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Abstract. We describe an approach to variational problems, where the solutions ap-
pear as pointwise (finite-dimensional) minima for fixed t of the supplemented Lagrangian.
The minimization is performed simultaneously with respect to the state variable x and
ẋ, as opposed to Pontryagin’s maximum principle, where optimization is done only with
respect to the ẋ-variable. We use the idea of the equivalent problems of Carathéodory em-
ploying suitable (and simple) supplements to the original minimization problem. Whereas
Carathéodory considers equivalent problems by use of solutions of the Hamilton–Jacobi
partial differential equations, we shall demonstrate that quadratic supplements can be
constructed such that the supplemented Lagrangian is convex in the vicinity of the solu-
tion. In this way, the fundamental theorems of the calculus of variations are obtained. In
particular, we avoid any employment of field theory.

1. Introduction. If a given function has to be minimized on a subset
(restriction set) of a given set, then one can try to modify this function
outside the restriction set by adding a supplement in such a way that the
global minimal solution of the supplemented function lies in the restriction
set. It turns out that this global minimal solution is a solution of the orig-
inal (restricted) problem. The main task is to determine such a suitable
supplement.

Supplement Method 1.1. Let M be an arbitrary set , f : M → R a
function and T a subset of M . Let Λ : M → R be a function that is constant
on T . If x0 ∈ T is a minimal solution of the function f + Λ on all of M ,
then x0 is a minimal solution of f on T .

Proof. For x ∈ T arbitrary we have

f(x0) + Λ(x0) ≤ f(x) + Λ(x) = f(x) + Λ(x0).

Definition 1.2 (Piecewise continuously differentiable functions). We
consider functions x ∈ C[a, b]n for which there exists a partition {a = t0 <
t1 < · · · < tm = b} such that: x is continuously differentiable on [ti−1, ti)
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for each i ∈ {1, . . . ,m} and the derivative ẋ has a left-hand limit at ti. The
value of the derivative of x at b is then defined as the left-hand derivative
at b. Such a function is called piecewise continuously differentiable. The set
of these functions is denoted by RCS1[a, b]n.

Definition 1.3. Let W be a subset of Rν × [a, b]. We call G : W → Rk
piecewise continuous if there is a partition Z = {a= t0 < t1 < · · ·< tm = b} of
[a, b] such that for each i ∈ {1, . . . ,m} the function G :W ∩ (Rν × [ti−1, ti))
→ Rk has a continuous extension Mi : W ∩ (Rν × [ti−1, ti])→ Rk.

In what follows we shall consider variational problems in the following
setting.

Let U ⊂ R2n+1 be such that Ut := {(p, q) ∈ R2n | (p, q, t) ∈ U} 6= ∅ for
all t ∈ [a, b], and let L : U → R be piecewise continuous. The restriction set
S for given α, β ∈ Rn is a set of functions that is described by

S ⊂ {x ∈ RCS1[a, b]n | (x(t), ẋ(t), t), (x(t), ẋ(t−), t) ∈ U ∀t ∈ [a, b],

x(a) = α, x(b) = β}.
The variational functional f : S → R to be minimized is defined by

f(x) =
b�

a

L(x(t), ẋ(t), t) dt.

The variational problem with fixed endpoints is then given by:

Minimize f on S.

The central idea of the subsequent discussion is to introduce a supple-
ment in integral form that is constant on the restriction set. This leads to a
new variational problem with a modified Lagrangian. The solutions of the
original variational problem can now be found as minimal solutions of the
modified variational functional. Because of the monotonicity of the integral,
the variational problem is now solved by pointwise minimization of the La-
grangian with respect to the x- and ẋ-variables for every fixed t, employing
the methods of finite-dimensional optimization.

This leads to sufficient conditions for a solution of the variational prob-
lem. This general approach does not even require differentiability of the inte-
grand. Solutions of the pointwise minimization can even lie at the boundary
of the restriction set so that the Euler–Lagrange equations do not have to
be satisfied. For interior points the Euler–Lagrange equations will naturally
appear by setting the partial derivatives to zero, using a linear supplement
potential.

1.1. Equivalent variational problems. We now attempt to describe an
approach to variational problems that uses the idea of equivalent problems
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of Carathéodory (see [4], also compare Krotov [19]) employing suitable sup-
plements to the original minimization problem. Carathéodory constructs
equivalent problems by use of solutions of the Hamilton–Jacobi partial differ-
ential equations. In the context of Bellman’s dynamic programming (see [1])
this supplement can be interpreted as the so-called value function. The tech-
nique to modify the integrand of the variational problem already appears
in the works of Legendre in the context of the second variation (accessory
problem).

In this paper we shall demonstrate that explicitly given quadratic sup-
plements are sufficient to yield the main results.

Definition 1.4. Let F : [a, b] × Rn → R with (t, x) 7→ F (t, x) be
continuous and have the partial derivative Fx continuous, and Ft piece-
wise continuous. Moreover, we require that the partial derivative Fxx ex-
ists and is continuous, and that Ftx, Fxt exist in the piecewise sense, and
are piecewise continuous and equal. Then we call F a supplement poten-
tial .

Lemma 1.5. Let F : [a, b] × Rn → R be a supplement potential. Then
the integral

b�

a

[〈Fx(t, x(t)), ẋ(t)〉+ Ft(t, x(t))] dt

is constant on S.

Proof. Let Z1 be a common partition of [a, b] for F and x, i.e. Z1 =
{a = t̃0 < t̃1 < · · · < t̃j = b}, such that the requirements of piecewise
continuity for ẋ and Ft are satisfied with respect to Z1. Then

b�

a

[〈Fx(t, x(t)), ẋ(t)〉+ Ft(t, x(t))] dt

=
j∑

i=1

t̃i�

t̃i−1

[〈Fx(t, x(t)), ẋ(t)〉+ Ft(t, x(t))] dt

=
j∑

i=1

(F (t̃i, x(t̃i))− F (t̃i−1, x(t̃i−1)))

= F (b, β)− F (a, α)

as F is continuous.

An equivalent problem is then given through the supplemented Lagran-
gian L̃:

L̃ := L− 〈Fx, ẋ〉 − Ft.
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1.2. Principle of pointwise minimization. The aim is to develop suffi-
cient criteria for minimal solutions of the variational problem by replacing
the minimization of the variational functional on subsets of a function space
by finite-dimensional minimization. This can be accomplished by pointwise
minimization of an explicitly given supplemented integrand for fixed t using
the monotonicity of the integral (this method was applied to general control
problems in [16]). The minimization is done simultaneously with respect
to the x- and ẋ-variables in R2n. This is the main difference as compared
to Hamilton–Pontryagin methods, where minimization is done solely with
respect to the ẋ-variables, leading to necessary conditions in the first place.

The principle of pointwise minimization is demonstrated in [15], where a
complete treatment of the brachistochrone problem is presented using only
elementary minimization in R (compare also [13, p. 120] or [17]). For a
treatment of this problem using fields of extremals see [8, p. 367].

