\begin{array}{ccccc}
b_{11} & b_{12} & b_{13} & \cdots & b_{1 m} \\
b_{21} & b_{22} & b_{23} & \cdots & b_{2 m} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
b_{m-1,1} & b_{m-1,2} & b_{m-1,3} & \cdots & b_{m-1, m} \\
b_{m 1} & b_{m 2} & b_{m 3} & \cdots & b_{m m}
\end{array}\right) .
\end{array}
$$

Equate the first columns on the left side of (7) with those on the right, thereby obtaining

$$
b_{k 1}=-\frac{t^{i}}{1+t^{i}} \delta_{k+1} \quad \text { for } k \in\{1, \ldots, m-1\}, \quad b_{m 1}=0
$$

Equating the second columns on both sides of (7), we get

$$
\left(\begin{array}{c}
x_{22} \\
\vdots \\
x_{m 2}
\end{array}\right)=\left(\begin{array}{c}
x_{11} \\
\vdots \\
x_{m-1,1}
\end{array}\right)-t^{i+2}\left(\begin{array}{c}
b_{12} \\
\vdots \\
b_{m-1,2}
\end{array}\right), \quad b_{m 2}=\frac{t^{i}}{1+t^{i}} \delta_{m}
$$

There is no restriction on $x_{12}, b_{12}, \ldots, b_{m-1,2}$. We declare $x_{1 l}, b_{1 l}, \ldots, b_{m-1, l}$ for $l=2, \ldots, m$ to be free unknowns. Taking into consideration the expression of $x_{j 1}$ for $2 \leq j \leq m$, we conclude that t^{i+2} divides $x_{j 2}$ for every $j \in\{3, \ldots, m\}$. We use induction on q, where $2 \leq q \leq m$ and q indexes columns in the matrix C_{11}. Let $q \leq m-1$, and suppose that $x_{k l}, b_{k l}$ have been determined for all $k \in\{1, \ldots, m\}$ and $l \in\{2, \ldots, q\}$, where:

1) $x_{k l}$ for $2 \leq k \leq m, 2 \leq l \leq q$ are linear combinations of free unknowns with coefficients in R and t^{i+2} divides the coefficients of $x_{j l}$ for every $j \in\{l+1, \ldots, m\}$; moreover $x_{k l}=x_{k-1, l-1}-t^{i+2} b_{k-1, l}$;
2) $t^{i+2} b_{m l}=x_{m, l-1}$.

Equating the $(q+1)$ th columns on both sides of (7), we obtain

$$
\begin{aligned}
& t^{i+2} b_{m, q+1}=x_{m q} \\
& x_{j, q+1}=x_{j-1, q}-t^{i+2} b_{j-1, q+1} \quad \text { for all } j \in\{2, \ldots, m\} .
\end{aligned}
$$

Since t is not a zero-divisor and t^{i+2} divides the coefficients of $x_{m q}$, one can solve the first equation for $b_{m, q+1}$. The second equation implies that t^{i+2} divides the coefficients of $x_{j, q+1}$ for every $j \in\{q+2, \ldots, m\}$.

Thus the set of pairs $\left(C_{11}, B\right)$ is finitely generated as an R-module. For a given matrix B,

$$
C_{23}=B-t^{i+2}\langle 1\rangle C_{43}-t^{i+3}\langle 1\rangle C_{42}+t^{i+2} C_{12} .
$$

Since the matrices $C_{12}, C_{13}, C_{i 5}(i=1,2,3,4), C_{42}, C_{43}, C_{55}$ are arbitrary, the ring K of matrices C commuting with $\Gamma_{i}(a)$ is finitely generated as an R-module.

Let $P=\operatorname{rad} R$. We have

$$
C_{1} \equiv\left(\begin{array}{ccc}
\alpha & & * \\
& \ddots & \\
0 & & \alpha
\end{array}\right)\left(\bmod P R^{m \times m}\right)
$$

It follows from (4) that

$$
C \equiv\left(\begin{array}{ccccc}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\
0 & C_{11} & C_{23} & 0 & C_{25} \\
0 & 0 & C_{11} & 0 & C_{35} \\
0 & C_{42} & C_{43} & C_{55} & 0 \\
0 & 0 & 0 & 0 & C_{55}
\end{array}\right)\left(\bmod P R^{n \times n}\right)
$$

and hence, $\operatorname{det} C \equiv \alpha^{n}(\bmod P)$. Since C or $C-E$ is an invertible matrix over R, it follows that C or $C-E$ is invertible in K. Therefore, K is a local ring. We have $C=\alpha E+D$, where $D \in \operatorname{rad} K$. The mapping $f: K / \operatorname{rad} K \rightarrow$
 $\overline{\operatorname{End}_{R H}\left(V_{i}\right)} \cong \bar{R}$.

Lemma 3. Let $H=\langle a\rangle \times\langle b\rangle$ be an abelian group of type $(2,2), t \in \operatorname{rad} R$, $t \neq 0$ and suppose t is not a zero-divisor. Denote by W_{i} the underlying $R H$ module of the matrix representation Δ_{i} of degree n of the group H defined as follows:

1) if $n=2 m(m \geq 1)$, then

$$
\Delta_{i}(a)=\left(\begin{array}{cc}
E_{m} & t^{i} E_{m} \\
0 & E_{m}
\end{array}\right), \quad \Delta_{i}(b)=\left(\begin{array}{cc}
E_{m} & J_{m}(0) \\
0 & E_{m}
\end{array}\right) \quad(i \in \mathbb{N})
$$

2) if $n=2 m+1(m \geq 1)$, then
$\Delta_{i}(a)=\left(\begin{array}{ccc}E_{m} & t^{i} E_{m} & 0 \\ 0 & E_{m} & 0 \\ 0 & 0 & 1\end{array}\right), \quad \Delta_{i}(b)=\left(\begin{array}{ccc}E_{m} & J_{m}(0) & t^{i}\langle 1\rangle \\ 0 & E_{m} & 0 \\ 0 & 0 & 1\end{array}\right) \quad(i \in \mathbb{N})$.
If $i \neq j$, then the modules W_{i} and W_{j} are non-isomorphic. Moreover, $\operatorname{End}_{R H}\left(W_{i}\right)$ is finitely generated as an R-module and there is an algebra isomorphism

$$
\operatorname{End}_{R H}\left(W_{i}\right) / \operatorname{rad} \operatorname{End}_{R H}\left(W_{i}\right) \cong R / \operatorname{rad} R
$$

for all $i \in \mathbb{N}$.
The proof of Lemma 3 is similar to that of Lemma 2, and we leave it to the reader.

