COLLOQUIUM MATHEMATICUM

ALMOST ff-UNIVERSAL AND Q-UNIVERSAL VARIETIES OF MODULAR 0-LATTICES

BY
V. KOUBEK (Praha) and J. SICHLER (Winnipeg)

To Professor Věra Trnková on her 70th birthday

Abstract

A variety \mathbb{V} of algebras of a finite type is almost $f f$-universal if there is a finiteness-preserving faithful functor $F: \mathbb{G} \rightarrow \mathbb{V}$ from the category \mathbb{G} of all graphs and their compatible maps such that $F \gamma$ is nonconstant for every γ and every nonconstant homomorphism $h: F G \rightarrow F G^{\prime}$ has the form $h=F \gamma$ for some $\gamma: G \rightarrow G^{\prime}$. A variety \mathbb{V} is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice. For a variety \mathbb{V} of modular 0 -lattices it is shown that \mathbb{V} is almost $f f$-universal if and only if \mathbb{V} is Q-universal, and that this is also equivalent to the non-distributivity of \mathbb{V}.

A concrete category \mathbb{K} is (algebraically) universal if the category \mathbb{G} of all graphs and all their compatible mappings has a full embedding into \mathbb{K}. When such a full embedding sends every finite graph to a \mathbb{K}-object whose underlying set is finite, we say that \mathbb{K} is finite-to-finite universal (ff-universal). All universal categories have quite a rich structure: for instance, for every monoid M they contain a proper class of pairwise non-isomorphic objects whose endomorphism monoids are isomorphic to M (see [8]). An $f f$ universal category relevant to our considerations is formed by all $(0,1)$ homomorphisms between $(0,1)$-lattices from the variety $\operatorname{Var}_{0,1}\left(M_{3}\right)$ generated by the five-element modular nondistributive lattice M_{3} (this fact and the fact that $\operatorname{Var}_{0,1}\left(M_{3}\right)$ is a minimal universal variety follow from the classification of universal varieties of (0,1)-lattices given in [5] and from [10]). On the other hand, the category of all lattices and all their homomorphisms is not universal because of the existence of constant homomorphisms, and neither is the category of all 0-lattices and their 0-preserving homomorphisms.

[^0]Yet both these categories are almost ff-universal, that is, each contains a class of objects determining a full subcategory whose nonconstant morphisms are closed under composition and form an $f f$-universal category. In fact, already the varieties $\operatorname{Var}\left(M_{3,3}\right)$ and $\operatorname{Var}_{0}\left(M_{3,3}\right)$ generated by the modular eight-element lattice $M_{3,3}$ given by $0<a, b, c<d$ and $c<d, e, f<1$ are almost $f f$-universal, and the variety $\operatorname{Var}\left(M_{3,3}\right)$ is also minimal in this respect (see [6]). For an overview of universality, we refer the reader to [8].

According to Sapir [9], a quasivariety \mathbb{Q} of algebras of a finite similarity type is Q-universal if the inclusion-ordered lattice $L(\mathbb{Q})$ of its subquasivarieties has the property that for any quasivariety \mathbb{R} of algebras of a finite type, the lattice $L(\mathbb{R})$ is a quotient lattice of a sublattice of $L(\mathbb{Q})$. Just as for categorical universality, numerous instances of Q-universal varieties exist and are documented by Adams and Dziobiak in [1, 2], for instance. Of particular interest here is the result by Dziobiak [4] characterizing the Q-universal varieties of modular lattices as those which contain the variety $\operatorname{Var}\left(M_{3,3}\right)$.

The two types of universality are linked through the remarkable AdamsDziobiak Theorem [3] saying that any $f f$-universal quasivariety of algebras of a finite type must be Q-universal (the converse implication is known to be false, see [3]). To further improve their result, Adams and Dziobiak asked whether a weaker form of categorical universality (such as almost $f f$ universality) would still imply Q-universality. Motivated by this question, in [7] we found an example showing that the categorical hypothesis cannot be weakened to its natural extreme.

The above discussion of known facts indicates the reasons for asking whether the variety $\operatorname{Var}_{0}\left(M_{3}\right)$ is almost $f f$-universal or Q-universal. In the two sections below we show that $\operatorname{Var}_{0}\left(M_{3}\right)$-and hence also $\operatorname{Var}_{1}\left(M_{3}\right)$-have both these properties.

1. Categorical universality. In this section we show that the variety $\operatorname{Var}_{0}\left(M_{3}\right)$ is finite-to-finite almost universal, by means of embedding an $f f$ universal full subcategory of the variety $\operatorname{Var}_{0,1}\left(M_{3}\right)$ of $(0,1)$-lattices (see [5]) into $\operatorname{Var}_{0}\left(M_{3}\right)$ via an almost full functor preserving finiteness. First we present a general form of the construction (to be also used elsewhere), and then its specific application.

Throughout the paper, we identify any natural number n with the set $\{0,1, \ldots, n-1\}$. For a poset P and any $p \in P$ we write $[p)=\{x \in P \mid p \leq x\}$, $(p]=\{x \in P \mid x \leq p\}$ and, for any $p, q \in P$ with $p \leq q$ we write $[p, q]=$ $\{x \in P \mid p \leq x \leq q\}$. Given lattices A and B, we say that a sublattice $C \subseteq A \times B$ is subdirect in $A \times B$ if the restriction of both projections to C is surjective. A family $\Sigma \subseteq \operatorname{hom}_{0,1}(A, B)$ of lattice $(0,1)$-homomorphisms is separating if for any distinct $x, y \in A$ there exists an $f \in \Sigma$ with $f(x) \neq f(y)$.

Thus $\operatorname{hom}_{0,1}(A, B)$ contains a separating family exactly when A is a sublattice of some Cartesian power of B.

Next we present the basic step of the general lattice construction.
Construction. Let A and Q be (0,1)-lattices, let $a \in A \backslash\{0,1\}$, and let $c, d \in Q$ satisfy $0<c<d<1$ and $Q=[c) \cup(d]$. For fixed $c, d \in Q$, we write $A *{ }_{a} Q=S_{0} \cup S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \subseteq A \times Q$ with the (not necessarily disjoint) sets $S_{0}=\{0\} \times(d], S_{1}=(a] \times[c, d], S_{2}=\{a\} \times[c), S_{3}=[a) \times[d)$ and $S_{4}=A \times\{d\}$.

In what follows, we also assume that $(d] \backslash[c)$ is not a singleton.
Lemma 1.1. For any $(0,1)$-lattice A and $a \in A \backslash\{0,1\}$, the set $A *{ }_{a} Q=$ $A * Q$ is a $(0,1)$-sublattice subdirect in $A \times Q$, and
(1) $[(0, d),(1, d)]=A \times\{d\} \subseteq A * Q$;
(2) if $h: A \rightarrow A^{\prime}$ is a lattice $(0,1)$-homomorphism (or a 0-homomorphism) satisfying $h(a)=a^{\prime}$ then the domain-range restriction $h * 1$ of $h \times 1_{Q}$ to $A * Q$ and $A^{\prime} *_{a^{\prime}} Q$ is a lattice $(0,1)$-homomorphism (or a 0-homomorphism) such that $(h * 1)(z, q)=(h(z), q)$ for all $(z, q) \in A * Q$;
(3) if $h: A \rightarrow A^{\prime}$ is a lattice 0-homomorphism with $h(a)=a^{\prime}$ then $(h * 1)^{-1}\{(0, q)\}=\{(0, q)\}$ for all $q \in(d] \backslash[c) ;$
(4) if $h: A \rightarrow A^{\prime}$ is a lattice 0-homomorphism with $h(a)=a^{\prime}$ then $(h * 1)^{-1}\left\{\left(a^{\prime}, q\right)\right\}=\{(a, q)\}$ for all $q \in Q$ incomparable with d.

Proof. First we show that $A * Q$ is a sublattice of $A \times Q$. It is easy to see that $S_{i} \subseteq A \times Q$ is a sublattice for each $i \in 5$. We proceed by exhausting the remaining possibilities. To make the verification easier, we use the explicit list below.