Our approach is based on the following obvious

Lemma 1.6. Let A be a set of integrable real functions on [a, b] and let
l∗ ∈ A. If for all l ∈ A and all t ∈ [a, b] we have l∗(t) ≤ l(t) then

b�

a

l∗(t) dt ≤
b�

a

l(t) dt for all l ∈ A.

Theorem 1.7 (Principle of Pointwise Minimization). Let a variational
problem with Lagrangian L and restriction set S be given. Suppose that for
an equivalent variational problem

Minimize g(x) :=
b�

a

L̃(x(t), ẋ(t), t) dt,

where
L̃ = L− 〈Fx, ẋ〉 − Ft,

there exists an x∗ ∈ S such that for all t ∈ [a, b] the point (pt, qt) :=
(x∗(t), ẋ∗(t)) is a minimal solution of the function (p, q) 7→ L̃(p, q, t) =:
ϕt(p, q) on Ut := {(p, q) ∈ R2n | (p, q, t) ∈ U}. Then x∗ is a solution of the
original variational problem.

Proof. For the application of Lemma 1.6, set A = {lx : [a, b] → R | t 7→
lx(t) = L̃(x(t), ẋ(t), t), x ∈ S} and l∗ := lx∗ . According to Lemma 1.5 the
integral over the supplement is constant.

It turns out (see below) that taking a linear supplement (with respect
to x) already leads to the Euler–Lagrange equation by setting the partial
derivatives of L̃ (with respect to p and q) to zero.
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1.3. Linear supplement. In the classical theory a linear supplement po-
tential F has the structure

(t, x) 7→ F (t, x) = 〈λ(t), x〉(1)

and λ ∈ RCS1[a, b]n is a function that has to be determined in a suitable
way.

As Fx(t, x) = λ(t) and Ft(t, x) = 〈λ̇(t), x〉, the equivalent problem is:

Minimize g(x) =
b�

a

[L(x(t), ẋ(t), t)−〈λ(t), ẋ(t)〉−〈λ̇(t), x(t)〉] dt on S.(2)

We shall now attempt to solve this problem through pointwise minimiza-
tion of the integrand. This simple approach already leads to a very efficient
method for the treatment of variational problems.

We have to minimize

(p, q) 7→ `t(p, q) := L(p, q, t)− 〈λ(t), q〉 − 〈λ̇(t), p〉
on Ut. Let W be an open superset of U in the relative topology of
Rn × Rn × [a, b], and let L : W → R be piecewise continuous and have
Lp and Lq piecewise continuous. If for fixed t ∈ [a, b] a point (pt, qt) ∈ IntUt
is a corresponding minimal solution, then the partial derivatives of `t have
to be zero at this point. This leads to the equations

Lp(pt, qt, t) = λ̇(t),(3)

Lq(pt, qt, t) = λ(t).(4)

The pointwise minimum (pt, qt) yields a function t 7→ (pt, qt). It is our aim
to show that this pair provides a solution x∗ of the variational problem,
where x∗(t) := pt and ẋ∗(t) = qt. In the spirit of the supplement method
this means that the global minimum is an element of the restriction set S.
The freedom of choosing a suitable function λ is exploited to achieve this
goal.

Definition 1.8. A function x∗ ∈ RCS1[a, b]n is called an extremaloid
(see Hestenes [10, p. 60]) if it satisfies the Euler–Lagrange equation in inte-
gral form, i.e. there is a constant c such that

t�

a

Lx(x(τ), ẋ(τ), τ) dτ + c = Lẋ(x(t), ẋ(t), t) ∀t ∈ (a, b].(5)

If the extremaloid x∗ is a C1[a, b]-function then x∗ is called an extremal . An
extremaloid x∗ is called admissible if x∗ ∈ S.

Remark 1.9. An extremaloid x∗ always satisfies the Weierstrass–Erd-
mann condition, i.e.

t 7→ Lẋ(x∗(t), ẋ∗(t), t) is continuous.
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For an extremaloid x∗ the definition

λ(t) :=
t�

a

Lx(x∗(τ), ẋ∗(τ), τ) dτ + c(6)

(c a constant) leads to a λ ∈ RCS1.

A fundamental question of variational calculus is under what conditions
an extremaloid is a minimal solution of the variational problem.

If x∗ is an admissible extremaloid then for every t ∈ [a, b] the pair
(x∗(t), ẋ∗(t)) ∈ IntUt satisfies the first necessary condition for a pointwise
minimum at t. From the perspective of pointwise minimization we can state
the following: if setting the partial derivatives of the integrand to zero leads
to a pointwise (global) minimum on Ut for every t ∈ [a, b], then indeed x∗ is a
solution of the variational problem. The principle of pointwise minimization
also provides a criterion to decide which of the extremaloids is the global
solution.

For convex integrands, an extremaloid already leads to sufficient condi-
tions for a pointwise minimum.

If for every t ∈ [a, b] the set Ut is convex and the Lagrangian L(·, ·, t) :
Ut → R is a convex function, then an admissible extremaloid is a solution of
the variational problem. This remains true if the extremaloid lies partially
on the boundary of U (i.e. if the pointwise minimum lies on the boundary
of Ut). As we require continuous differentiability in an open superset of Ut
and the vector of partial derivatives (i.e. the gradient) represents the (total)
derivative, all directional derivatives are equal to zero at (x∗(t), ẋ∗(t)). The
characterization theorem (see [13, p. 66]) of convex optimization guarantees
that this point is indeed a pointwise minimum:

Theorem 1.10. Let X ⊂ Rn × Rn be open and φ : X → R be differen-
tiable. Let K be a convex subset of X and suppose φ : K → R is convex. If
for x∗ ∈ K we have φ′(x∗) = 0 then x∗ is a minimal solution of φ on K.

We summarize this situation in the following:

Theorem 1.11. For convex problems every admissible extremaloid is a
solution of the variational problem.

In view of this theorem it turns out that the method of pointwise min-
imization can be extended to a much larger class of variational problems,
where the integrand can be convexified by use of a suitable supplement (see
Section 3).

The invariance property stating that equivalent problems have the same
extremaloids, established in the subsequent theorem, leads to the following
principle: an extremaloid of a problem that is convexifiable is a solution
of the original variational problem. In particular, explicit convexification
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does not have to be carried out, instead the solvability of certain ordinary
differential equations has to be verified (see below).

Theorem 1.12. Every extremaloid for the Lagrangian L is an extre-
maloid for the supplemented Lagrangian

L̃ := L− 〈Fx, ẋ〉 − Ft
and vice versa, where F is a supplement potential.

Proof. We have

L̃ẋ = Lẋ − Fx, L̃x = Lx − ẋTFxx − Ftx.
Moreover

d

dt
Fx(t, x(t)) = Fxt(t, x(t)) + ẋ(t)TFxx(t, x(t)).

If x satisfies the Euler–Lagrange equation in integral form with respect
to L, i.e.