3. Twisted group rings $S^{\lambda} G$ of SUR-type if S is an arbitrary local integral domain

Lemma 4. Let R be a commutative local artinian ring or a complete commutative local noetherian ring of characteristic p, G a finite p-group, $\lambda \in Z^{2}\left(G, R^{*}\right)$, H a subgroup of G, and V an indecomposable $R^{\lambda} H$-module. Assume that the quotient algebra

$$
\overline{\operatorname{End}_{R^{\lambda} H}(V)}=\operatorname{End}_{R^{\lambda} H}(V) / \operatorname{rad}_{\operatorname{End}_{R^{\lambda} H}}(V)
$$

is isomorphic to a field K containing \bar{R}, and one of the following conditions is satisfied:
(i) $G=H \cdot T$, where T is a subgroup of the center of G;
(ii) if K_{s} is the separable closure of $\bar{R}=R / \operatorname{rad} R$ in K, then the order of the group $\operatorname{Aut}\left(K_{s} / \bar{R}\right)$ is not divisible by p.

Then $V^{R^{\lambda} G}$ is an indecomposable $R^{\lambda} G$-module, and the quotient algebra

$$
\overline{\operatorname{End}_{R^{\lambda} G}\left(V^{R^{\lambda} G}\right)}
$$

is isomorphic to a field, which is a finite purely inseparable extension of K.
Lemma 5. Let R be a commutative local ring of characteristic p^{k}, G a finite abelian p-group, H a subgroup of $G, \lambda \in Z^{2}\left(G, R^{*}\right)$, and M an indecomposable $R^{\lambda} H$-module. Assume that $\operatorname{End}_{R^{\lambda} H}(M)$ is finitely generated as an R-module and $\overline{\operatorname{End}_{R^{\lambda} H}(M)}$ is isomorphic to a field K containing \bar{R}. Then $M^{R^{\lambda} G}$ is an indecomposable $R^{\lambda} G$-module. Moreover,

$$
\operatorname{End}_{R^{\lambda} G}\left(M^{R^{\lambda} G}\right)
$$

is finitely generated as an R-module and the quotient algebra

$$
\overline{\operatorname{End}_{R^{\lambda} G}\left(M^{R^{\lambda} G}\right)}
$$

is isomorphic to a field, which is a finite purely inseparable extension of K.
The proofs of Lemmas 4 and 5 are similar to those of Lemma 2 of [2] and Lemma 2.2 of [3]. These lemmas generalize the results by Green [14], [15], concerning the absolutely indecomposable modules over group rings.

Until the end of this section we assume that S is an arbitrary local integral domain of characteristic $p, P=\operatorname{rad} S, P \neq 0, F$ is a subfield of S, and G a finite p-group. Denote by $[M]$ the isomorphism class of $S G$-modules which contains M. Let $\mathfrak{M}_{n}(S G)$ be the set of all $[M]$ satisfying the following conditions:
(i) the S-rank of M equals n;
(ii) $\operatorname{End}_{S G}(M)$ is finitely generated as an S-module;
(iii) $\overline{\operatorname{End}_{S G}(M)} \cong \bar{S}$.

Lemma 6. Let $|G|>2$. Then $\mathfrak{M}_{n}(S G)$ is an infinite set for every $n>1$.
Lemma 6 follows from Lemmas 2 and 3 .
Theorem 1. Let $\lambda \in Z^{2}\left(G, S^{*}\right)$ and $H=\operatorname{Ker}(\lambda)$.
(i) If $|H|>2$, then $S^{\lambda} G$ is of SUR-type with $f_{\lambda}(n)=n t_{n}$, where $1 \leq$ $t_{n} \leq|G: H|$.
(ii) Assume that $\left|H: G^{\prime}\right|>2$. Then $f_{\lambda}(n)=$ nd, where $d=|G: H|$, is an $S U R$-dimension-valued function for $S^{\lambda} G$.

Proof. (i) Let $[V] \in \mathfrak{M}_{n}(S H),\left\{u_{g}: g \in G\right\}$ be a natural S-basis of $S^{\lambda} G$, and $\left\{g_{1}=e, g_{2}, \ldots, g_{m}\right\}$ a cross section of H in G. Then

$$
V^{S^{\lambda} G}=\bigoplus_{i=1}^{m} V_{i} \quad \text { with } \quad V_{i}=u_{g_{i}} \otimes V .
$$

Since the $S H$-module V_{i} is conjugate to V for every i, there is an algebra isomorphism

$$
\operatorname{End}_{S H}\left(V_{i}\right) \cong \operatorname{End}_{S H}(V)
$$

for each i. Since the ring of SH -endomorphisms of V_{i} is local for every $i \in\{1, \ldots, m\}$, in view of the Krull-Schmidt Theorem [30, Sect. 7.3] the $S H$-module $V^{S^{\lambda} G}$ has a unique decomposition into a finite sum of indecomposable $S H$-modules, up to isomorphism and the order of summands. Hence, in view of Lemma 6, there are infinitely many non-isomorphic indecomposable $S^{\lambda} G$-modules M such that M is an $S^{\lambda} G$-component of a module of the form $V^{S^{\lambda} G}$. Note that the S-rank of M is divisible by n and does not exceed $n \cdot|G: H|$. Therefore, there exists a natural number t_{n} such that $1 \leq t_{n} \leq|G: H|$ and $\operatorname{Ind}_{n t_{n}}\left(S^{\lambda} G\right)$ is an infinite set.
(ii) Let $A=G / G^{\prime}$ and

$$
U=\bigoplus_{a \in G^{\prime}, a \neq e} S\left(u_{a}-u_{e}\right) .
$$

The set $V=S^{\lambda} G \cdot U$ is a two-sided ideal of $S^{\lambda} G$. The factor ring $S^{\lambda} G / V$ is isomorphic to $S^{\mu} A$, where $\mu_{x G^{\prime}, y G^{\prime}}=\lambda_{x, y}$ for all $x, y \in G$. It contains the group ring $S B$, where $B=H / G^{\prime}$. Since $|B|>2$, by Lemma 6 the set $\mathfrak{M}_{n}(S B)$ is infinite for every $n>1$.