- $s_{0}=\left(a_{0}, q_{0}\right) \in S_{0}$ iff $a_{0}=0$ and $q_{0} \leq d ;$
- $s_{1}=\left(a_{1}, q_{1}\right) \in S_{1}$ iff $a_{1} \leq a$ and $c \leq q_{1} \leq d$;
- $s_{2}=\left(a_{2}, q_{2}\right) \in S_{2}$ iff $a_{2}=a$ and $c \leq q_{2}$;
- $s_{3}=\left(a_{3}, q_{3}\right) \in S_{3}$ iff $a \leq a_{3}$ and $d \leq q_{3}$;
- $s_{4}=\left(a_{4}, q_{4}\right) \in S_{4}$ iff $a_{4} \in A$ and $q_{4}=d$.
$\{0, i\}$ for $i=1,2,3,4$. Let $s_{0} \in S_{0}$ and $s_{i} \in S_{i}$. Then $s_{0} \wedge s_{i}=\left(0, q_{0} \wedge q_{i}\right)$ $\in S_{0}$ because $q_{0} \wedge q_{i} \leq q_{0} \leq d$. Further $s_{0} \vee s_{i}=\left(a_{i}, q_{0} \vee q_{i}\right)$ for any $i \in 5$. If $i=1$ then $c \leq q_{1} \leq q_{1} \vee q_{0} \leq d$ because $q_{0}, q_{1} \leq d$ and $s_{0} \vee s_{1} \in S_{1}$. If $i=2$ then $s_{0} \vee s_{i}=\left(a, q_{0} \vee q_{2}\right) \in S_{2}$ because $c \leq q_{2} \leq q_{0} \vee q_{2}$. If $i=3$ or $i=4$ then $s_{0} \vee s_{i}=\left(a_{i}, q_{i}\right)=s_{i} \in S_{i}$ because $q_{0} \leq d=q_{4} \leq q_{3}$.
$\{3, i\}$ for $i=1,2,4$. Let $s_{3} \in S_{3}$ and $s_{i} \in S_{i}$. Then $a_{3} \geq a$ and $q_{3} \geq d$ and hence $s_{3} \vee s_{i}=\left(a_{3} \vee a_{i}, q_{3} \vee q_{i}\right) \in S_{3}$ because $a \leq a_{3} \leq a_{3} \vee a_{i}$ and $d \leq q_{3} \leq q_{3} \vee q_{i}$. If $i=1$ then $s_{3} \wedge s_{1}=s_{1} \in S_{1}$ because $a_{1} \leq a \leq a_{3}$ and
$q_{1} \leq d \leq q_{3}$. If $i=2$ then $s_{3} \wedge s_{2}=\left(a, q_{2} \wedge q_{3}\right) \in S_{2}$ because $q_{3} \geq d \geq c$. If $i=4$ then $s_{3} \wedge s_{4}=\left(a_{3} \wedge a_{4}, d\right) \in S_{4}$ because $q_{3} \geq d=q_{4}$.
$\{1,2\}$. Let $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$. Then $s_{1} \vee s_{2}=\left(a, q_{1} \vee q_{2}\right) \in S_{2}$ because $a_{1} \leq a=a_{2}$ and $c \leq q_{2} \leq q_{1} \vee q_{2}$, and $s_{1} \wedge s_{2}=\left(a_{1}, q_{1} \wedge q_{2}\right) \in S_{1}$ because $c \leq q_{1}, q_{2}$ and $q_{1} \wedge q_{2} \leq q_{1} \leq d$.
$\{1,4\}$. Let $s_{1} \in S_{1}$ and $s_{4} \in S_{4}$. Then $s_{1} \vee s_{4}=\left(a_{1} \vee a_{4}, d\right) \in S_{4}$, and $s_{1} \wedge s_{4}=\left(a_{1} \wedge a_{4}, q_{1}\right) \in S_{1}$ because $a_{1} \wedge a_{4} \leq a_{1} \leq a$ and $c \leq q_{1} \leq d$.
$\{2,4\}$. Let $s_{2} \in S_{2}$ and $s_{4} \in S_{4}$. Then $s_{2} \vee s_{4}=\left(a_{2} \vee a_{4}, q_{2} \vee q_{4}\right) \in S_{3}$ because $a_{2} \vee a_{4} \geq a_{2}=a$ and $q_{2} \vee q_{4} \geq q_{4}=d$, and $s_{2} \wedge s_{4}=\left(a_{2} \wedge a_{4}, q_{2} \wedge q_{4}\right)$ $\in S_{1}$ because $a_{2} \wedge a_{4} \leq a_{2}=a$ and $c=c \wedge d \leq q_{2} \wedge q_{4} \leq q_{4}=d$.

Altogether $A * Q$ is a $(0,1)$-sublattice of $A \times Q$ because $(0,0) \in S_{0}$ and $(1,1) \in S_{3}$. We have $A \times\{d\}=S_{4} \subseteq A * Q$, and $(\{a\} \times[c)) \cup(\{0\} \times(d])=$ $S_{3} \cup S_{1} \subseteq A * Q$ and $Q=[c) \cup(d]$, and hence the lattice $A * Q$ is subdirect in $A \times Q$.

Claim (1) holds because $[(0, d),(1, d)]=S_{4}$ in $A \times Q$. Since $h(a)=a^{\prime}$ and $h(0)=0$, the homomorphism $h \times 1_{Q}$ maps the set $S_{i} \subseteq A * Q$ into the corresponding set $S_{i}^{\prime} \subseteq A^{\prime} *_{a^{\prime}} Q$ for each $i \in 5$, and (2) follows. To prove (3) observe that $(z, q) \in A * Q$ for some $q \in(d] \backslash[c)$ only when $z=0$. Since $(h * 1)(z, q)=\left(0, q^{\prime}\right)$ implies $q=q^{\prime}$, we obtain (3). For (4), suppose that q is incomparable with d and $(h * 1)(z, p)=\left(a^{\prime}, q\right)$. Then $p=q$ is incomparable to d, and hence $z=a$ by the definition of $A * Q$.

Let \mathbb{K} be a concrete category with a forgetful functor $U: \mathbb{K} \rightarrow$ Set. We say that a functor $F: \mathbb{C} \rightarrow \mathbb{K}$ is pointed if for every \mathbb{C}-object C there exists an element $a_{C} \in(U \circ F) C$ of the underlying set of its image $F C$ such that $(U \circ F) f\left(a_{C}\right)=a_{C^{\prime}}$ for all \mathbb{C}-morphisms $f: C \rightarrow C^{\prime}$.

Let \mathbb{L} be the variety of all $(0,1)$-lattices, let $F: \mathbb{C} \rightarrow \mathbb{L}$ be a pointed faithful functor such that $a_{C} \neq 0,1$ for all \mathbb{C}-objects C, and let $Q \in \mathbb{L}$. Lemma 1.1 shows that setting $(F * Q) C=F C *_{a_{C}} Q$ for every \mathbb{C}-object C and $(F * Q) h=F h * 1$ for every \mathbb{C}-morphism h defines a faithful functor

$$
F * Q: \mathbb{C} \rightarrow \mathbb{L}
$$

Let $C_{2}=\{0<a<1\}$ be the chain of length two. For any \mathbb{C}-object C, let $\xi_{C}: C_{2} \rightarrow F C$ denote the lattice $(0,1)$-homomorphism with $\xi_{C}(a)=a_{C}$.

For a pointed functor $F: \mathbb{C} \rightarrow \mathbb{L}$, a $(0,1)$-lattice $A \in \mathbb{L}$ and for a category \mathbb{K} of $(0,1)$-lattices that includes all $(0,1)$-homomorphisms between any two of its objects, we shall consider these conditions:
(c0) for every \mathbb{C}-object C there is a separating family

$$
\Sigma_{C} \subseteq \operatorname{hom}_{0,1}(F C, A)
$$

such that $f\left(a_{C}\right) \neq 0,1$ for all $f \in \Sigma_{C}$;
(c1) $F C *_{a_{C}} Q$ is a \mathbb{K}-object for every \mathbb{C}-object C.

Define $B=\left\{f\left(a_{C}\right) \in A \mid C\right.$ is a \mathbb{C}-object and $\left.f \in \Sigma_{C}\right\}$. For each $b \in B$, let

$$
\omega_{b}: C_{2} \rightarrow A
$$

be the lattice $(0,1)$-homomorphism with $\omega_{b}(a)=b$.
(c2) $C_{2} *_{a} Q$ and $A *_{b} Q$ are \mathbb{K}-objects for all $b \in B$;
(c3) if $b \in B$ and a \mathbb{K}-morphism $k: C_{2} *_{a} Q \rightarrow A *_{b} Q$ are such that there is a \mathbb{C}-object C and a lattice $(0,1)$-homomorphism from $F C$ into the interval $[k(0, d), k(1, d)]$ of $A *_{b} Q$ then either k is constant or $k=\omega_{b} * 1$.

Observe that condition (c0) implies that $a_{C} \neq 0,1$ for every \mathbb{C}-object C, and that condition (c1) and Lemma 1.1(2) imply that $F * Q$ is a functor from \mathbb{C} to \mathbb{K}.

Lemma 1.2. Let $F: \mathbb{C} \rightarrow \mathbb{L}$ be a pointed full embedding, let $A \in \mathbb{L}$ be a (0,1)-lattice and let \mathbb{K} be a category satisfying conditions (c0)-(c3). Then $F * Q: \mathbb{C} \rightarrow \mathbb{K}$ is an almost full embedding. If, moreover, no constant \mathbb{K}-morphism from $C_{2} *_{a} Q$ to $A *_{b} Q$ exists for any $b \in B$, then $F * Q$ is a full embedding of \mathbb{C} into \mathbb{K}.