Lẋ =
t�

a

Lx dτ + c,

then there is a constant c̃ such that

L̃ẋ =
t�

a

L̃x dτ + c̃,

which we shall now show, using the continuity of Fx:
t�

a

L̃x dτ =
t�

a

(Lx − ẋTFxx − Ftx) dτ = Lẋ − c−
t�

a

(ẋTFxx + Fxt) dτ

= Lẋ − Fx + Fx(x(a), a)− c = L̃ẋ − c̃.
As equivalent variational problems have the same extremaloids, Theo-

rem 1.11 also holds for convexifiable problems. The following theorem can
be viewed as a central guideline for our further considerations:

Theorem 1.13. If , for a given variational problem, there exists an
equivalent convex problem, then every admissible extremaloid is a minimal
solution.

2. Smoothness of solutions

Theorem 2.1. Let L : U → R be such that Lq continuous. Let x ∈ S
be such that

(i) Vt := {q ∈ Rn | (x(t), q, t) ∈ U} is convex for all t ∈ [a, b].
(ii) L(x(t), ·, t) is strictly convex on Vt for all t ∈ [a, b].

(iii) λ : [a, b]→ Rn, where t 7→ λ(t) := Lq(x(t), ẋ(t), t), is continuous.

Then x is smooth.
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Proof. Let q 7→ φt(q) := L(x(t), q, t)−〈λ(t), q〉. Then φt is strictly convex
on Vt. We have

φ′t(ẋ(t)) = Lq(x(t), ẋ(t), t)− λ(t) = 0

for all t ∈ [a, b], hence ẋ(t) is the unique minimal solution of φt on Vt. Let (tk)
be a sequence in [a, b] with tk ↑ t. Then there exists an interval It := [t, t)
and K ∈ N such that tk ∈ It for k > K, and Lq(x, ẋ, ·) and x are continuous
on It. We obtain

0 = Lq(x(tk), ẋ(tk), tk)− λ(tk)→ Lq(x(t), ẋ(t−), t)− λ(t).

Hence ẋ(t−) is the minimal solution of φt on Vt. As φt is strictly convex, we
finally obtain ẋ(t) = ẋ(t−), which proves the theorem.

Corollary 2.2. Let x∗ be an extremaloid, and suppose that :

(i) Vt := {q ∈ Rn | (x∗(t), q, t) ∈ U} is convex for all t ∈ [a, b].
(ii) L(x∗(t), ·, t) is strictly convex on Vt.

Then x∗ is an extremal.

Proof. λ : [a, b] → Rn with t 7→ λ(t) := Lq(x∗(t), ẋ∗(t), t) is continuous
(the Weierstrass–Erdmann condition is satisfied).

The following example shows that the above theorem does not hold if
the strict convexity of L(x∗(t), ·, t) is violated:

Example 2.3. Let L(p, q, t) :=
((
t− 1

2

)
+

)2
q+ 1

2p
2 for t ∈ [0, 1]. Observe

that L is convex but not strictly convex with respect to q. We want to
consider the corresponding variational problem for the boundary conditions
x(0) = 0, x(1) = 1. For the Euler–Lagrange equation we obtain

d

dt

((
t− 1

2

)

+

)2

= x ⇒ x∗(t) = 2 ·
(
t− 1

2

)

+
,

i.e. x∗ is not smooth.
On the other hand, λ(t) = Lq(t) =

((
t− 1

2

)
+

)2 is continuous and hence
the Weierstrass–Erdmann condition is satisfied. Thus x∗ is an extremaloid
of the convex variational problem and hence a minimal solution (Theo-
rem 1.12). The function φt is not strictly convex:

φt(q) =
((

t− 1
2

)

+

)2

q +
1
2
p2 −

((
t− 1

2

)

+

)2

=
1
2
p2,

i.e. φt is constant with respect to q, which means that every q is a minimal
solution of φt. In particular the set of minimal solutions of φt is unbounded
(and not just non-unique).



SUPPLEMENTED VARIATIONAL PROBLEMS 33

Definition 2.4. Let x∗ ∈ RCS1[a, b]n be an extremaloid, and let
L0
ẋẋ(t) := Lẋẋ(x∗(t), ẋ∗(t), t) satisfy the strong Legendre–Clebsch condition,

i.e. L0
ẋẋ is positive definite on [a, b]. Then x∗ is called a regular extremaloid .

Remark 2.5. The Legendre–Clebsch condition, i.e. L0
ẋẋ positive semi-

definite on [a, b], is a classical necessary condition for a minimal solution of
the variational problem (see [10]).

The following example shows that a regular extremaloid is not always
an extremal:

Example 2.6. Consider the variational problem on the interval [−2π,2π]
with the boundary conditions x∗(2π) = x∗(−2π) = 0 given by the La-
grangian (p, q, t) 7→ L(p, q, t) := cos q + (t/γ)q for γ > 2π for (p, q, t) ∈ U =
R× (−3π/2, 3π/2)× [−2π, 2π]. Then Lq = − sin q + t/γ and Lqq = − cos q,
the latter being positive for π/2 < |q| < 3π/2. The Euler–Lagrange equation
is

d

dt
(− sin ẋ+ t/γ) = 0,

i.e.
− sin ẋ+ t/γ = c.

In particular, any solution of the above equation satisfies the Weierstrass–
Erdmann condition.

Choosing x∗ to be even (i.e. ẋ∗ odd), we obtain, according to (5),

c =
1

b− a

b�

a

Lẋ(x∗(t), ẋ∗(t), t) dt =
1

4π

2π�

−2π

(
− sin(ẋ∗(t)) +

t

γ

)
dt = 0

and hence we have to solve
sin q = t/γ

with π/2 < |q| < 3π/2 in order to satisfy the strong Legendre–Clebsch
condition. We obtain two different solutions:

q(t) =

{
− arcsin(t/γ) + π for 2π ≥ t > 0 and π/2 < q < 3π/2,

− arcsin(t/γ)− π for −2π ≤ t < 0 and −π/2 > q > −3π/2,

and

q(t) =

{
− arcsin(t/γ)− π for 2π ≥ t > 0 and −π/2 > q > −3π/2,

− arcsin(t/γ) + π for −2π ≤ t < 0 and π/2 < q < 3π/2.

Obviously, both solutions are discontinuous at t = 0. The extremals are then
obtained via integration:

x∗(t) =

{
t(− arcsin(t/γ) + π)− γ

√
1− (t/γ)2 −D1 for t > 0,

t(− arcsin(t/γ)− π)− γ
√

1− (t/γ)2 −D1 for t < 0,
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where D1 = 2π(− arcsin(2π/γ) + π) − γ
√

1− (2π/γ)2 according to the
boundary conditions; and

x∗(t) =

{
t(− arcsin(t/γ)− π)− γ

√
1− (t/γ)2 −D2 for t > 0,

t(− arcsin(t/γ) + π)− γ
√

1− (t/γ)2 −D2 for t < 0,

where D2 = 2π(− arcsin(2π/γ) − π) − γ
√

1− (2π/γ)2. Both extremaloids
are admissible and both satisfy the strong Legendre condition.