Assume that $[M] \in \mathfrak{M}_{n}(S B)$. By Lemma 5 , the induced $S^{\mu} A$-module $M^{S^{\mu} A}$ is indecomposable. Its S-rank is equal to $n \cdot|A: B|=n \cdot|G: H|$. Arguing as in case (i), we deduce that $\operatorname{Ind}_{n d}\left(S^{\mu} A\right)$ is infinite for every $n>1$. It follows that $\operatorname{Ind}_{n d}\left(S^{\lambda} G\right)$ is an infinite set for each $n>1$.

Theorem 2. Let $p \neq 2$ and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If the algebra $F^{\lambda} G$ is not semisimple, then the ring $S^{\lambda} G$ is of SUR-type. Moreover, if $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$ and $d<\left|G: G^{\prime}\right|$, then $f_{\lambda}(n)=n d$ is an SUR-dimension-valued function for $S^{\lambda} G$.

Proof. There exists an algebra homomorphism of $F^{\lambda} G$ onto $F^{\mu} \bar{G}$, where $\bar{G}=G / G^{\prime}$ and $\mu_{x G^{\prime}, y G^{\prime}}=\lambda_{x, y}$ for all $x, y \in G$. We have $d=\operatorname{dim}_{F} \overline{F^{\mu} \bar{G}}$. Taking into account this fact and Theorem 1 we can assume that G is abelian and $F^{\lambda} G$ is non-semisimple.

In view of Proposition 2, there exists an algebra homomorphism of $F^{\lambda} G$ onto a twisted group algebra

$$
A=\bigoplus_{j=0}^{p^{m}-1} K v_{a}^{j}, \quad v_{a}^{p^{m}}=\alpha^{p^{l}} v_{e}\left(\alpha \in K^{*}\right)
$$

where K is a finite purely inseparable extension of the field $F, 1 \leq l \leq m$, $\alpha \notin K^{p}$ for $l<m$ and $d=[K: F] \cdot p^{m-l}$. Since $S^{\lambda} G \cong S \otimes_{F} F^{\lambda} G$, there is an algebra homomorphism of $S^{\lambda} G$ onto a twisted group ring

$$
\Lambda=S \otimes_{F} A=\bigoplus_{j=0}^{p^{m}-1} R\left(1 \otimes v_{a}\right)^{j}
$$

where $R=S \otimes_{F} K v_{e}$. Note that if

$$
w=1 \otimes \alpha^{-1} v_{a}^{p^{m-l}}
$$

then $w^{p^{l}}=1 \otimes v_{e}$. Hence we conclude that the ring

$$
\Gamma=\bigoplus_{i=0}^{p^{l}-1} R w^{i}
$$

is a twisted group ring of a cyclic group of order p^{l} and of the ring R.
The ring R is a finitely generated S-free S-algebra. By [10, Proposition 5.22, p. 112], we have

$$
\bar{R}=R / \mathrm{rad} R \cong(R / P R) / \mathrm{rad}(R / P R) \cong \overline{\bar{S} \otimes_{F} K}
$$

but then $([11, \mathrm{p} .100]) R$ is a commutative local ring of characteristic p. Let t be a non-zero element of P. The element $t \otimes v_{e}$ is not a zero-divisor in R and $t \otimes v_{e} \in \operatorname{rad} R$. In view of Lemma 2 , for every $n>1$, there are infinitely many pairwise non-isomorphic indecomposable Γ-modules V_{1}, V_{2}, \ldots satisfying the following conditions:

1) the R-rank of V_{i} is equal to n;
2) $\operatorname{End}_{\Gamma}\left(V_{i}\right)$ is finitely generated as an R-module;
3) $\overline{\operatorname{End}_{\Gamma}\left(V_{i}\right)} \cong \bar{R}$.

By Lemma 5 , the induced Λ-module V_{i}^{Λ} is an indecomposable module of R-rank $n p^{m-l}$. Further, the algebra

$$
\overline{\operatorname{End}_{\Lambda}\left(V_{i}^{\Lambda}\right)}
$$

is isomorphic to a field which is a finite purely inseparable extension of the field \bar{R}. Since

$$
\left(V_{i}^{\Lambda}\right)_{\Gamma} \cong V_{i} \oplus \cdots \oplus V_{i}
$$

by the Krull-Schmidt Theorem ([30, Sect. 7.3]) the modules V_{i}^{Λ} and V_{j}^{Λ} are non-isomorphic for $i \neq j$. The module V_{i}^{Λ} is an indecomposable $S^{\lambda} G$-module of S-rank $[K: F] \cdot n p^{m-l}=n d$.

Theorem 3. Let $p=2, \lambda \in Z^{2}\left(G, F^{*}\right)$, and $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$.
(i) If the algebra $F^{\lambda} G$ is not semisimple, then the set $\operatorname{Ind}_{l}\left(S^{\lambda} G\right)$ is infinite for some $l \leq|G|$.
(ii) If $d<\frac{1}{2}\left|G: G^{\prime}\right|$, then $S^{\lambda} G$ is of SUR-type. In this case the function $f_{\lambda}(n)=n d$ is an $S U R$-dimension-valued function.