Proof. By Lemma 1.1(1), the mapping $\iota_{C}: F C \rightarrow F C *_{a_{C}} Q$ given by $\iota_{C}(y)=(y, d)$ for all $y \in F C$ is a lattice isomorphism of $F C$ onto the interval $F C \times\{d\}=[(0, d),(1, d)]$ of $F C *_{a_{C}} Q$. We know that the functor $F * Q$ is faithful and that $(F * Q) h$ is a $(0,1)$-homomorphism for every \mathbb{C}-morphism h. We thus need only show that it is almost full.

Let C and C^{\prime} be \mathbb{C}-objects and let $g: F C *_{a_{C}} Q \rightarrow F C^{\prime} *_{a_{C^{\prime}}} Q$ be a \mathbb{K}-morphism. For any given $f \in \Sigma_{C^{\prime}}$ we define $g_{f}=(f * 1) \circ g \circ\left(\xi_{C} * 1\right)$ and $b=f\left(a_{C^{\prime}}\right)$, as shown in the diagram below.

Choose any $f \in \Sigma_{C^{\prime}}$. Then $(f * 1) \circ g \circ \iota_{C}$ is a lattice $(0,1)$-homomorphism of $F C$ into the interval $[((f * 1) \circ g)(0, d),((f * 1) \circ g)(1, d)]$ of $A *_{b} Q$. Since $\left(\xi_{C} * 1\right)(0, d)=(0, d)$ and $\left(\xi_{C} * 1\right)(1, d)=(1, d)$, we have $g_{f}(0, d)=$ $((f * 1) \circ g)(0, d)$ and $g_{f}(1, d)=((f * 1) \circ g)(1, d)$, and, by condition $(c 3)$, the \mathbb{K}-morphism g_{f} is either constant or else $g_{f}=\omega_{b} * 1$.

Suppose that $f \in \Sigma_{C^{\prime}}$ is such that $g_{f}=\omega_{b} * 1$. We aim to prove that $g_{f^{\prime}}=\omega_{b^{\prime}} * 1$ for all $f^{\prime} \in \Sigma_{C^{\prime}}$, where $b^{\prime}=f^{\prime}\left(a_{C^{\prime}}\right)$. First we note that $g_{f}(0, y)=(0, y)$ for any $y \in(d] \backslash[c)$ and, by Lemma 1.1(3), $(f * 1)^{-1}\{(0, y)\}=$ $\{(0, y)\}$. But $\left(\xi_{C} * 1\right)(0, y)=(0, y)$, and hence $g(0, y)=(0, y)$. Since $(d] \backslash[c)$ is not a singleton, for distinct $y, z \in(d] \backslash[c)$ we obtain $g(0, y)=(0, y)$ and $g(0, z)=(0, z)$, so that $g_{f^{\prime}}(0, y)=(0, y)$ and $g_{f^{\prime}}(0, z)=(0, z)$ for each
$f^{\prime} \in \Sigma_{C^{\prime}}$. It follows that $g_{f^{\prime}}=\left(\omega_{b^{\prime}} * 1\right)$ for all $f^{\prime} \in \Sigma_{C^{\prime}}\left(\right.$ where $\left.b^{\prime}=f^{\prime}\left(a_{C^{\prime}}\right)\right)$. Therefore
(a) g_{f} is either constant for all $f \in \Sigma_{C^{\prime}}$ or $g_{f}=\omega_{b} * 1$ for all $f \in \Sigma_{C^{\prime}}$, where $b=f\left(a_{C^{\prime}}\right)$.

Next we show that
(b) g is constant if and only if g_{f} is constant for all $f \in \Sigma_{C^{\prime}}$.

Clearly, if g is constant then g_{f} is constant for every $f \in \Sigma_{C^{\prime}}$. So assume that g is nonconstant, and let $y, z \in F C *_{a_{C}} Q$ be such that $v=g(y)<g(z)=$ w in $F C^{\prime} *_{a_{C^{\prime}}} Q$. Thus $\pi_{Q}(v)<\pi_{Q}(w)$ for the projection $\pi_{Q}: F C^{\prime} \times Q \rightarrow Q$ or $\pi_{F C^{\prime}}(v)<\pi_{F C^{\prime}}(w)$ for the projection $\pi_{F C^{\prime}}: F C^{\prime} \times Q \rightarrow F C^{\prime}$. In the first case $(f * 1)(v)<(f * 1)(w)$ for all $f \in \Sigma_{C^{\prime}}$. In the second, there exists $f \in \Sigma_{C^{\prime}}$ with $f\left(\pi_{F C^{\prime}}(v)\right)<f\left(\pi_{F C^{\prime}}(w)\right)$ because $\Sigma_{C^{\prime}}$ is separating and hence $(f * 1)(v)<(f * 1)(w)$. Thus in either case there exists an $f \in \Sigma_{C^{\prime}}$ for which g_{f} is not constant, and (b) holds.

Assume that g is not constant, that is, let $g_{f}=\omega_{b} * 1$ for all $f \in \Sigma_{C^{\prime}}$ and $b=f\left(a_{C^{\prime}}\right)$. Then $g_{f}(0, d)=(0, d)$ and $g_{f}(1, d)=(1, d)$ for all $f \in \Sigma_{C^{\prime}}$. Since $\Sigma_{C^{\prime}}$ is separating, for every $y \in F C^{\prime} \backslash\{0,1\}$ there exist $f^{\prime}, f^{\prime \prime} \in \Sigma_{C^{\prime}}$ with $g_{f^{\prime}}(y, d) \neq(0, d)$ and $g_{f^{\prime \prime}}(y, d) \neq(1, d)$, and since $(f * 1)^{-1}(A \times\{d\}) \subseteq$ $F C^{\prime} \times\{d\}$ for every $f \in \Sigma_{C^{\prime}}$, it follows that $g(0, d)=(0, d)$ and $g(1, d)=$ $(1, d)$. Thus the domain-range restriction $h: F C \rightarrow F C^{\prime}$ of g to the respective intervals $[(0, d),(1, d)]$ of $F C *_{a_{C}} Q$ and of $F C^{\prime} *_{a_{C^{\prime}}} Q$ is a lattice $(0,1)$-homomorphism. Since F is a pointed full embedding, we also have $h\left(a_{C}\right)=a_{C^{\prime}}$. Thus
(c) there exists a unique $(0,1)$-homomorphism $h: F C \rightarrow F C^{\prime}$ such that $h\left(a_{C}\right)=h\left(a_{C^{\prime}}\right)$ and $g(z, d)=(h(z), d)$ for all $z \in F C$.

Next we aim to show that $g=h * 1$.
Let $q \in(d]$ first. We begin by showing that $g(0, q)=(0, q)$. We have $g(0, q) \leq g(0, d)=(0, d)$ by (c), and hence $g(0, q)=(0, p)$ for some $p \leq d$. Since $g_{f}=\omega_{b} * 1$ for any $f \in \Sigma_{C^{\prime}}$ and from the definition of g_{f} it follows that $(0, q)=((f * 1) \circ g)(0, q)=(f * 1)(0, p)=(0, p)$. Thus $g(0, q)=(0, q)$ for every $q \in(d]$. Now let $q \in(d]$ and $(z, q) \in F C *_{a_{C}} Q$. From $(0, d) \wedge(z, q)=(0, q)$ and $(0, d) \vee(z, q)=(z, d)$ we obtain $(0, d) \wedge g(z, q)=(0, q)$ and $(0, d) \vee g(z, q)=$ $(h(z), d)$. It is easy to see that the last pair of equations has a unique solution $g(z, q)=(h(z), q)$. This completes the case of $q \in(d]$.

Analogously we find that $g(z, q)=(h(z), q)$ for all $(z, q) \in F C * a_{C} Q$ with $q \in[d)$.

It remains to consider the elements $(z, q) \in F C * a_{C} Q$ with $q \in Q$ incomparable to d. Such elements have the form $(z, q)=\left(a_{C}, q\right)$ with $q \geq c$. Let $f \in \Sigma_{C^{\prime}}$ be arbitrary and let $b=f\left(a_{C^{\prime}}\right)$. From the definition of g_{f} and the
fact that $g_{f}=\omega_{b} * 1$ it follows that $(f * 1)\left(g\left(a_{C}, q\right)\right)=g_{f}(a, q)=(b, q)$, and hence $g\left(a_{C}, q\right)=\left(a_{C^{\prime}}, q\right)=\left(h\left(a_{C}\right), q\right)$ by Lemma 1.1(4).

Altogether, $g=h * 1$ for any nonconstant g, and hence $F * Q: \mathbb{C} \rightarrow \mathbb{K}$ is an almost full embedding. If every g is nonconstant, then $F * Q$ is a full embedding.

Now we apply this general construction to the full embedding $F: \mathbb{C} \rightarrow$ $\operatorname{Var}_{0,1}\left(M_{3}\right)$ of an $f f$-universal category \mathbb{C} constructed in [5] into the full subcategory \mathbb{K} of $\operatorname{Var}_{0}\left(M_{3}\right)$ determined by its $(0,1)$-lattices, and to the lattice $Q \in \operatorname{Var}\left(M_{3}\right)$ of Figure 1. We note that $Q=(d] \cup[c)$ and that $(d] \backslash[c)$ is not a singleton.