Pointwise minimization. The method of pointwise minimization (with
respect to p, q for fixed t) leads directly to a global solution of the variational
problem. For the linear supplement choose the Dubois-Reymond form λ(t) =� t
−2π Lx dτ + c = c. Let Φt : R× (−3π/2, 3π/2)→ R with

Φt(p, q) := L(p, q, t) + λ(t)q + λ̇(t)p = cos q +
t

γ
q + cq =: φt(q),

where φt : (−3π/2, 3π/2) → R. Choosing x∗ to be even (i.e. ẋ∗ odd), we
obtain as above (see (5))

c =
1

b− a

b�

a

Lẋ(x∗(t), ẋ∗(t), t) dt =
1

4π

2π�

−2π

(− sin(ẋ∗(t)) + t/γ) dt = 0.

For t > 0 and q > 0 we obtain φt(q) > −1 and φt(−π) = cos(−π)− (t/γ)π,
hence we must look for minimal solutions on (−3π/2,−π/2). On this interval
φt is convex.

The necessary condition yields

sin q = t/γ,

for which we obtain the following solution: let q = −π + r, where r ∈
[−π/2, π/2]; then sin q= sin(−π+r) =− sin r= t/γ, hence r=− arcsin(t/γ).

For t < 0 for analogous reasons minimal solutions are found on
(π/2, 3π/2). Hence,

q(t) =

{
− arcsin(t/γ)− π for 2π ≥ t > 0 and −π/2 > q > −3π/2,

− arcsin(t/γ) + π for −2π ≤ t < 0 and π/2 < q < 3π/2.

As φt does not depend on p, every pair (p, q(t)) is a pointwise minimal
solution of Φt on R× (−3π/2, 3π/2). We choose

x∗(t) = p(t) =
t�

−2π

q(τ) dτ.

Then x∗ is in RCS1[−2π, 2π], even, and satisfies the boundary conditions.
According to the principle of pointwise minimization, x∗ is the global mini-
mal solution of the variational problem.

We point out that Carathéodory in [4] always assumes that x∗ is smooth.
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3. Weak local minima. In what follows, let U be open (and as in
Section 1). For our subsequent discussion that is based on convexification of
the Lagrangian we need the following

Lemma 3.1. Let V be an open and A a compact subset of a metric space
(X, d), and suppose A ⊂ V . Then there is a positive δ such that

⋃

x∈A
K(x, δ) ⊂ V.

Proof. Suppose for every n ∈ N there exist xn ∈ X\V and an ∈ A such
that d(xn, an) < 1/n. As A is compact there is a convergent subsequence
(ak) such that ak → a ∈ A ⊂ V . We obtain

d(xk, a) ≤ d(xk, ak) + d(ak, a)→ 0,

a contradiction to X\V being closed.

Lemma 3.2. Let M ∈ L(R2n) be a matrix of the structure

M =
(
A CT

C D

)
,

where A,C,D ∈ L(Rn) and D is positive definite and symmetric. Then M
is positive (semi-)definite if and only if A − CTD−1C is positive (semi-)
definite.

Proof. Let f : Rn × Rn → R be defined by

f(p, q) :=
(
p
q

)T (
A CT

C D

)(
p
q

)
= pTAp+ 2qTCp+ qTDq.

Minimization with respect to q for fixed p yields 2Dq = −2Cp and hence

q(p) = −D−1Cp.

By inserting this result into f we obtain

f(p, q(p)) = pTAp− 2pTCTD−1Cp+ pTCTD−1Cp = pT (A− CTD−1C)p.

If A − CTD−1C is positive (semi-)definite it follows that f(p, q(p)) > 0
for p 6= 0 (f(p, q(p)) ≥ 0 in the semi-definite case). For p = 0 and q 6= 0
obviously f(p, q) > 0.

Conversely, suppose M is positive (semi-)definite. Then (0, 0) is the only
minimal solution of f . Hence the function p 7→ f(p, q(p)) has 0 as the mini-
mal solution, i.e. A− CTD−1C is positive (semi-)definite.

Definition 3.3. We say that the Legendre–Riccati condition is satisfied
if there exists a continuously differentiable symmetric matrix function W :
[a, b]→ L(Rn) such that for all t ∈ [a, b] the expression

L0
xx + Ẇ − (L0

xẋ +W )(L0
ẋẋ)−1(L0

ẋx +W )(7)

is positive definite.
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We point out that Zeidan (see [21]) treats variational problems by dis-
cussing the Hamiltonian. She presents a corresponding condition for W with
respect to the Hamiltonian in order to obtain sufficient conditions.

If the Legendre–Riccati condition is satisfied, we shall introduce a qua-
dratic supplement potential based on the corresponding matrix W such that
the supplemented Lagrangian is strictly convex (compare also [8, Vol. I,
p. 251]). Klötzler [5, p. 325] uses a modification of the Hamiltonian, also
leading to Riccati’s equation, such that the resulting function is concave, in
the context of extensions of field theory.

Theorem 3.4 (Fundamental theorem). Let L : U → R be continuous
and L(·, ·, t) twice continuously differentiable. If the Legendre–Riccati con-
dition is satisfied , then an admissible regular extremaloid x∗ is a weak local
minimal solution of the given variational problem.

Proof. Let a differentiable W : [a, b] → L(Rn) satisfy the Legendre–
Riccati condition. Then we choose the quadratic supplement potential

F : [a, b]× Rn → R

with F (t, p) = −1
2p
TW (t)p, which leads to an equivalent variational problem

with the modified Lagrange function

L̃(p, q, t) := L(p, q, t)− 〈q, Fp(t, p)〉 − Ft(t, p)

= L(p, q, t) + 〈q,W (t)p〉+
1
2
〈p, Ẇ (t)p〉.

We shall now show that there is a δ > 0 such that for all t ∈ [a, b] the function
(p, q) 7→ φt(p, q) := L̃(p, q, t) is strictly convex on Kt := K((x∗(t), ẋ∗(t)), δ).
Indeed,

M := φ′′t (x
∗(t), ẋ∗(t)) =

(
L0
pp + Ẇ L0

pq +W

L0
qp +W L0

qq

)
(t)

is positive definite by the Legendre–Riccati condition and Lemma 3.2 (note
that L0

qp = (L0
pq)

T ). Then φ′′t (p, q) is positive definite on an open neighbour-
hood of (x∗(t), ẋ∗(t)). As the set {(x∗(t), ẋ∗(t)) ∪ (x∗(t), ẋ∗(t−)) | t ∈ [a, b]}
is compact, according to Lemma 3.1 there is a (universal) δ such that on Kt

the function φ′′t is positive definite, and therefore φt is strictly convex on Kt

for all t ∈ [a, b]. As the RCS1-ball with center x∗ and radius δ is contained
in the set

Sδ := {x ∈ RCS1[a, b]n | (x(t), ẋ(t)) ∈ Kt ∀t ∈ [a, b]},
we deduce that the extremal x∗ is a (proper) weak local minimum. Thus
have identified a (locally) convex variational problem with the Lagrangian
L̃ that is equivalent to the problem involving L (Theorems 1.11, 1.12).
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Remark 3.5. The Legendre–Riccati condition is guaranteed if the
Legendre–Riccati matrix differential equation

L0
xx + Ẇ − (L0

xẋ +W )(L0
ẋẋ)−1(L0

ẋx +W ) = cI

for a positive c ∈ R has a symmetric solution on [a, b]. Set R := L0
ẋẋ,

Q := L0
ẋx, P := L0

xx and A := −R−1Q, B := R−1, C := P −QTR−1Q− cI.
Then for V := −W the above equation assumes the equivalent form
(Legendre–Riccati equation)

V̇ + V A+ ATV + V BV − C = 0.