Proof. (i) If $\left|G^{\prime}\right| \neq 1$, then by Theorem 1 we may suppose that $\left|G^{\prime}\right|=2$. Let $G^{\prime}=\langle a\rangle, t \in \operatorname{rad} S$, and $t \neq 0$. Denote by M_{i} the underlying $S G^{\prime}$-module of the indecomposable representation

$$
\Gamma_{i}: u_{a} \mapsto\left(\begin{array}{cc}
1 & t^{i} \\
0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

of the ring $S G^{\prime}$. If $i \neq j$, then the $S G^{\prime}$-modules M_{i} and M_{j} are nonisomorphic. By the same arguments as in the proof of Theorem 1(i), we can prove that $\operatorname{Ind}_{l}\left(S^{\lambda} G\right)$ is infinite for some $l \leq|G|$.

Suppose that $\left|G^{\prime}\right|=1, d=\frac{1}{2}|G|$ and H is the socle of G. Then

$$
S^{\lambda} H=S^{\mu} H \cong S^{\mu} H_{1} \otimes_{S} S H_{2}
$$

where $\mu \in Z^{2}\left(H, F^{*}\right), H=H_{1} \times H_{2}, H_{2} \subset \operatorname{Ker}(\mu)$, and $H_{2}=\langle a\rangle$ is a group of order 2 . We assume that Γ_{i} is a representation of the ring $S H_{2}$, and M_{i} is the underlying module of Γ_{i}. By Lemma 5,

$$
V_{i}=M_{i}^{S^{\mu} H}
$$

is an indecomposable $S^{\lambda} H$-module and $\overline{\operatorname{End}_{S^{\lambda} H}\left(V_{i}\right)}$ is a finite purely inseparable extension of \bar{S}, up to isomorphism. If $i \neq j$, then the $S^{\lambda} H$-modules V_{i} and V_{j} are non-isomorphic. Arguing as in the proof of of Theorem 1(i), we finish the proof in this case.
(ii) If $d<\frac{1}{2}\left|G: G^{\prime}\right|$, then we reason as in the proof of Theorem 2. However, note that if $p=2$, then there are two cases, namely that of an algebra A of the form (2), where $m \geq 2$, and of an algebra A^{\prime} of the form (3). We apply Lemma 2 in the first case and Lemma 3 in the second.
4. Twisted group rings $S^{\lambda} G$ of SUR-type if S is a local noetherian ring. In this section we suppose that S is a commutative local noetherian ring of characteristic p, F a subfield of $S, P=\operatorname{rad} S$, and \widehat{S} is the P-adic completion of S. We also assume that S is not a field, and if S is not an integral domain then $\bar{S}=S / P$ is an infinite field. Throughout, we identify S with its canonical image in \widehat{S}. It is well known (see [8, p. 205]) that \widehat{S} is a complete commutative local noetherian ring.

Let H be a finite p-group. Denote by $[M]$ the isomorphism class of the $\widehat{S} H$-module M. Let $\mathfrak{M}_{n}(\widehat{S} H)$ be the set of all classes $[M]$ satisfying the
following two conditions:
(i) the \widehat{S}-rank of M is equal to n;
(ii) $\overline{\operatorname{End}_{\widehat{S} H}(M)} \cong \widehat{S} / \operatorname{rad} \widehat{S}$.

Lemma 7. Let H be a finite p-group of order $|H|>2$, and
$\mathfrak{M}_{n}^{0}(\widehat{S} H)=\left\{(V) \in \mathfrak{M}_{n}(\widehat{S} H): V \cong \widehat{S} \otimes_{S} M\right.$ for some $S H$-module $\left.M\right\}$.
Then $\mathfrak{M}_{n}^{0}(\widehat{S} H)$ is an infinite set for every $n>1$.
Proof. If S contains a non-zero nilpotent element, then the conclusion follows from Lemma 2 in [19]. Assume that S is not an integral domain and S does not have a non-zero nilpotent element. Then S has two elements u and v such that $u v=0, u \notin \widehat{S} v$, and $v \notin \widehat{S} u$. This allows us to apply the same type of argument as in the proofs of Lemmas 3 and 5 of [19]. Let S be an integral domain, $t \in P$, and $t \neq 0$. Then t is not a zero-divisor in \widehat{S} ([8, p. 204]). In view of Lemmas 2 and 3, the set $\mathfrak{M}_{n}^{0}(\widehat{S} H)$ is infinite.

Theorem 4. Let G be a p-group and $\lambda \in Z^{2}\left(G, S^{*}\right)$. Assume that G contains a subgroup H such that $|H|>2$ and the restriction of λ to $H \times H$ is a coboundary. Then $S^{\lambda} G$ is of SUR-type with SUR-dimension-valued function $f_{\lambda}(n)=n \cdot|G: H|$.

Proof. Without loss of generality, we can suppose that $\lambda_{a, b}=1$ for all $a, b \in H$. In view of Lemma $7, \mathfrak{M}_{n}^{0}(\widehat{S} H)$ is infinite for each $n>1$. If $[V] \in$ $\mathfrak{M}_{n}^{0}(\widehat{S} H)$ then, by Lemma $4, V^{\widehat{S}^{\lambda} G}$ is an indecomposable $\widehat{S}^{\lambda} G$-module. Since

$$
\left(V^{\widehat{S}^{\lambda} G}\right)_{\widehat{S} H} \cong V \oplus W
$$

where W is an $\widehat{S} H$-module, the set of all isomorphism classes $\left[V^{\widehat{S}^{\lambda} G}\right.$] is infinite, in view of the Krull-Schmidt Theorem ([10, p. 128]). Then $V \cong$ $\widehat{S} \otimes_{S} M$, where M is an indecomposable $S H$-module. It follows that there are infinitely many pairwise non-isomorphic indecomposable $S^{\lambda} G$-modules of the form $M^{S^{\lambda} G}$. We also note that the S-rank of $M^{S^{\lambda} G}$ is $n \cdot|G: H|$.

Corollary 1. Let G be a p-group, S a local noetherian integral domain of characteristic $p, \operatorname{rad} S \neq 0, \lambda \in Z^{2}\left(G, S^{*}\right)$, and H the kernel of λ. If $|H|>2$, then $f_{\lambda}(n)=n \cdot|G: H|$ is an SUR-dimension-valued function.