Fig. 1. The lattice Q
Figure 2 shows the lattice $L_{1}=C_{2} *_{a} Q$, where the interval $[z, x]$ is $C_{2} \times\{d\}$, and $y=(a, d)$ for the nonextremal element $a \in C_{2}$.

Fig. 2. The lattice $L_{1}=C_{2} * Q$

Similarly, in the lattice $L_{0}=M_{3} *_{b} Q$ of Figure 3, the interval $[z, x]$ is $M_{3} \times\{d\}$, and $y=(b, d)$ for an arbitrary nonextremal element $b \in M_{3}$. In Figures 2 and 3, the letter $r \in\{t, u, v\}$ denotes the element $(0, r)$ and w denotes the element (a, w).

Fig. 3. The lattice $L_{0}=M_{3} * Q$
Next we describe the lattice 0-homomorphisms from L_{1} to L_{0}.
Lemma 1.3. Any 0 -homomorphism $f: L_{1} \rightarrow L_{0}$ has one of these properties:
(1) f is the inclusion 0-homomorphism, or
(2) f is the constant map with the value 0 , or
(3) $f(z)<f(x)$ and L_{0} has no copy of M_{3} with the bounds $f(z)$ and $f(x)$.

Proof. For $r \in\{t, u, v, w\}$, let $M^{(r)}$ denote the copy of M_{3} in L_{1} containing r, and let $0_{r}, 1_{r} \in M^{(r)}$ denote its respective bounds. The congruence lattice of L_{1} is Boolean and its atoms are the four congruences α_{r} collaps$\operatorname{ing} M^{(r)}$ for $r \in\{t, u, v, w\}$ and the two principal congruences $\theta(z, y)$ and $\theta(y, x)$.

We begin with an easy observation about L_{0}.
(a) If A is a sublattice of L_{0} isomorphic to M_{3} then $0 \notin A$, and if $B \neq A$ is a sublattice of L_{0} isomorphic to M_{3} then $A \cap B=\emptyset$.
Next we investigate properties of the kernel $\operatorname{Ker}(f)$ of f.
First, since $0_{t} \wedge 0_{u}=0$ and $0_{t} \leq 1_{u}$ in L_{1}, by (a) it follows that
(b) $\alpha_{u} \subseteq \operatorname{Ker}(f)$ implies $\alpha_{t} \subseteq \operatorname{Ker}(f)$.

Next suppose that $\alpha_{v} \subseteq \operatorname{Ker}(f)$. Then the elements $m_{u}=1_{u} \wedge 1_{v} \in M^{(u)}$ and $m_{t}=1_{u} \wedge 0_{v} \in M^{(t)}$ satisfy $f\left(m_{u}\right)=f\left(m_{t}\right)$. Thus, by (a), either
$\alpha_{t} \subseteq \operatorname{Ker}(f)$ or $\alpha_{u} \subseteq \operatorname{Ker}(f)$. If $\alpha_{t} \subseteq \operatorname{Ker}(f)$ then from $f\left(1_{t}\right) \geq f\left(0_{u}\right)$ and $0_{t} \wedge 0_{u}=0$ we get $f\left(0_{u}\right)=f\left(1_{t}\right) \wedge f\left(0_{u}\right)=f\left(0_{t}\right) \wedge f\left(0_{u}\right)=0$ and, by (a), $\alpha_{u} \subseteq \operatorname{Ker}(f)$. Using (a) for the case when $\alpha_{u} \subseteq \operatorname{Ker}(f)$, we conclude that
(c) $\alpha_{v} \subseteq \operatorname{Ker}(f)$ implies $\alpha_{u} \vee \alpha_{t} \subseteq \operatorname{Ker}(f)$.

Next we show that
(d) $\alpha_{w} \subseteq \operatorname{Ker}(f)$ implies $\alpha_{v} \vee \alpha_{u} \vee \alpha_{t} \subseteq \operatorname{Ker}(f)$.

Indeed, if $\alpha_{w} \subseteq \operatorname{Ker}(f)$, then from $0_{v} \leq 1_{w}$ and $1_{t}=0_{v} \wedge 0_{w}$ it follows that $f\left(0_{v}\right)=f\left(1_{t}\right)$ and, by (a), either $\alpha_{v} \subseteq \operatorname{Ker}(f)$ or $\alpha_{t} \subseteq \operatorname{Ker}(f)$. In the first case the conclusion of (d) follows from (c), so let us assume that $\alpha_{w} \vee \alpha_{t} \subseteq \operatorname{Ker}(f)$. We have $m_{v}=1_{w} \wedge 1_{v} \in M^{(v)}$ and $m_{u}=0_{t} \vee 0_{u} \in M^{(u)}$. Since $0_{w} \wedge 1_{v}=1_{t} \vee 0_{u}$ in L_{1} we obtain $f\left(m_{v}\right)=f\left(0_{w} \wedge 1_{v}\right)=f\left(1_{t} \vee 0_{u}\right)=$ $f\left(m_{u}\right)$ and, by (a), it follows that $\alpha_{v} \subseteq \operatorname{Ker}(f)$ or $\alpha_{u} \subseteq \operatorname{Ker}(f)$. The first case is covered by (c), in the second case from $0=0_{t} \wedge 0_{u}, 0_{t} \leq 1_{u}$ and $\alpha_{u} \subseteq \operatorname{Ker}(f)$ it follows that $f\left(0_{t}\right)=f(0)=0$ and from $0_{v}=v \wedge 1_{w}$, $1_{t}=v \wedge 0_{w}$ and $\alpha_{t} \vee \alpha_{w} \subseteq \operatorname{Ker}(f)$ it follows that $f\left(0_{v}\right)=f\left(1_{t}\right)=f\left(0_{t}\right)=0$, and (a) completes the proof of (d).

Now we apply these four properties as follows.
If $\alpha_{w} \subseteq \operatorname{Ker}(f)$, then $f(z)=0$ follows by (d), and hence f satisfies (2) or (3). In the remainder of the proof we thus assume that f is one-to-one on $M^{(w)}$.

CASE 1: f does not collapse $M^{(t)}$. Then f is one-to-one on all sublattices $M^{(r)}$ of L_{1} with $r \in\{t, u, v, w\}$ (see (b) and (c)). Since $0_{t} \wedge 0_{u}=0$ and $0_{t} \leq 1_{u}$ and t, u are the only elements of L_{0} with these properties, it follows that $f\left(0_{t}\right)=0_{t}, f\left(0_{u}\right)=0_{u}$ and $f\left(1_{t}\right)=1_{t}, f\left(1_{u}\right)=1_{u}$. From $0_{v} \wedge 1_{u} \leq 1_{t}$ and $0_{u} \leq 1_{v}$ we then obtain $f\left(0_{v}\right) \wedge 1_{u} \leq 1_{t}$ and $0_{u} \leq f\left(1_{v}\right)$, and $f\left(0_{v}\right)=0_{v}$ and $f\left(1_{v}\right)=1_{v}$ follow. But then $f(z)=f\left(1_{u}\right) \vee f\left(1_{v}\right)=z$. Next we note that $0_{w} \wedge 0_{v}=1_{t}$ implies that $f\left(0_{w}\right) \wedge 0_{v}=1_{t}$, so that $f\left(0_{w}\right)=0_{w}$ and $f\left(1_{w}\right)=1_{w}$. Thus $f(y)=f\left(1_{v} \vee 0_{w}\right)=y$ and $f\left(y \vee 1_{w}\right)=$ $y \vee 1_{w}$, and thus f is the inclusion on the sublattice $B \subseteq L_{1}$ generated by y, z and the extremal elements of the four copies of M_{3} in L_{1}. In both L_{1} and L_{0}, the doubly irreducible element p is the unique complement of $1_{u} \wedge 1_{v} \in B$ in the interval $\left[0_{t}, 1_{v}\right]$, and hence $f(p)=p$. Similarly, q is the unique complement of $1_{v} \wedge 1_{w} \in B$ in the interval $\left[0_{u}, 1_{w}\right]$, and hence $f(q)=q$. But then f is the inclusion map on the distributive sublattice $\left(y \vee 1_{w}\right] \backslash\{t, u, v, w\}$ of L_{1} generated by $B \cup\{p, q\}$, and it follows that the restriction of f to $\left(y \vee 1_{w}\right.$] is the inclusion map. For the element x we have $f(x) \geq f(y)=y$, and from $x \wedge w=0_{w}$ it follows that $f(x) \wedge w=0_{w}$. Hence $f(x) \in\{x, y\}$. If $f(x)=y$, then the interval $[f(z), f(x)]=[z, y]$ has two elements, and hence (3) holds. If $f(x)=x$, then f is the inclusion map, that is, (1) holds.