Definition 3.6. The first order system

Ż = CY −ATZ, Ẏ = AY +BZ

is called the Jacobi equation in canonical form. A pair of solutions (Z, Y ) is
called self-conjugate if ZTY = Y TZ.

For the proof of the subsequent theorem we need the following

Lemma 3.7 (Quotient Rule).
d

dt
(A−1(t)) = −A−1(t)Ȧ(t)A−1(t),

d

dt
(B(t)A−1(t)) = Ḃ(t)A−1(t)−B(t)A−1(t)Ȧ(t)A−1(t),

d

dt
(A−1(t)B(t)) = A−1(t)Ḃ(t)− A−1(t)Ȧ(t)A−1(t)B(t).

Proof. We have

0 =
d

dt
I =

d

dt
(A(t)A−1(t)) = Ȧ(t)A−1(t) + A(t)

d

dt
(A−1(t)).

Theorem 3.8. If the Jacobi equation has a solution (Z, Y ) such that
Y TZ is symmetric and Y is invertible then V := ZY −1 a symmetric solution
of the Legendre–Riccati equation

V̇ + V A+ ATV + V BV − C = 0.

Proof. If Y TZ is symmetric, then V := ZY −1 is also symmetric, as
(Y T )−1(Y TZ)Y −1 = ZY −1 = V .

Now V is a solution of the Legendre–Riccati equation, because according
to the quotient rule (Lemma 3.7) we have

V̇ = ŻY −1 − ZY −1Ẏ Y −1 = (CY − ATZ)Y −1 − ZY −1(AY +BZ)Y −1

= C −ATV − V A− V BV.
Definition 3.9. Let x∗ be an extremaloid and let A,B,C be as in Re-

mark 3.5. Let (x, y) be a solution of the Jacobi equation in vector form
ż = Cy − AT z, ẏ = Ay +Bz
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such that y(a) = 0 and z(a) 6= 0. If there is a point t0 ∈ (a, b] such that
y(t0) = 0 then we say t0 is a conjugate point of x∗ with respect to a.

For the next theorem compare Hartman [9, Theorem 10.2, p. 388].

Theorem 3.10. If the regular extremaloid x∗ does not have a conjugate
point in (a, b] then there exists a self-conjugate solution (Z1, Y1) of the ma-
trix Jacobi equation such that Y1 is invertible on [a, b]. Furthermore, the
Legendre–Riccati condition is satisfied.

Proof. For any solution (Z, Y ) of the matrix Jacobi equation

Ż = CY −ATZ, Ẏ = AY +BZ

one can prove that d
dt(Z

TY −Y TZ) = 0 using the product rule and the fact
that the matrices B and C are symmetric. Hence ZTY −Y TZ is a constant
matrix K on [a, b]. If we consider the following initial value problem:

Y (a) = I, Y0(a) = 0,

Z(a) = 0, Z0(a) = I,

then obviously for the solution (Z0, Y0) the matrix K is zero, i.e. (Z0, Y0) is
self-conjugate. Clearly, (

Y Y0
Z Z0

)

is a fundamental system. Hence any solution (y, z) can be represented in
the following way: y = Y c1 + Y0c2 and z = Zc1 + Z0c2. If y(a) = 0 then
0 = y(a) = Ic1 = c1 and z(a) = Ic2, thus y = Y0c2 and z = Z0c2.

It turns out that Y0(t) is nonsingular on (a, b]. For suppose there is
t0 ∈ (a, b] such that Y0(t0) is singular; then the linear equation Y0(t0)c = 0
has a nontrivial solution c0. Let y0(t) := Y0(t)c0 on [a, b]. Then y0(a) = 0
and y0(t0) = 0. Moreover for z0(t) := Z0(t)c0 we have z0(a) = Ic0 = c0 6= 0,
hence t0 is a conjugate point of a, a contradiction.

We now use a construction that can be found in Hestenes [10]: there is
an ε > 0 such that x∗ can be extended to a function x∗ on [a − ε, b] and
Lẋẋ(x∗, ẋ∗, ·) remains positive definite on [a− ε, b]. If we insert x∗ into Lxẋ
and Lxx then the matrices A,B,C (in the notation of Remark 3.5) retain
their properties and we can consider the corresponding Jacobi equation ex-
tended to [a − ε, b]. Then Lemma 5.1 in [10, p. 129] yields an a0 < a such
that x∗ has no conjugate point with respect to a0 on (a0, b]. But then, using
the same initial conditions at a0 and the same argument as in the first part
of the proof, we obtain a self-conjugate solution (Z1, Y1) on [a0, b] such that
Y1 is nonsingular on (a0, b]. The restriction of Y1 is, of course, a solution of
the Jacobi equation on [a, b] that is nonsingular there.

From Theorem 3.8 it follows that Z1Y
−1

1 is a symmetric solution of the
Legendre–Riccati equation.
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Theorem 3.11 (Fundamental Theorem of Jacobi–Weierstrass). If the
regular extremal x∗ does not have a conjugate point on (a, b] then x∗ is a
weak local minimal solution of the given variational problem.

3.1. Carathéodory minimale

Definition 3.12. A function x∗ ∈ RCS1[a, b]n is called a Carathéodory
minimale if for every t0 ∈ (a, b) there are s, t ∈ (a, b) with s < t0 < t such
that x∗|[s,t] is a weak local solution of the variational problem

min
t�

s

L(x(τ), ẋ(τ), τ) dτ

on

Ss,t := {x ∈ RCS1[s, t]n | (x(τ), ẋ(τ), τ) ∈ U ∀τ ∈ [s, t],

x(s) = x∗(s), x(t) = x∗(t)}.
As a consequence of Theorem 3.4 we obtain (compare [4, p. 210])

Theorem 3.13. Every regular extremal is a Carathéodory minimale.

Proof. The matrix W := r(t− t0) · I satisfies the Legendre–Riccati con-
dition for large r on the interval [t0− 1/r, t0 + 1/r]: in fact, for p ∈ Rn with
‖p‖ = 1 we obtain

pT (P (t) + rI − (QT (t) + r(t− t0)I)R−1(t)(Q(t) + r(t− t0)I))p

≥ r − (‖QT‖+ 1)‖R−1‖(‖Q(t)‖+ 1)− ‖P (t)‖ > 0

for r large enough.

4. Strong convexity and strong local minima

Lemma 4.1. Let X be a normed space, U ⊂ X open, and g : U → R
twice continuously differentiable. If for an x∗ ∈ U and c > 0 we have

〈g′′(x∗)h, h〉 ≥ c‖h‖2 for all h ∈ X,

then there exists a δ > 0 such that g is strongly convex on K := K(x∗, δ).
In particular ,

g

(
x+ y

2

)
≤ 1

2
g(x) +

1
2
g(y)− c

8
‖x− y‖2 for all x, y ∈ K.