Denote by $F\left[\left[X_{1}, \ldots, X_{m}\right]\right]$ the F-algebra of formal power series in the indeterminates X_{1}, \ldots, X_{m} with coefficients in the field F of characteristic p.

Theorem 5. Let $S=F[[X]]$, W be a subgroup of F^{*}, G a finite p-group, t the number of invariants of the group $G / G^{\prime}, i_{F}(W) \geq t$, and B a subgroup of G such that $G^{\prime} \subset B$. If $|B|>2$, then there is a cocycle $\lambda \in Z^{2}(G, W)$ such that $\operatorname{Ker}(\lambda)=B, \operatorname{dim}_{F} \overline{F^{\lambda} G}=|G: B|, S^{\lambda} G$ is of SUR-type and satisfies the following conditions:
(i) the function $f_{\lambda}(n)=n \cdot|G: B|$ is an $S U R$-dimension-valued function for $S^{\lambda} G$;
(ii) the S-rank of every $S^{\lambda} G$-module is a value of f_{λ};
(iii) there is only one $S^{\lambda} G$-module of S-rank $f_{\lambda}(1)$, up to isomorphism.

Proof. In view of Proposition 1, there is a cocycle $\lambda \in Z^{2}(G, W)$ such that $B=\operatorname{Ker}(\lambda)$ and $\operatorname{dim}_{F} \overline{F^{\lambda} G}=|G: B|$. By Theorem 4, the function $f_{\lambda}(n)=n \cdot|G: B|$ is an SUR-dimension-valued function for $S^{\lambda} G$. Let M be an $S^{\lambda} G$-module. Then $M / X M$ is an $F^{\lambda} G$-module and $\operatorname{dim}_{F}(M / X M)$ is divisible by $|G: B|$, because $F^{\lambda} G$ is a local algebra. Since the S-rank of M equals $\operatorname{dim}_{F}(M / X M)$, it is a value of f_{λ}.

Let K be the quotient field of S. Obviously, the ring $S^{\lambda} G$ is an S-order in the algebra $K^{\lambda} G$. Let M be an $S^{\lambda} G$-module of S-rank $f_{\lambda}(1)$. We embed M in the irreducible $K^{\lambda} G$-module $M^{*}=K \otimes_{S} M$. Since the set

$$
U=\bigoplus_{b \in B} K^{\lambda} G\left(u_{b}-u_{e}\right)
$$

is a nilpotent ideal of $K^{\lambda} G$, we have $U \subset \operatorname{rad} K^{\lambda} G$. Note also that

$$
V=\bigoplus_{b \in B} S^{\lambda} G\left(u_{b}-u_{e}\right)
$$

is an ideal of $S^{\lambda} G$. Since $\operatorname{rad} K^{\lambda} G \cdot M^{*}=0$ and $V \subset \operatorname{rad} K^{\lambda} G$, we have $V M=0$ and M may be viewed as a module over $S^{\lambda} G / V$. But $S^{\lambda} G / V$ $\cong S^{\mu} H$, where $H=G / B$ and $\mu_{x B, y B}=\lambda_{x, y}$ for all $x, y \in G$. If $L=F^{\mu} H$ and $T=L[[X]]$, then $L \cong \overline{F^{\lambda} G}, T \cong S^{\mu} H$, and L is a finite purely inseparable extension of F. Therefore M is T-torsion free. Since T is a principal ideal ring, we get $M \cong S^{\mu} H$..

Theorem 6. Let $p \neq 2, S$ be a local noetherian integral domain of characteristic $p, \operatorname{rad} S \neq 0, F$ a subfield of S, G a finite p-group, $\lambda \in Z^{2}\left(G, F^{*}\right)$, and $d=\operatorname{dim}_{F} \overline{F^{\lambda} G}$. If the algebra $F^{\lambda} G$ is not semisimple, then $S^{\lambda} G$ is of $S U R$-type with $S U R$-dimension-valued function $f_{\lambda}(n)=n d$.

Proof. If $d=\left|G: G^{\prime}\right|$, then $G^{\prime} \neq\{e\}$. In this case, $|\operatorname{Ker}(\lambda)|>2$ and Theorem 4 applies. If $d<\left|G: G^{\prime}\right|$, then Theorem 2 applies.

Proposition 3. Let $p \neq 2, F$ be a perfect field of characteristic p, $S=F[[X]], G$ an abelian p-group, \bar{G} the socle of G, and $\lambda \in Z^{2}\left(G, S^{*}\right)$. Suppose that $S^{\lambda} \bar{G} / X^{2} S^{\lambda} \bar{G}$ is not the group ring of \bar{G} over the ring $S / X^{2} S$. If $|\bar{G}|>p$, then $S^{\lambda} G$ is of SUR-type. If $|\bar{G}|=p$, then $S^{\lambda} G$ is of finite representation type.

Proof. Arguing as in the proof of Proposition 4.4 of [4], we show that if $|\bar{G}|>p$, then $S^{\lambda} \bar{G}=S^{\mu} \bar{G}$, where $\mu \in Z^{2}\left(\bar{G}, S^{*}\right)$ and $\operatorname{Ker}(\mu) \neq\{e\}$. Applying induction from $S^{\mu} \operatorname{Ker}(\mu)$-modules to $S^{\mu} \bar{G}$-modules and next from
$S^{\lambda} \bar{G}$-modules to $S^{\lambda} G$-modules, we deduce, in view of Lemmas 5 and 7 , that $S^{\lambda} G$ is of SUR-type. If $|\bar{G}|=p$ then, by Proposition 4.4 of [4], $S^{\lambda} G$ is of finite representation type.

Proposition 4. Let F be a perfect field of characteristic $2, S=F[[X]]$, G an abelian 2 -group, and $\lambda \in Z^{2}\left(G, S^{*}\right)$. Assume that G contains a cyclic subgroup H of order 4 such that $S^{\lambda} H / X^{2} S^{\lambda} H$ is not the group ring of H over the ring $S / X^{2} S$. Then:
(i) the ring $S^{\lambda} G$ is of bounded representation type if and only if G is a cyclic group or a group of type $\left(2^{n}, 2\right)$;
(ii) the ring $S^{\lambda} G$ is of SUR-type if and only if it is of unbounded representation type.