CASE 2: f collapses $M^{(t)}$ (but not $\left.M^{(w)}\right)$. Thus f satisfies neither (1) nor (2). Arguing indirectly, we suppose that there is a copy $M(f)$ of M_{3} isomorphic to a $(0,1)$-sublattice of the interval $[f(z), f(x)] \subseteq L_{0}$. We also note that any interval $[a, b] \subseteq L_{0}$ containing a $(0,1)$-copy of M_{3} is, in fact, isomorphic to M_{3}.

CASE 2.1: $f(z)=f(y)$. Noting that $z \wedge 0_{w}=1_{t} \vee 1_{u}, y \geq 0_{w}$ and $0_{t} \leq 1_{u}$ we obtain $f\left(0_{w}\right)=f(y) \wedge f\left(0_{w}\right)=f\left(0_{t}\right) \vee f\left(1_{u}\right)=f\left(1_{u}\right)$ because $f\left(0_{t}\right)=f\left(1_{t}\right)$. Since f is one-to-one on $M^{(w)}$, (a) implies that $\alpha_{u} \subseteq \operatorname{Ker}(f)$. Thus $f\left(0_{w}\right)=f\left(0_{u}\right)$ and $f\left(1_{t}\right)=f\left(0_{t}\right)=f\left(0_{t} \wedge 1_{u}\right)=f\left(0_{t}\right) \wedge f\left(0_{u}\right)=$ $f(0)=0$. Also, since $f(y)=f(z)$, from $1_{u} \vee 1_{v}=z$ and $0_{u} \leq 1_{v}$ we obtain $f(y)=f\left(1_{v}\right)$. But then $f\left(y \wedge 1_{w}\right)=f\left(1_{v} \wedge 1_{w}\right) \in f\left(M^{(w)}\right) \cap f\left(M^{(v)}\right)$, and hence $f\left(0_{v}\right)=f\left(1_{v}\right)$, by (a). From $0_{u} \leq 1_{v}$ and $0_{u} \wedge 0_{v} \leq 1_{t}$ it then follows that $f\left(0_{w}\right)=f\left(0_{u}\right)=f\left(0_{u} \wedge 0_{v}\right) \leq f\left(1_{t}\right)=0$. This is a contradiction to (a). Therefore this case cannot occur.

CASE 2.2: $f(z)<f(y)$. First we show that $\operatorname{Ker}(f) \subseteq \alpha_{t} \vee \theta(x, y)$. Indeed, should $\alpha_{v} \subseteq \operatorname{Ker}(f)$, then $f\left(0_{v} \vee 0_{w}\right)=f\left(1_{v} \vee 0_{w}\right) \in M(f) \cap f\left(M^{(w)}\right)$, contrary to (a). Thus f is one-to-one also on $M^{(v)}$. Similarly, if $\alpha_{u} \subseteq \operatorname{Ker}(f)$, then the contradictory $M(f) \cap f\left(M^{(v)}\right) \neq \emptyset$ results. Therefore f is one-to-one on each $M^{(r)}$ with $r \in\{u, v, w\}$ and hence $\operatorname{Ker}(f) \subseteq \alpha_{t} \vee \theta(x, y)$, as claimed. Next, from $z=1_{u} \vee 1_{v}$ it follows that $f(z)=f\left(1_{u}\right) \vee f\left(1_{v}\right)$, that is, the zero of $M(f)$ is the join of the units $f\left(1_{u}\right)$ and $f\left(1_{v}\right)$ of the lattices $f\left(M^{(u)}\right)$ and $f\left(M^{(v)}\right)$ isomorphic to M_{3}. But this occurs in L_{0} only when $f(z)=z$, and from $1_{v} \geq 0_{u}$ and $1_{u} \nsupseteq 0_{v}$ it follows that $f\left(1_{u}\right)=1_{u}$ and $f\left(1_{v}\right)=1_{v}$. Thus $f\left(0_{u}\right)=0_{u}$ and $f\left(0_{v}\right)=0_{v}$ as well. And $f\left(1_{w}\right)=1_{w}$ and $f\left(0_{w}\right)=0_{w}$ because $0_{v} \vee 1_{u} \leq 1_{w}$. But then $f\left(0_{t}\right)=f\left(1_{t}\right)=f\left(0_{v} \wedge 0_{w}\right)=0_{v} \wedge 0_{w}=1_{t}$ and hence $f(0)=f\left(0_{t} \wedge 0_{u}\right)=1_{t} \wedge 0_{u}>0$, a contradiction. Therefore any lattice 0 -homomorphism $f: L_{1} \rightarrow L_{0}$ collapsing $M^{(t)}$ but not $M^{(w)}$ satisfies (3).

Now let L_{2} be the (0,1)-lattice in Figure 4 and let L_{3} be the $(0,1)$ sublattice of $L_{2} \times L_{2}$ consisting of all $(x, y) \in L_{2} \times L_{2}$ such that $x=0$ or $y=1$. Thus both the ideal $((0,1)]$ and the filter $[(0,1))$ of L_{3} are isomorphic to L_{2} and $L_{3}=((0,1)] \cup[(0,1))$.

Lemma 1.4. Let $f: L_{i} \rightarrow L_{0}$ be a lattice homomorphism for $i=2,3$. Then $\operatorname{Im}(f)$ is either a singleton or an interval of L_{0} isomorphic to M_{3}.

Proof. Consider a lattice homomorphism $f: L_{2} \rightarrow L_{0}$. Observe that the interval $\left[u_{0}, u_{1}\right]$ in L_{2} is subdirect in $\left(M_{3}\right)^{6}$, that $\left[u_{0}, u_{1}\right] / \varrho$ is isomorphic to M_{3} for any coatom congruence ϱ of the interval $\left[u_{0}, u_{1}\right.$], and that if σ is a congruence of the interval $\left[u_{0}, u_{1}\right]$ other than the universal congruence or any coatom congruence, then $\left[u_{0}, u_{1}\right] / \sigma$ contains two distinct copies of M_{3} that intersect. Any two distinct sublattices of L_{0} isomorphic to M_{3} are

Fig 4. The lattice L_{2}
disjoint, however, and it follows that the restriction of $\operatorname{Ker}(f)$ to the interval [u_{0}, u_{1}] is either its coatom congruence (with $f\left[u_{0}, u_{1}\right] \cong M_{3}$) or the universal congruence. By symmetry, the same conclusion holds for the interval $\left[v_{0}, v_{1}\right]$ of L_{2}. Since $\left[u_{0}, u_{1}\right] \cap\left[v_{0}, v_{1}\right]=\left\{u_{1} \wedge v_{1}\right\}$, and because distinct copies of M_{3} are disjoint in L_{0}, it follows that $\operatorname{Ker}(f)$ is the universal congruence on at least one of these intervals. If $f\left(u_{0}\right)=f\left(u_{1}\right)$ then $\operatorname{Im}(f)=f\left(\left[v_{0}, v_{1}\right]\right)$, and if $f\left(v_{0}\right)=f\left(v_{1}\right)$ then $\operatorname{Im}(f)=f\left(\left[u_{0}, u_{1}\right]\right)$. Hence $\operatorname{Im}(f)$ is either a sublattice of L_{0} isomorphic to M_{3} or a singleton, and the claim holds for L_{2}.

Now let $f: L_{3} \rightarrow L_{0}$ be a lattice homomorphism. Since $L_{3}=\left(\{0\} \times L_{2}\right)$ $\cup\left(L_{2} \times\{1\}\right)$, the claim for L_{2} implies that $f\left(\{0\} \times L_{2}\right)$ and $f\left(L_{2} \times\{1\}\right)$ are either singletons or sublattices isomorphic to M_{3}. But $(0,1) \in\left(\{0\} \times L_{2}\right) \cap$ $\left(L_{2} \times\{1\}\right)$, and hence $f\left(\{0\} \times L_{2}\right)$ or $f\left(L_{2} \times\{1\}\right)$ is a singleton, and the claim holds for L_{3} as well.

Now we show how the present and certain earlier results combine to give the almost $f f$-universality of $\operatorname{Var}_{0}\left(M_{3}\right)$.

In [5], Goralčík et al. presented an $f f$-universal category \mathbb{C} and a finite-to-finite full embedding $F: \mathbb{C} \rightarrow \mathbb{L}$ such that
(1) for every \mathbb{C}-object C there is a separating family

$$
\Sigma_{C} \subseteq \operatorname{hom}_{0,1}\left(F C, M_{3}\right)
$$

(2) there exists an injective lattice (0,1)-homomorphism $\lambda_{C}: L_{3} \rightarrow F C$ for every \mathbb{C}-object C.