Proof. As g′′ is continuous, there is a δ > 0 such that ‖g′′(x)− g′′(x∗)‖
≤ c/2 for all x ∈ K(x∗, δ). Hence for all x ∈ K and all h ∈ X we obtain

〈g′′(x)h, h〉 = 〈(g′′(x)− g′′(x∗))h, h〉+ 〈g′′(x∗)h, h〉
≥ −‖g′′(x)− g′′(x∗)‖‖h‖2 + c‖h‖2 ≥ c

2
‖h‖2.

From [13, Theorem 5, p. 42] it follows that g is strongly convex on K.
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Theorem 4.2 (Uniform strong convexity of the Lagrangian). Let x∗

be an extremal and suppose the Legendre–Riccati condition is satisfied. Then
there is a δ > 0 and a c > 0 such that for all (p, q), (u, v) ∈ Kt :=
K((x∗(t), ẋ∗(t)), δ) and for all t ∈ [a, b] we have

L̃

(
p+ u

2
,
q + v

2
, t

)
≤ 1

2
L̃(p, q, t) +

1
2
L̃(u, v, t)− c

8
(‖p− u‖2 + ‖q − v‖2).

Proof. Let φt be as in Theorem 3.4. As the set K1 := {(p, q) ∈ R2n |
‖p‖2 + ‖q‖2 = 1} is compact and as t 7→ φ′′t (x

∗(t), ẋ∗(t)) is continuous on
[a, b] there is a positive c ∈ R such that for all t ∈ [a, b],

(
p

q

)T
φ′′t (x

∗(t), ẋ∗(t))
(
p

q

)
≥ c(8)

on K1, i.e. t 7→ φ′′t (x
∗(t), ẋ∗(t)) is uniformly positive definite on [a, b].

According to Lemma 3.1 there is a % > 0 such that on the compact set
⋃

t∈[a,b]

K((x∗(t), ẋ∗(t), t), %) ⊂ U

in R2n+1 we have uniform continuity of (p, q, t) 7→ φ′′t (p, q). Hence there is a
δ > 0 such that for all (u, v) ∈ Kt := K((x∗(t), ẋ∗(t), t), δ) we have

‖φ′′t (u, v)− φ′′t (x∗(t), ẋ∗(t))‖ ≤ c/2
and hence on that set (

p

q

)T
φ′′t (u, v)

(
p

q

)
≥ c

2
.

Thus (p, q) 7→ L̃(p, q, t) is uniformly strongly convex on Kt for all t ∈ [a, b],
i.e.

L̃

(
p+ u

2
,
q + v

2
, t

)
≤ 1

2
L̃(p, q, t) +

1
2
L̃(u, v, t)− c

8
(‖p− u‖2 + ‖q − v‖2)

for all (p, q), (u, v) ∈ Kt and all t ∈ [a, b].

For the corresponding variational functional the above theorem leads to

Corollary 4.3 (Strong convexity of the variational functional). Let

B(x∗, δ) := {x ∈ RCS1[a, b]n | ‖x(t)−x∗(t)‖2+‖ẋ(t)−ẋ∗(t)‖2 < δ ∀t∈ [a, b]}.
Then the variational functional f̃ belonging to the Lagrangian L̃ is uniformly
strongly convex with respect to the Sobolev norm:

f̃

(
x+ y

2

)
≤ 1

2
f̃(x) +

1
2
f̃(y)− c

8
‖x− y‖2W .

Let V := {x ∈ B(x∗, δ) | x(a) = α, x(b) = β} be the subset of those functions
satisfying the boundary conditions. Then on V the original functional f is
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also uniformly strongly convex with respect to the Sobolev norm:

f

(
x+ y

2

)
≤ 1

2
f(x) +

1
2
f(y)− c

8
‖x− y‖2W .

Furthermore, every minimizing sequence converges to the minimal solution
with respect to the Sobolev norm (strong solvability).

Proof. For the variational functional f̃(x) :=
� b
a L̃(x(t), ẋ(t), t) dt we ob-

tain

f̃

(
x+ y

2

)
=

b�

a

L̃

(
x(t) + y(t)

2
,
ẋ(t) + ẏ(t)

2
, t

)
dt

≤
b�

a

(
1
2
L̃(x(t), ẋ(t), t) +

1
2
L̃(y(t), ẏ(t), t)

)
dt

− c

8

b�

a

(‖x(t)− y(t)‖2 + ‖ẋ(t)− ẏ(t)‖2) dt

=
1
2
f̃(x) +

1
2
f̃(y)− c

8
‖x− y‖2W

for all x, y ∈ B(x∗, δ). Thus f̃ is strictly convex on B(x∗, δ). On V the
functional f(x) :=

� b
a L(x(t), ẋ(t), t) dt differs from f̃ only by a constant,

hence has the same minimal solutions. On V the inequality

f

(
x+ y

2

)
≤ 1

2
f(x) +

1
2
f(y)− c

8
‖x− y‖2W

is satisfied, i.e. f is strongly convex on V with respect to the Sobolev norm.

Using Theorem 3.10 we obtain the following corollary (retaining the
notation of the previous corollary):

Corollary 4.4 (Strong convexity). If the regular extremal x∗ does not
have a conjugate point then there is a δ > 0 such that on B(x∗, δ) the
modified variational functional f̃ is uniformly strongly convex with respect
to the Sobolev norm: and on V the original functional f is also uniformly
strongly convex with respect to the Sobolev norm.

4.1. Strong local minima. We now investigate the question under what
conditions we can guarantee that weak local minimal solutions are in fact
strong local minimal solutions. It turns out that such a strong property can
be proved without the use of embedding theory. We will show that strong
local minima require a supplement for the Lagrangian that is generated by
the supplement potential

(t, p) 7→ F (t, p) :=
1
2
〈p,W (t)p〉 − 〈λ(t), p〉,
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where W (t) is symmetric and the linear term is chosen in such a way that—
along the extremal—the necessary conditions for optimality for L̂ coincide
with the fulfillment of the Euler–Lagrange equation, and the quadratic term,
with its convexification property, provides sufficient optimality conditions.

The supplemented Lagrangian then has the following structure:

L̂(p, q, t) = L(p, q, t) + Ft + 〈Fp, q〉

= L(p, q, t) +
1
2
〈p, Ẇ (t)p〉 − 〈λ̇(t), p〉+ 〈W (t)p, q〉 − 〈λ(t), q〉.

If we define
λ(t) := Lq(x∗(t), ẋ∗(t), t) +W (t)x∗(t)

then using the Euler–Lagrange equation for the original Lagrangian L, i.e.
d
dtLq = Lp, we obtain in fact the necessary conditions:

L̂p(x∗(t), ẋ∗(t), t) = L̂q(x∗(t), ẋ∗(t), t) = 0.