Proof. Let $D=\left\{g \in G: g^{4}=e\right\}$. By the same type of argument as in the proof of Proposition 4.5 of [4], one can establish that if G is neither a cyclic group nor a group of type $\left(2^{n}, 2\right)$, then $S^{\lambda} D=S^{\mu} D$, where $|\operatorname{Ker}(\mu)| \geq 4$. Arguing as in the proof of Proposition 3, we conclude that $S^{\lambda} G$ is of SURtype. If G is a cyclic group or a group of type $\left(2^{n}, 2\right)$, then, by Proposition 4.5 of [4], $S^{\lambda} G$ is of finite representation type.
5. The projective representation type of finite groups over local rings. Let S be a commutative ring with identity, S^{*} the multiplicative group of S, W a subgroup of $S^{*}, \mathrm{GL}(n, S)$ the group of all unimodular matrices of order n over S, G a finite group, and $Z^{2}(G, W)$ the group of all W-valued normalized 2 -cocycles of the group G that acts trivially on W. A projective (S, W)-representation of the group G of degree n is defined [1] as a mapping $\Gamma: G \rightarrow \operatorname{GL}(n, S)$ such that $\Gamma(e)=E$ and $\Gamma(a) \Gamma(b)=\lambda_{a, b} \Gamma(a b)$, where $\lambda_{a, b} \in W$ for all $a, b \in G$. It is easy to see that $\lambda:(a, b) \mapsto \lambda_{a, b}$ belongs to $Z^{2}(G, W)$. We also say that Γ is a projective (S, W)-representation of G with cocycle λ. Two projective (S, W) representations Γ_{1} and Γ_{2} of G are called equivalent if there exists a unimodular matrix C over S and elements $\alpha_{g} \in W(g \in G)$ such that

$$
C^{-1} \Gamma_{1}(g) C=\alpha_{g} \Gamma_{2}(g)
$$

for all $g \in G$. If $W=S^{*}$ then Γ is called a projective S-representation of G. If $W=\{1\}$ then Γ is said to be a linear or ordinary S-representation of G. By analogy with indecomposable projective S-representations of the group G, we can introduce the concept of an indecomposable projective (S, W)-representation of $G([9, \S 51])$.

We say that a group G is of finite projective (S, W)-representation type if the number of (inequivalent) indecomposable projective (S, W)-representations of G with cocycle λ is finite for any $\lambda \in Z^{2}(G, W)$. Otherwise, G is said to be of infinite projective (S, W)-representation type. If the num-
ber of indecomposable projective (S, W)-representations of G with cocycle λ is infinite for every $\lambda \in Z^{2}(G, W)$, we say that G is of purely infinite projective (S, W)-representation type. A group G is defined to be of bounded projective (S, W)-representation type if the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is finite for each $\lambda \in Z^{2}(G, W)$. Otherwise, G is said to be of unbounded projective (S, W)-representation type. If the set of degrees of all indecomposable projective (S, W)-representations of G with cocycle λ is infinite for each $\lambda \in Z^{2}(G, W), G$ is defined to be of purely unbounded projective (S, W)-representation type. A group G is of strongly unbounded projective (S,W)-representation type if for some cocycle $\lambda \in Z^{2}(G, W)$ there is a function $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and the number of indecomposable projective (S, W)-representations of G with cocycle λ and of degree $f_{\lambda}(n)$ is infinite for all $n>1$. If there is such a function f_{λ} for every $\lambda \in Z^{2}(G, W)$, then G is of purely strongly unbounded projective (S, W)-representation type.

Proposition 5. Let S be a local integral domain of characteristic p, $\operatorname{rad} S \neq 0, F$ a subfield of S, W a subgroup of S^{*}, and G a finite p-group.
(i) If $|G|>2$, then G is of strongly unbounded projective (S, W)-representation type.
(ii) If $\left|G^{\prime}\right|>2$, then G is of purely strongly unbounded projective $\left(S, S^{*}\right)$ representation type.
(iii) Let $W \subset F^{*}$ and G / G^{\prime} be a direct product of r cyclic subgroups, where $r \geq i_{F}(W)+1$ for $p>2$ and $r \geq i_{F}(W)+2$ for $p=2$. Then G is of purely strongly unbounded projective (S, W)-representation type.
Proof. Statement (i) follows immediately from the results of [19], [20] (see also Lemmas 2 and 3). Statement (ii) follows from Theorem 1. Now we prove (iii). Let $H=G / G^{\prime}$, and \bar{H} be the socle of H. For any cocycle $\mu \in Z^{2}(H, W)$ we have $S^{\mu} \bar{H}=S^{\sigma} \bar{H}$, where $\sigma \in Z^{2}(\bar{H}, W)$ and $B:=\operatorname{Ker}(\sigma)$ satisfies the following conditions: if $p>2$, then $|B| \geq p$; if $p=2$, then $|B| \geq 4$. Applying induction from $S^{\sigma} B$-modules to $S^{\sigma} \bar{H}$-modules, and then from $S^{\mu} \bar{H}$-modules to $S^{\mu} H$-modules, we conclude, in view of Lemmas 5 and 7 , that $S^{\mu} H$ is of SUR-type. Since for every $\lambda \in Z^{2}(G, W)$ there exists a homomorphism of $S^{\lambda} G$ onto $S^{\mu} H$, where $\mu_{x G^{\prime}, y G^{\prime}}=\lambda_{x, y}$ for all $x, y \in G$, it follows that G is of purely strongly unbounded projective (S, W)-representation type. -