Property (1) just says that every $F C$ is a subdirect power of the lattice M_{3}. For the sake of completeness, we recall that the lattice L_{2} is denoted as $L_{\emptyset, \emptyset}$ in [5], that Statement 4.6 in [5] gives an injective homomorphism from $L_{\emptyset, \emptyset}$ into $L_{\delta, \varepsilon}$ for all $\delta, \varepsilon \subseteq 4$, and that Lemma 5.1 in [5] gives an injective lattice $(0,1)$-homomorphism from $\left(\{0\} \times L_{\delta, \varepsilon}\right) \cup\left(L_{\delta, \varepsilon} \times\{1\}\right)$ into $F C$. This establishes (2).

In [6], where the functor $F: \mathbb{C} \rightarrow \operatorname{Var}_{0,1}\left(M_{3}\right)$ was also used, it was shown that
(3) for every \mathbb{C}-object C there exists an element $a_{C} \in F C$ such that $F h\left(a_{C}\right)=a_{C^{\prime}}$ for every \mathbb{C}-morphism $h: C \rightarrow C^{\prime}$, and $f\left(a_{C}\right)=b \in$ $M_{3} \backslash\{0,1\}$ for every $f \in \Sigma_{C}$.
By (3), the functor F is pointed. Choose $A=M_{3}$ and $B=\{b\}$ as in (3). Then condition (c0) follows from (1) and (3). For the full subcategory \mathbb{K} of $\operatorname{Var}_{0}\left(M_{3}\right)$ determined by its (0,1)-lattices, conditions (c1) and (c2) are satisfied by Lemma 1.1 and (3). To prove (c3), let $k: L_{1} \rightarrow L_{0}$ be a 0-homomorphism, and let h be a $(0,1)$-homomorphism from $F C$ to the interval $[k(0, d), k(1, d)]$ of L_{0}. For the $(0,1)$-homomorphism λ_{C} from (2), the composite $\gamma=h \circ \lambda_{C}$ is a $(0,1)$-homomorphism from L_{3} to $[k(0, d), k(1, d)]$ whose image $\operatorname{Im}(\gamma)$ is either a singleton or it is isomorphic to M_{3}, by Lemma 1.4. But Lemma 1.3 then implies that k is either a constant or the inclusion map $\omega_{b} * 1$. This proves (c3). By Lemma 1.2, the functor $F * Q: \mathbb{C} \rightarrow \mathbb{K}$ is an almost full embedding, and since Q is finite, $F * Q$ preserves finiteness. Since \mathbb{C} is $f f$-universal, this completes the proof of the theorem below.

Theorem 1.5. The variety $\operatorname{Var}_{0}\left(M_{3}\right)$ is almost ff-universal.
REmark 1.6. Since the variety \mathbb{D}_{0} of distributive 0 -lattices is the only nontrivial variety of modular 0-lattices not containing $\operatorname{Var}_{0}\left(M_{3}\right)$ and because for any $D \in \mathbb{D}_{0}$ and any $x \in D \backslash\{0\}$ there is an endomorphism f_{x} of D with $\operatorname{Im}\left(f_{x}\right)=\{0, x\}$, the variety \mathbb{D}_{0} is not almost universal. Thus, in fact, Theorem 1.5 characterizes almost universal varieties of modular 0-lattices.
2. Q-universality. For a set S of algebras of the same similarity type, let $\mathbf{Q} S$ denote the smallest quasivariety containing S.

For a collection $\mathcal{A}=\left\{A_{W} \mid W \subseteq \mathbb{N}\right.$ finite $\}$ of finite algebras of a given finite similarity type, we consider the following four conditions, in which X, Y and Z denote finite subsets of \mathbb{N}.
$(\mathrm{P} 1) A_{\emptyset}$ is a singleton algebra;
(P2) if $X=Y \cup Z$, then $A_{X} \in \mathbf{Q}\left\{A_{Y}, A_{Z}\right\}$;
(P3) if $X \neq \emptyset$ and $A_{X} \in \mathbf{Q}\left\{A_{Y}\right\}$, then $X=Y$;
(P4) if $B, C \in \mathbf{Q} \mathcal{A}$ are finite algebras and if A_{X} is a subalgebra of $B \times C$, then there exist Y and Z such that $A_{Y} \in \mathbf{Q}\{B\}, A_{Z} \in \mathbf{Q}\{C\}$ and $X=Y \cup Z$.

In [4] and in [2] it was shown that any quasivariety \mathbf{K} of a finite type containing a collection \mathcal{A} of finite algebras satisfying (P 1)-(P 4) has various other properties that imply Q-universality. The reader is referred to [2] for a review of these properties. We aim to prove the Q-universality of $\operatorname{Var}_{0}\left(M_{3}\right)$ by constructing an infinite set \mathcal{A} of its finite members satisfying conditions (P1)-(P4).

For a positive integer n, let C_{n} denote the chain $0<1<\ldots<n$ of length n, and recall that $n=\{0,1, \ldots, n-1\}$. We say that $A \subseteq n \times n$ is a permutation set if $A=\{(i, \phi(i)) \mid i \in n\}$ for some permutation $\phi: n \rightarrow n$. In other words, for every $i \in n$ there is a unique $j \in n$ such that $(i, j) \in A$, and for every $j \in n$ there is a unique $i \in n$ such that $(i, j) \in A$.

For a permutation set $A \subseteq n \times n$, let $L(n, A)$ be the disjoint extension of the lattice $C_{n} \times C_{n}$ by the set $\left\{u_{i, j} \mid(i, j) \in A\right\}$, with the least partial order in which
(d) $(i, j)<u_{i, j}<(i+1, j+1)$ for every $(i, j) \in A$.

Then $L(n, A) \in \operatorname{Var}\left(M_{3}\right)$ is a lattice, and we call it a permutation lattice (for an example of such a lattice, see Figure 1). It is clear that each interval

$$
M(i, j)=\left\{(i, j),(i+1, j), u_{i, j},(i, j+1),(i+1, j+1)\right\}
$$

of $L(n, A)$ with $(i, j) \in A$ is isomorphic to M_{3} and that $L(n, A)$ contains no other copies of M_{3}. For the permutation set A^{-1} given by the permutation inverse to that defining A, it is clear that the map $(i, j) \mapsto(j, i)$ determines a unique isomorphism of $L(n, A)$ onto $L\left(n, A^{-1}\right)$.

For $(p, q) \in A$, let $\alpha(p, q)$ denote the equivalence on $L(n, A)$ whose nonsingleton classes are all doubletons $\{(i, q),(i, q+1)\}$ with $i \notin\{p, p+1\}$, all doubletons $\{(p, j),(p+1, j)\}$ with $j \notin\{q, q+1\}$ and the interval $[(p, q)$, $(p+1, q+1)$] isomorphic to M_{3}. The restriction of $\alpha(p, q)$ to the $(0,1)$-sublattice $C_{n} \times C_{n}$ of $L(n, A)$ is thus the congruence $\theta(p, p+1) \times \theta(q, q+1)$ of $C_{n} \times C_{n}$. Since all elements $u_{i, j}$ with $(i, j) \in A$ are doubly irreducible, the equivalence $\alpha(p, q)$ is a congruence of $L(n, A)$.

Further, for $(p, q) \in A$, let $\pi(p, q)$ denote the equivalence on $L(n, A)$ whose classes are the intervals $(p] \times(q],(p] \times[q+1),[p+1) \times(q],[p+1) \times$ $[q+1)$ of $L(n, A)$ and the singleton $\left\{u_{p, q}\right\}$. It is easily seen that $\pi(p, q)$ is a congruence and that $L(n, A) / \pi(p, q) \cong M_{3}$.

Lemma 2.1. The congruence lattice of $L(n, A)$ is Boolean. Its atoms are the n congruences $\alpha(p, q)$ associated with the elements $(p, q) \in A$. The congruence $\pi(p, q)$ is complementary to $\alpha(p, q)$ for each $(p, q) \in A$.

Proof. The congruence $\pi(p, q)$ is a coatom because $L(n, A) / \pi(p, q) \cong M_{3}$ is simple. It is easy to see that $\alpha(p, q)$ is the complement of $\pi(p, q)$, so that $\alpha(p, q)$ is an atom for every $(p, q) \in A$. If $(p, q),\left(p^{\prime}, q^{\prime}\right) \in A$ are distinct then $\alpha(p, q) \neq \alpha\left(p^{\prime}, q^{\prime}\right)$ and hence $\alpha(p, q) \wedge \alpha\left(p^{\prime}, q^{\prime}\right)$ is the diagonal congruence. Since the join of all $\alpha(p, q)$ with $(p, q) \in A$ is the total congruence, no other atoms exist.