In the subsequent theorem we make use of the following lemma which is a
well known immediate consequence of Brouwer’s fixed point theorem:

Lemma 4.5. Let r > 0 and x0 ∈ Rn. Let A : K(x0, r) → Rn be con-
tinuous, and let 〈Ax, x − x0〉 ≥ 0 for all x ∈ S(x0, r). Then the nonlinear
equation Ax = 0 has a solution in K(x0, r).

Proof. Otherwise Brouwer’s fixed point theorem applied to the mapping

x 7→ g(x) := −r
(

Ax

‖Ax‖

)
+ x0

would lead to a contradiction.

Theorem 4.6 (Strong local minimum). Let x∗ be an admissible, regular
extremal and suppose the Legendre–Riccati condition is satisfied. Suppose
there exists a κ > 0 such that for all t ∈ [a, b] and all p with ‖p−x∗(t)‖ < κ
the set Vt,p := {q ∈ Rn | (p, q, t) ∈ U} is convex and the function L(p, ·, t) is
convex on Vt,p. Then x∗ is a locally strong minimal solution of the variational
problem, i.e. there is a positive d such that for all x ∈ K := {x ∈ S |
‖x− x∗‖∞ < d} we have

b�

a

L(x∗(t), ẋ∗(t), t) dt ≤
b�

a

L(x(t), ẋ(t), t) dt.

Proof. In Theorem 4.2 we have constructed positive constants c and δ
such that for all (p, v), (u, v) ∈ Kt := K((x∗(t), ẋ∗(t)), δ) we have

L̃

(
p+ u

2
,
q + v

2
, t

)
≤ 1

2
L̃(p, q, t) +

1
2
L̃(u, v, t)− c

8
(‖p− u‖2 + ‖q − v‖2).
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But L̂ differs from L̃ only by the linear term

−〈λ̇(t), p〉 − 〈λ(t), q〉.
In particular L̃′′ = L̂′′, i.e. the convexity properties remain unchanged, and
hence L̂(·, ·, t) is strongly convex on Kt with a uniform constant c for all
t ∈ [a, b].

From [14, p. 39 ff (Satz 4 and 5)] we deduce that for this c,

〈L̂q(x∗(t), q, t)− L̂q(x∗(t), ẋ∗(t), t), q − ẋ∗(t)〉 = 〈L̂q(x∗(t), q, t), q − ẋ∗(t)〉
≥ 4c‖q − ẋ∗(t)‖2

(strong monotonicity of L̂q(x∗(t), ·, t)). The uniform continuity of L̂q guar-
antees that for 0 < ε < c · δ/2 there is a 0 < d ≤ min{δ/2, κ} such that for
all t ∈ [a, b],

‖L̂q(x∗(t), q, t)− L̂q(p, q, t)‖ < ε

for all p ∈ x∗(t) +K(0, d). We obtain

〈L̂q(x∗(t), q, t)− L̂q(p, q, t), q − x∗(t)〉
≤ ‖L̂q(x∗(t), q, t)− L̂q(p, q, t)‖ ‖q − x∗(t)‖ < ε‖q − x∗(t)‖.

Let % = δ/2. Then on the sphere {q | ‖q − ẋ∗(t)‖ = %} for all p ∈ x∗(t) +
K(0, d) we have

〈L̂q(p, q, t), q − ẋ∗(t)〉 ≥ c‖q − ẋ∗(t)‖2 − ε‖q − x∗(t)‖ = c%2 − ε% > 0.

Hence from Lemma 4.5, for every p ∈ x∗(t) + K(0, d) we obtain a q∗(p) ∈
K(ẋ∗(t), %) such that

L̂q(p, q∗(p), t) = 0.

From the convexity of L̂(p, ·, t) we conclude that q∗(p) is a minimal solution
of L̂(p, ·, t) on Vt,p.

We shall now show that for all t ∈ [a, b], (x∗(t), ẋ∗(t)) is a minimal
solution of L(·, ·, t) on

Wt := {(p, q) ∈ Rn × Rn | (p, q, t) ∈ U and ‖p− x∗(t)‖ < d}.
For, suppose there exists (p, q) ∈Wt such that

L(x∗(t), ẋ∗(t), t) > L(p, q, t).

As x∗ is an extremal, and as L̂(·, ·, t) is convex on Kt, (x∗(t), ẋ∗(t)) is a
minimal solution of L̂(·, ·, t) on Kt by construction of L̂. As (p, q∗(p)) ∈ Kt

we obtain

L̂(x∗(t), ẋ∗(t), t) ≤ L̂(p, q∗(p), t) ≤ L̂(p, q, t) < L̂(x∗(t), ẋ∗(t), t),

a contradiction.
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For all x ∈ K = {x ∈ S | ‖x∗ − x‖∞ < d} we then have

b�

a

L̂(x∗(t), ẋ∗(t), t) dt ≤
b�

a

L̂(x(t), ẋ(t), t) dt,

and as the integrals differ on S only by a constant, we obtain the corre-
sponding inequality also for the original Lagrangian:

b�

a

L(x∗(t), ẋ∗(t), t) dt ≤
b�

a

L(x(t), ẋ(t), t) dt,

which completes the proof.

The previous theorem together with Theorem 3.10 leads to the following

Corollary 4.7 (Strong local minimum). Let x∗ be an admissible and
regular extremal without conjugate points. Suppose there exists a κ > 0 such
that for all t ∈ [a, b] and all p with ‖p−x∗(t)‖ < κ the set Vt,p := {q ∈ Rn |
(p, q, t) ∈ U} is convex and the function L(p, ·, t) is convex on Vt,p. Then
x∗ is a locally strong minimal solution of the variational problem, i.e. there
is a positive d such that for all x ∈ K := {x ∈ S | ‖x − x∗‖∞ < d} we
have

b�

a

L(x∗(t), ẋ∗(t), t) dt ≤
b�

a

L(x(t), ẋ(t), t) dt.

Remark 4.8. If in particular U = U1 × U2 × [a, b], where U1 ⊂ Rn is
open, U2 ⊂ Rn is open and convex, and L(p, ·, t) : U2 → R is convex for
all (p, t) ∈ U1 × [a, b], then the requirements of the previous theorem are
satisfied.

5. Necessary conditions. We briefly restate the Euler–Lagrange equa-
tion as a necessary condition in the piecewise continuous case. The standard
proof carries over to this situation (see Hestenes [10, Lemma 5.1, p. 70]).

Theorem 5.1. Suppose L,Lx, Lẋ are piecewise continuous. Let x∗ be a
solution of the variational problem with graph contained in the interior of U .
Then x∗ is an extremaloid, i.e. there is a c ∈ Rn such that

Lẋ(x∗(t), ẋ∗(t), t) =
t�

a

Lx(x∗(τ), ẋ∗(τ), τ) dτ + c.

5.1. The Jacobi equation as a necessary condition. A different approach
to obtaining the Jacobi equation is to consider the variational problem that
corresponds to the second directional derivative of the original variational
problem:
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Let x∗ be a solution of the original variational problem, let

V := {h ∈ RCS1[a, b]n | h(a) = h(b) = 0}
and let

φ(α) := f(x∗ + αh) =
b�

a

L(x∗(t) + αh(t), ẋ∗(t) + αḣ(t), t) dt.