Proposition 6. Let G be a finite p-group, F a field of characteristic p, $S=F[[X]]$, and W a subgroup of S^{*}.
(i) G is of bounded projective (S, W)-representation type if and only if $|G|=2$. Moreover, G is of unbounded projective (S, W)-representa-
tion type if and only if G is of strongly unbounded projective (S, W) representation type.
(ii) Let $W \subset F^{*}$ and $p \neq 2$. Then G is of purely strongly unbounded projective (S, W)-representation type if and only if $\left|G^{\prime}\right| \neq 1$ or G is a direct product of l cyclic subgroups and $l \geq i_{F}(W)+1$. In addition, G is of purely strongly unbounded projective (S, W) representation type if and only if G is of purely unbounded projective (S, W)-representation type.
(iii) Let $p=2$ and $\left|G^{\prime}\right| \neq 2$. Then G is of purely strongly unbounded projective $\left(S, F^{*}\right)$-representation type if and only if one of the following conditions is satisfied: 1) $\left.\left|G^{\prime}\right|>2 ; 2\right) G$ is a direct product of l cyclic subgroups and $l \geq i_{F}\left(F^{*}\right)+2$; 3) G is a direct product of $i_{F}\left(F^{*}\right)+1$ cyclic subgroups whose orders are not equal to 2. Furthermore, G is of purely strongly unbounded projective $\left(S, F^{*}\right)$ representation type if and only if G is of purely unbounded projective $\left(S, F^{*}\right)$-representation type.

Proof. (i) It follows from Lemma 6 (or Lemma 7) that if G is of bounded projective (S, W)-representation type, then $|G|=2$. Let us prove the sufficiency. Let $|G|=2$ and $\lambda \in Z^{2}(G, W)$. If $S^{\lambda} G=S G$ then the S-rank of every indecomposable $S^{\lambda} G$-module is 1 or 2 (see [17]). Assume that $S^{\lambda} G \neq S G$. Then $S^{\lambda} G \cong S[\theta]$, where θ is a root of the polynomial $Y^{2}-\alpha, \alpha \in S^{*}$, which is irreducible over S. Let $\alpha=a_{0}+a_{1} X+a_{2} X^{2}+\cdots, a_{i} \in F$. Denote by K the quotient field of S and by T the integral closure of S in $K(\theta)$. If $a_{0} \notin F^{2}$, then $T=S[\theta]$. Let $a_{0} \in F^{2}$. Obviously, we can assume $a_{0}=1$. Then $T=S+S \omega$, where $\omega=X^{-n}\left(1+b_{1} X+\cdots+b_{n-1} X^{n-1}+\theta\right)$ and

$$
\alpha=1+b_{1}^{2} X^{2}+\cdots+b_{n-1}^{2} X^{2 n-2}+\sum_{j \geq 2 n} a_{j} X^{j}, \quad a_{2 n} \notin F^{2} \text { or } a_{2 n+1} \neq 0
$$

It is clear that the ring $S[\theta]$ is noetherian and T is finitely generated as an $S[\theta]$-module. Since S is a principal ideal domain, every ideal in $S[\theta]$ can be generated by two elements. Moreover, any ring L with $S[\theta] \subset L \subset T$ is local. Applying Theorem 1.7 of [7], we show that each indecomposable torsion free $S[\theta]$-module is isomorphic to a ring L with $S[\theta] \subset L \subset T$. Hence the S-rank of each indecomposable $S^{\lambda} G$-module equals 2 . The second statement follows from Theorem 1 and the first statement.
(ii) Apply Proposition 5.
(iii) Let $p=2, m=i_{F}\left(F^{*}\right)$, and G be a direct product of $m+1$ cyclic subgroups of order 4 each. We show that $\operatorname{dim}_{F} \overline{F^{\lambda} G} \leq \frac{1}{4}|G|$ for all $\lambda \in$ $Z^{2}\left(G, F^{*}\right)$. Obviously, it is sufficient to prove this for

$$
F^{\lambda} G=\bigoplus_{i_{1}, \ldots, i_{m+1}} F u_{a_{1}}^{i_{1}} \ldots u_{a_{m+1}}^{i_{m+1}}, \quad \text { with } \quad u_{a_{j}}^{4}=\alpha_{j} u_{e}(j=1, \ldots, m+1)
$$

where $K=F\left[u_{a_{1}}, \ldots, u_{a_{m}}\right]$ is a field. Let $L=F\left[u_{a_{1}}^{2}, \ldots, u_{a_{m}}^{2}\right]$. For each $\alpha \in F$ there exists $\beta \in L$ such that $\alpha=\beta^{2}$. The element β is uniquely expressible as

$$
\beta=\sum_{i_{1}, \ldots, i_{m}} \gamma_{i_{1}, \ldots, i_{m}} u_{a_{1}}^{2 i_{1}} \cdots u_{a_{m}}^{2 i_{m}}
$$

where $i_{j}=0,1$ and $\gamma_{i_{1}, \ldots, i_{m}} \in F$. However, $\gamma_{i_{1}, \ldots, i_{m}}=\delta_{i_{1}, \ldots, i_{m}}^{2}$ for some $\delta_{i_{1}, \ldots, i_{m}} \in L$. It follows that $\beta=\varrho^{2}$ for $\varrho \in K$, and hence $\alpha=\varrho^{4}$. This allows us to assume that $\alpha_{m+1}=1$. But then $\operatorname{dim}_{F} \overline{F^{\lambda} G}=4^{m}, 4^{m}=\frac{1}{4}|G|$.

If condition 1) holds, we apply Proposition 5. If 2) or 3) holds, we apply Theorem 3.

Proposition 7. Let G be a finite p-group, F a field of characteristic p, $S=F[[X]]$, and W a subgroup of S^{*}.
(a) G is of infinite projective (S, W)-representation type.
(b) If $W \subset F^{*}$, then G is of purely infinite projective (S, W)-representation type if and only if one of the following two conditions is satisfied: 1) $\left.\left|G^{\prime}\right| \neq 1 ; 2\right) G$ is a direct product of l cyclic subgroups, where $l \geq i_{F}(W)+1$.
Proof. Statement (a) follows from Theorems 1 and 3.
(b) Let $W \subset F^{*}$. If 1) or 2) is satisfied, then in view of Theorems 2 and $3, G$ is of purely infinite projective (S, W)-representation type. Let G be a direct product of r cyclic subgroups, where $r \leq i_{F}(W)$. Then there is a cocycle $\lambda \in Z^{2}(G, W)$ such that $F^{\lambda} G$ is a field. Let $K=F^{\lambda} G$. We have $S^{\lambda} G \cong K[[X]]$, and so every indecomposable $S^{\lambda} G$-module is isomorphic to $S^{\lambda} G$. Hence G is not of purely infinite projective (S, W)-representation type.