Lemma 2.2. Let $L(n, A)$ and $L(m, B)$ be permutation lattices. Then
(1) for any congruence θ, the quotient $L(n, A) / \theta$ is isomorphic to a permutation lattice $L(k, C)$ with $k \leq n$; there are surjective homomorphisms $g, h: C_{n} \rightarrow C_{k}$ and a surjective homomorphism $f:$ $L(n, A) \rightarrow L(k, C)$ with $\operatorname{Ker}(f)=\theta$ such that $f(i, j)=(g(i), h(j))$ for all $(i, j) \in C_{n}^{2}$, and for any $(p, q) \in A$ either $\alpha(p, q) \subseteq \theta$ (and hence $f(M(p, q))=\{f(p, q)\}, g(p+1)=g(p)$ and $h(q+1)=h(q))$, or else $\theta \subseteq \pi(p, q)$ and $g(p+1)=g(p)+1, h(q+1)=h(q)+1$, $(g(p), h(q)) \in C$ and $f\left(u_{p, q}\right)=u_{g(p), h(q)}$; furthermore,
(1a) for each $\left(p^{\prime}, q^{\prime}\right) \in C$ there is a unique $(p, q) \in A$ such that

$$
f(M(p, q))=M\left(p^{\prime}, q^{\prime}\right)
$$

(2) if $L(k, C)$ is a permutation lattice with $k>1$ and if $e: L(k, C) \rightarrow$ $L(m, B)$ is an injective 0 -homomorphism, then $k \leq m$ and $\operatorname{Im}(e)=$ $((k, k)]$; there is an injective 0-homomorphism

$$
\tilde{e}: L(k, C) \rightarrow L(m, B)
$$

such that $\operatorname{Im}(\tilde{e})=\operatorname{Im}(e)$, and either $\tilde{e}(i, j)=(i, j)$ for all $(i, j) \in C_{k}^{2}$ and $C \subseteq B$, or else $\tilde{e}(i, j)=(j, i)$ for all $(i, j) \in C_{k}^{2}$ and $C^{-1} \subseteq B$.

Proof. First we prove (1). Let $t: L(n, A) \rightarrow L(n, A) / \theta$ be a surjective homomorphism with $\operatorname{Ker}(t)=\theta$. According to Lemma 2.1, there is a subset $A^{\prime}=\{(p, q) \mid \theta \subseteq \pi(p, q)\}=\{(p, q) \mid \alpha(p, q) \nsubseteq \theta\}$ of A for which

$$
\theta=\bigwedge\left\{\pi(p, q) \mid(p, q) \in A^{\prime}\right\}=\bigvee\left\{\alpha(p, q) \mid(p, q) \in A \backslash A^{\prime}\right\}
$$

For any $(p, q) \in A \backslash A^{\prime}$, the restriction of $\alpha(p, q)$ to the sublattice C_{n}^{2} of $L(n, A)$ is the product congruence $\theta(p, p+1) \times \theta(q, q+1)$. For the congruences $\sigma=\bigvee\left\{\theta(p, p+1) \mid(p, q) \in A \backslash A^{\prime}\right\}$ and $\tau=\bigvee\{\theta(q, q+1) \mid$ $\left.(p, q) \in A \backslash A^{\prime}\right\}$ on C_{n} let $g: C_{n} \rightarrow C_{n} / \sigma$ and $h: C_{n} \rightarrow C_{n} / \tau$ be the corresponding surjective homomorphisms. Then $C_{n} / \sigma \cong C_{n} / \tau \cong C_{k}$ for $k=\left|A^{\prime}\right|$. Writing $C_{n} / \sigma=C_{n} / \tau=C_{k}$, we then conclude that $g(i+1)$ $\in\{g(i), g(i)+1\}$ and $h(j+1) \in\{h(j), h(j)+1\}$ for any $i, j \in C_{n}$, and that $g(i+1)=g(i)+1$ and $h(j+1)=h(j)+1$ if and only if $(i, j) \in A^{\prime}$. It also follows that there is an injective homomorphism $d: C_{k}^{2} \rightarrow L(n, A) / \theta$ such that $t(i, j)=d(g(i), h(j))$ for all $(i, j) \in C_{n}^{2} \subseteq L(n, A)$. Now if $(i, j) \in A^{\prime}$,
then $\theta \subseteq \pi(i, j)$, and hence t is injective on $M(i, j)$. Since t is surjective, the copy $t(M(i, j))$ of M_{3} is an interval in $L(n, A) / \theta$, and $g(i+1)=$ $g(i)+1$ and $h(j+1)=h(j)+1$. Define $C=\left\{(g(i), h(j)) \mid(i, j) \in A^{\prime}\right\}$. If $(i, j),\left(i^{\prime}, j^{\prime}\right) \in A^{\prime}$ are distinct then $g(i) \neq g\left(i^{\prime}\right)$ and $h(j) \neq h\left(j^{\prime}\right)$, and hence C is a permutation set. For each $(i, j) \in A^{\prime}$, add a new element $u_{g(i), h(j)}$ satisfying $(g(i), h(j))<u_{g(i), h(j)}<(g(i)+1, h(j)+1)$ to the lattice $C_{k}^{2}=(g \times h)\left(C_{n}^{2}\right)$, thereby obtaining a permutation lattice $L(k, C)$. Extending d to all of $L(k, C)$ by setting $d\left(u_{g(i), h(j)}\right)=t\left(u_{i, j}\right)$ for each $(i, j) \in A^{\prime}$ gives rise to an isomorphism $d: L(k, C) \rightarrow L(n, A) / \theta$. To complete the proof of (1), we set $f=d^{-1} \circ t$.

Claim (1a) follows from the fact that, for each $(p, q) \in A^{\prime}$, the singleton $\left\{u_{p, q}\right\}$ is a class of the coatom congruence $\pi(p, q)$.

We turn to (2). First we observe that nonzero elements of $L(m, B)$ meet the zero element $(0,0)$ only when one of them lies in $((m, 0)] \cup\left\{u_{p, 0}\right\}$ and the other in $((0, m)] \cup\left\{u_{0, q}\right\}$ for some $(p, 0),(0, q) \in B$. And we have $e(k, 0) \wedge e(0, k)=(0,0)$, of course.

CASE A. Suppose that $e(k, 0) \in((m, 0)] \cup\left\{u_{p, 0}\right\}$ and $e(0, k) \in((0, m)] \cup$ $\left\{u_{0, q}\right\}$. Then $k \leq m$, and $e(k-1,0) \leq(m-1,0), e(0, k-1) \leq(0, m-1)$ because e is injective and $(p, 0)$ (resp. $(0, q))$ is the only element of $L(m, B)$ covered by $u_{p, 0}$ (resp. by $u_{0, q}$). For any $i \leq k-1$, define g and h by $e(i, 0)=$ $(g(i), 0)$ and $e(0, i)=(0, h(i))$. The maps g and h defined, so far, for $i \leq k-1$ are injective, and $e(i, j)=(g(i), h(j))$ for $i, j \leq k-1$.

Let $i \leq k-2$. Then $(i, j) \in C$ for some $j \leq k-1$. Since e is injective, the sublattice $e(M(i, j))$ of $L(m, B)$ isomorphic to M_{3} is the interval $[e(i, j)$, $e(i+1, j+1)]$. Thus $(g(i), h(j))=e(i, j) \in B$ and hence $g(i+1)=g(i)+1$. From $g(0)=0$ it now follows that $g(i)=i$ for each $i \leq k-1$. Together with a similar argument for the other component, this shows that

$$
\begin{equation*}
e(i, j)=(i, j) \quad \text { for all } i, j \leq k-1 \tag{1,1}
\end{equation*}
$$

A.1. Suppose that $e(k, 0) \leq(m, 0)$. We have $(k-1, q) \in C$ for some $q \leq k-1$ and hence $e(k-1, q)=(k-1, q)$, by (1,1). Thus $(k-1, q) \in B$, and the sublattice $e(M(k-1, q))$ of $L(m, B)$ isomorphic to M_{3} is the interval $[(k-1, q),(k, q+1)]$, so that $e(k, q+1)=(k, q+1)$. But then $e(k, 0)=(k, 0)$ and, from $(1,1)$,

$$
\begin{equation*}
e(i, j)=(i, j) \quad \text { for all } i \leq k \text { and } j \leq k-1 \tag{0,1}
\end{equation*}
$$

A.2. Similarly we find that $e(0, k) \leq(0, m)$ implies that

$$
\begin{equation*}
e(i, j)=(i, j) \quad \text { for all } i \leq k-1 \text { and } j \leq k \tag{1,0}
\end{equation*}
$$

A.3. Suppose that $e(k, 0) \not \leq(m, 0)$, that is, let $e(k, 0)=u_{k-1,0}$. By $(1,1)$, for the element $(i, 0) \in C$ we have $(i, 0)=e(i, 0) \in B$, and hence $i=k-1$. We have $e(M(k-1,0))=M(k-1,0)$ and thus $e(k, 1)=(k, 1)$, and
$e(k-1,1)=(k-1,1), e(k-1,0)=(k-1,0)$ by $(1,1)$. Since $e(k, 0)=u_{k-1,0}$, it follows that $e\left(u_{k-1,0}\right)$ must be the remaining element $(k, 0)$ of the sublattice $e(M(k-1,0))=M(k-1,0)$ of $L(m, B)$. The mapping $\alpha_{1}: L(k, C) \rightarrow$ $L(k, C)$ exchanging $(k, 0)$ and $u_{k-1,0}$ and leaving all other elements fixed is an automorphism of $L(k, C)$, and the composite $e_{1}=e \circ \alpha_{1}$ satisfies $(0,1)$.
A.4. Suppose that $e(0, k) \not \leq(0, m)$. Then $e(0, k)=u_{0, k-1}$. Similarly to A.3, for the automorphism α_{2} of $L(k, C)$ exchanging $(0, k)$ and $u_{0, k-1}$, the composite $e \circ \alpha_{2}$ satisfies $(1,0)$.