Then the necessary condition yields

0 ≤ φ′′(0) = f ′′(x∗, h) =
b�

a

(〈L0
ẋẋḣ, ḣ〉+ 2〈L0

ẋxh, ḣ〉+ 〈L0
xxh, h〉) dt

=
b�

a

(〈Rḣ, ḣ〉+ 2〈Qh, ḣ〉+ 〈Ph, h〉) dt,

using our notation of Remark 3.5. Then the (quadratic) variational problem

minimize f ′′(x∗, ·) on V

is called the accessory (secondary) variational problem. It turns out that
the corresponding Euler–Lagrange equation

d

dt
(Rḣ+Qh) = QT ḣ+ Ph

or in matrix form
d

dt
(RẎ +QY ) = QT Ẏ + PY

yields the Jacobi equation in canonical form

Ż = CY −ATZ, Ẏ = AY +BZ

by setting Z := RẎ +QY and using the notation of Remark 3.5.

Lemma 5.2. If h∗ ∈ V is a solution of the Jacobi equation in the piece-
wise sense then it is a minimal solution of the accessory problem.

Proof. Let

Ω(h, ḣ) := 〈Rḣ, ḣ〉+ 2〈Qh, ḣ〉+ 〈Ph, h〉.
Since h∗ is an extremal of the accessory problem, i.e. (in the piecewise sense)

d

dt
(2Rḣ∗ + 2Qh∗) = 2Ph∗ + 2QT ḣ∗,

it follows that

Ω(h∗, ḣ∗) = 〈Rḣ∗+Qh∗, ḣ∗〉+
〈
d

dt
(Rḣ∗+Qh∗), h∗

〉
=

d

dt
(〈Rḣ∗+Qh∗, h∗〉).

Using the Weierstrass–Erdmann condition for the accessory problem, i.e.
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Rḣ + Qh continuous, we can apply the main theorem of differential and
integral calculus:

b�

a

2Ω(h∗, ḣ∗) dt = 〈Rḣ∗ +Qh∗, h∗〉|ba = 0

as h∗(a) = h∗(b) = 0. Hence h∗ is a minimal solution as f ′′(x∗, ·) is nonneg-
ative.

Theorem 5.3 (Jacobi’s necessary condition for optimality). If a regular
extremal x∗ is a minimal solution of the variational problem on S, then a
has no conjugate point in (a, b).

Proof. For otherwise, let (h∗, k∗) be a nontrivial solution of the Jacobi
equation with h(a) = 0, and let c ∈ (a, b) be such a conjugate point. Then
h∗(c) = 0 and k∗(c) 6= 0. Because k∗(c) = Rḣ∗(c) + Qh∗(c) = Rḣ∗(c) it
follows that ḣ∗(c) 6= 0. We define y(t) = h∗(t) for t ∈ [a, c], and y(t) = 0
for t ∈ [c, b]. In particular ẏ(c) 6= 0. Obviously, y is a solution of the Ja-
cobi equation (in the piecewise sense) and hence, according to the previ-
ous lemma, a minimal solution of the accessory problem, a contradiction
to Corollary 2.2 on smoothness of solutions, as Ω is strictly convex with
respect to ḣ.

6. C1-variational problems. Let

S1 := {x ∈ C1[a, b]n | (x(t), ẋ(t), t) ∈ U, x(a) = α, x(b) = β}
and

V1 := {h ∈ C1[a, b]n | h(a) = 0, h(b) = 0}
As the variational problem is now considered on a smaller set (S1 ⊂ S),
sufficient conditions carry over to this situation.

Again, just as in the RCS1-theory, the Jacobi condition is a necessary
condition.

Theorem 6.1. If a regular extremal x∗ ∈ C1[a, b]n is a minimal solution
of the variational problem on S1, then a has no conjugate point in (a, b).

Proof. Let c ∈ (a, b) be a conjugate point of a. We consider the quadratic
functional

h 7→ g(h) :=
b�

a

Ω(h, ḣ) dt

for h ∈ V1, where

Ω(h, ḣ) := 〈Rḣ, ḣ〉+ 2〈Qh, ḣ〉+ 〈Ph, h〉.
We show that there is ĥ ∈ V with g(ĥ) < 0: for suppose g(h) ≥ 0 for all
h ∈ V ; then, as in Lemma 5.2, every extremal h∗ is a minimal solution
of g, and we use the construction for y as in the proof of Theorem 5.3 to
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obtain a solution of the Jacobi equation in the piecewise sense (which is,
again according to Lemma 5.2, a minimal solution of the accessory prob-
lem) which is not smooth, in contradiction to Corollary 2.2, as Ω is strictly
convex with respect to ḣ. Hence there is ĥ ∈ V with g(ĥ) < 0. Now we use
the process of smoothing of corners as described in Carathéodory [4]. Thus
we obtain an h ∈ C1[a, b]n with g(h) < 0. Let α 7→ φ(α) = f(x∗ + αh).
Then g(h) = φ′′(0) ≥ 0 as x∗ is a minimal solution of f on S1, a contradic-
tion.

7. Conclusion. For a comprehensive view of our results we introduce
the notion of an optimal path. Our main objective in this context is to
characterize necessary and sufficient conditions.

Definition 7.1. A function x∗ ∈ RCS1[a, b]n is called an optimal path
if it is a weak local solution of the variational problem

min
t�

a

L(x(τ), ẋ(τ), τ) dτ

on

St := {x ∈ RCS1[a, t]n | (x(τ), ẋ(τ), τ) ∈ U, ∀τ ∈ [a, t],

x(a) = α, x(t) = x∗(t)}
for all t ∈ [a, b).

Theorem 7.2. Consider the variational problem

min
b�

a

L(x(τ), ẋ(τ), τ) dτ

on

S := {x ∈ RCS1[a, t]n | (x(τ), ẋ(τ), τ) ∈ U, ∀τ ∈ [a, b], x(a) = α, x(t) = β}.
Let x∗ ∈ RCS1[a, b]n be a regular extremal. Then the following statements
are equivalent :

(i) x∗ is an optimal path.
(ii) The variational problem has an equivalent convex problem in the

following sense: for the original Lagrangian there is a locally con-
vexified Lagrangian L̃ such that for every subinterval [a, τ ] ⊂ [a, b)
there is a δ > 0 with the property that L̃(·, ·, t) is strictly convex on
the ball K((x∗(t), ẋ∗(t)), δ) for all t ∈ [a, τ ].

(iii) The variational problem has an equivalent convex problem (in the
sense of (ii)) employing a quadratic supplement.

(iv) For every subinterval [a, τ ] ⊂ [a, b) there is a δ > 0 with the property
that (x∗(t), ẋ∗(t)) is a pointwise minimum of L̃(·, ·, t) on the ball
K((x∗(t), ẋ∗(t)), δ) for all t ∈ [a, τ ].
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(v) The Legendre–Riccati condition is satisfied on [a, b).
(vi) The Jacobi matrix equation has a nonsingular and self-conjugate

solution on [a, b).
(vii) a has no conjugate point in (a, b).
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