Proposition 8. Let G be a finite 2-group, $\left|G^{\prime}\right|=2, F$ a field of characteristic 2 , and $S=F\left[\left[X_{1}, \ldots, X_{m}\right]\right]$. If $m>1$ then G is of purely strongly unbounded projective $\left(S, S^{*}\right)$-representation type.

Proof. By our assumption, $S^{\lambda} G^{\prime}=S G^{\prime}$ for every cocycle $\lambda \in Z^{2}\left(G, S^{*}\right)$, and the set $\operatorname{Ind}_{n}\left(S G^{\prime}\right)$ is infinite for each $n>1$ (see [21]). Since S is a complete commutative noetherian local ring, the Krull-Schmidt Theorem holds for $S G^{\prime}$-modules ([10, p. 128]). Then, arguing as in the proof of Theorem 1, we prove that for every $n>1$ there exists a natural number t_{n} such that $1 \leq t_{n} \leq \frac{1}{2}|G|$ and $\operatorname{Ind}_{n t_{n}}\left(S^{\lambda} G\right)$ is infinite.

REFERENCES

[1] A. F. Barannyk and P. M. Gudivok, On the algebra of projective integral representations of finite groups, Dopov. Akad. Nauk Ukr. RSR Ser. A 1972, 291-293 (in Ukrainian).
[2] L. F. Barannyk, On projective representations of direct products of finite groups over a complete local noetherian domain of characteristic p, Słupskie Prace Mat.-Fiz. 2 (2002), 5-16.
[3] -, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 63 (2003), 537-554.
[4] L. F. Barannyk and D. Klein, Crossed group rings with a finite set of degrees of indecomposable representations over Dedekind domains, Demonstratio Math. 34 (2001), 771-782.
[5] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, Colloq. Math. 87 (2001), 181-193.
[6] —, 一, On indecomposable projective representations of finite groups over fields of characteristic $p>0$, ibid. 98 (2003), 171-187.
[7] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319-327.
[8] N. Bourbaki, Commutative Algebra, Hermann, 1972.
[9] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962 (2nd ed., 1966).
[10] -, -, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, New York, 1981.
[11] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
[12] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[13] P. Gabriel and A. V. Roĭter, Representations of Finite Dimensional Algebras, Springer, Berlin, 1997.
[14] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
[15] -, Blocks of modular representations, Math. Z. 79 (1962), 100-115.
[16] P. M. Gudivok, On modular representations of finite groups, Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat. 4 (1961), 86-87 (in Russian).
[17] -, On boundedness of degrees of indecomposable modular representations of finite groups over principal ideal rings, Dopov. Akad. Nauk Ukr. RSR Ser. A 1971, 683-685 (in Ukrainian).
[18] -, Representations of finite groups over commutative local rings, Educational Text, Uzhgorod Univ., 2003 (in Russian).
[19] P. M. Gudivok and I. B. Chukhray, On the number of indecomposable matrix representations with a given degree of a finite p-group over commutative local rings of characteristic p^{s}, Nauk. Visnyk Uzhgorod. Univ. Ser. Mat. 5 (2000), 33-40 (in Ukrainian).
[20] -, 一, On indecomposable matrix representations of the given degree of a finite p-group over commutative local ring of characteristic p^{s}, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Math. 8 (2000), 27-36.
[21] P. M. Gudivok and E. Ya. Pogorilyak, On modular representations of finite groups over integral domains, Tr. Mat. Inst. Steklova 183 (1990), 78-86 (in Russian); English transl.: Proc. Steklov Inst. Math. 4 (1991), 87-95.
[22] P. M. Gudivok and V. I. Pogorilyak, On indecomposable representations of finite p-groups over commutative local rings, Dopov. Nats. Akad. Nauk Ukr. 5 (1996), 7-11 (in Russian).
[23] P. M. Gudivok and V. I. Pogorilyak, On indecomposable matrix representations of finite p-groups over commutative local rings of characteristic p^{s}, Nauk. Visnyk Uzhgorod Univ. Ser. Mat. 4 (1999), 43-46 (in Russian).
[24] P. M. Gudivok, I. P. Sygetij and I. B. Chukhray, On the number of matrix representations with a given degree of a finite p-group over certain commutative rings of characteristic p^{s}, Nauk. Visnyk Uzhgorod Univ. Ser. Mat. 4 (1999), 47-53 (in Ukrainian).
[25] D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.
[26] J. P. Jans, On the indecomposable representations of algebras, Ann. of Math. 66 (1957), 418-429.
[27] G. J. Janusz, Faithful representations of p-groups at characteristic p, I, J. Algebra 15 (1970), 335-351.
[28] -, Faithful representations of p-groups at characteristic p, II, ibid. 22 (1972), 137-160.
[29] G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
[30] F. Kasch, Moduln und Ringe, Teubner, Stuttgart, 1977.
[31] D. S. Passman, Infinite Crossed Products, Pure Appl. Math. 135, Academic Press, Boston, 1989.
[32] K. W. Roggenkamp, Gruppenringe von unendlichem Darstellungstyp, Math. Z. 96 (1967), 393-398.
[33] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon \& Breach, 1992.

Institute of Mathematics
Pedagogical University of Słupsk
Arciszewskiego 22b
76-200 Słupsk, Poland
E-mail: barannyk@pap.edu.pl klein@pap.edu.pl

[^0]: 2000 Mathematics Subject Classification: 16G30, 20C20, 20 C 25.
 Key words and phrases: crossed group rings, modular representations, projective representations, twisted group rings.