We have $\alpha_{2} \circ \alpha_{1}=\alpha_{1} \circ \alpha_{2}$ because $k>1$. Applying these automorphisms when needed, we obtain an embedding \tilde{e} with $\operatorname{Im}(\tilde{e})=\operatorname{Im}(e)$ and $\tilde{e}(i, j)=$ (i, j) for all $i, j \leq k$.

CASE B. If $e(k, 0) \in((0, m)] \cup\left\{u_{0, q}\right\}$ and $e(0, k) \in((m, 0)] \cup\left\{u_{p, 0}\right\}$, we apply the previous argument to the map e^{*} given by $e^{*}(x, y)=e(y, x)$.

Let $m \geq 1$. An interval $[(i, j),(i+m, j+m)]$ of a lattice L is called its (i, j, m)-block if it is isomorphic to some permutation lattice $L(m, B)$. Thus the interval $[(i, j),(i+m, j+m)]$ of a permutation lattice $L(n, A)$ is its (i, j, m)-block if and only if for any $p \in\{i, \ldots, i+m-1\}$ there is $q \in\{j, \ldots, j+m-1\}$ with $(p, q) \in A$ and vice versa. Thus the $(i, j, 1)$-blocks of $L(n, A)$ are exactly its intervals $M(i, j)$ with $(i, j) \in A$.

We say that a 0-homomorphism $s: L(n, A) \rightarrow L(m, B)$ is standard if $s\left(C_{n}^{2}\right) \subseteq C_{m}^{2}$. By Lemma 2.2, the restriction of s to $C_{n}^{2} \subset L(n, A)$ has the form $s(i, j)=(g(i), h(j))$ or $s(i, j)=(h(j), g(i))$ for some surjective maps $g, h: C_{n} \rightarrow C_{k}$ with $k \leq m, n$.

Corollary 2.3. Let $f: L(n, A) \rightarrow L(m, B)$ be a nonconstant 0 -homomorphism. Then
(1) $\operatorname{Im}(f)$ is a ($0,0, k$)-block for some $k \leq m, n$;
(2) if $L(m, B)$ has no $(0,0, k)$-block with $k<m$ then f is surjective;
(3) there is a standard 0-homomorphism $s: L(n, A) \rightarrow L(m, B)$ such that $\operatorname{Ker}(s)=\operatorname{Ker}(f)$ and $\operatorname{Im}(s)=\operatorname{Im}(f)$; if $s(i, j)=(g(i), h(j))$ for all $(i, j) \in C_{n}^{2}$ we say that f is direct and if $s(i, j)=(h(j), g(i))$ we say that f is reversing;
(4) for any (i, j, q)-block Q, if f is direct then $f(Q)=\{(g(i), h(j))\}$ or $f(Q)$ is a $(g(i), h(j), k)$-block for $k=g(i+q)-g(i)=h(j+q)-h(j) \leq$ q; and if f is reversing then $f(Q)=\{(h(j), g(i))\}$ or $f(Q)$ is an $(h(j), g(i), k)$-block for $k=g(i+q)-g(i)=h(j+q)-h(j) \leq q$.

Thus if $f: L(n, A) \rightarrow L(m, B)$ is a 0 -homomorphism, then $\operatorname{Im}(f)=$ $((k, k)]$ for some $k \leq m, n$ and f is standard whenever $(0, k-1),(k-1,0) \notin B$.

Next we define specific permutation lattices $L(i)=L(n(i), A(i))$ with $i=0,1, \ldots$

We set $n(i)=3 i+9$ for every $i \geq 0$, and let $A(i)$ consist of the pairs
(1) $(3 k, 3 k+2)$ and $(3 k+2,3 k)$ with $k \in\{0, \ldots, i+2\}$,
(2) $(3 k-2,3 k+1)$ with $k \in\{1, \ldots, i+2\}$,
(3) $(n(i)-2,1)$.

Lemma 2.4. If $i, j \geq 0$ and $f: L(i) \rightarrow L(j)$ is a nonconstant 0 -homomorphism, then $i=j$ and f is the identity mapping of $L(i)$.

Proof. First we show that the lattice $L(j)$ has no $(0,0, l)$-block with $l<n(j)$. There is no such block for $l \leq 2$ because $(0,2),(2,0) \in A(j)$. Since $(n(j)-2,1) \in A(j)$, there is no $(0,0, l)$-block with $3 \leq l \leq n(j)-2$. For $l=n(j)-1$, we have $l=3 j+8$ and $(3 j+6,3 j+8) \in A(j)$-and since $3 j+6<l$, this completes the proof that $L(j)$ has no proper $(0,0, l)$-blocks. Therefore $f: L(i) \rightarrow L(j)$ is surjective and standard, and $n(i) \geq n(j)$, by Corollary 2.3.

In this paragraph only, we say that sublattices $A, B \subseteq L(k)$ isomorphic to M_{3} form an independent pair if no element of A is comparable to any element of B. It is clear that sublattices $f(A), f(B) \subseteq L(j)$ form an independent pair only when $A, B \subseteq L(i)$ do. It is routine to verify that for any $(p, q) \neq(n(j)-$ $2,1)$ the sublattice $M(p, q) \subseteq L(j)$ belongs to at most two independent pairs, while $M(n(j)-2,1)$ forms an independent pair with every $M(r, s)$ other than those with $(r, s) \in\{(0,2),(2,0),(n(j)-3, n(j)-1),(n(j)-1, n(j)-3)\}$. Since $j \geq 9$, there are at least four independent pairs containing $M(n(j)-2,1) \subseteq$ $L(j)=\operatorname{Im}(f)$. Each $M(p, q) \subseteq L(i)$ with $(p, q) \neq(n(i)-2,1)$ belongs to at most two independent pairs, so that from Lemma 2.2 it follows that $f(M(n(i)-2,1))=M(n(j)-2,1)$, and since $n(j)-2>1$, the surjective homomorphism f is direct, that is, there are surjective maps $g, h: C_{n(i)} \rightarrow$ $C_{n(j)}$ such that $f(p, q)=(g(p), h(q))$ for all $p, q \in C_{n(i)}$. Clearly $g(n(i)-2)=$ $n(j)-2$ and $h(q)=q$ for $q \in\{0,1,2\}$.

If $M(r, s)$ is the sublattice of $L(i)$ for which $f(M(r, s))=M(2,0) \subseteq L(j)$ then $h(s)=0$, and $s=0$ follows because $h(1)=1$ and h preserves order. Thus $g(2)=2$ and $g(3)=3$, and hence $g(p)=p$ for $p \in\{0,1,2,3\}$. If $f(M(r, s))=M(0,2)$ then $r=0$ because $g(1)=1$ and g preserves order, and hence $h(q)=q$ for $q \in\{0,1,2,3\}$. Altogether $g(x)=h(x)=x$ for all $x \leq 3$.

Proceeding inductively from the initial claim that $g(x)=h(x)=x$ for all $x \leq 3$, we next suppose that $1 \leq k \leq j+2$ is such that $g(x)=h(x)=x$ for every $x \leq 3 k$. First we note that the sublattice $f(M(3 k-2,3 k+1))$ of $L(j)$ cannot be a singleton because $g(3 k-2)=3 k-2<3 k-1=g(3 k-1)$. Since $L(j)$ is a permutation lattice, we must have $f(M(3 k-2,3 k+1))=$ $M(3 k-2,3 k+1)$ and hence $h(3 k+1)=3 k+1$ and $h(3 k+2)=3 k+2$. Then f cannot collapse the sublattice $M(3 k+2,3 k) \subseteq L(i)$ and hence $g(3 k+2)=3 k+2$ and $g(3 k+3)=3 k+3$, that is, $g(x)=x$ for every
$x \leq 3(k+1)$. We thus have $f(M(r, s))=M(3 k, 3 k+2) \subseteq L(j)$ only for $(r, s)=(3 k, 3 k+2)$, and hence also $h(x)=x$ for all $x \leq 3(k+1)$. This induction shows that $g(x)=h(x)=x$ for all $x \leq 3 k$ with $1 \leq k \leq j+3$, that is, for all $x \leq n(j)$. Now if $n(j)<n(i)$ then $n(j)<n(i)-2$ and hence $n(j)=g(n(j)) \leq g(n(i)-2)$; but this contradicts the earlier found fact that $g(n(i)-2)=n(j)-2$. Therefore $i=j$ and $g=h$ is the identity map of C_{n}, and hence f is the identity endomorphism of $L(i)$, as was to be shown.

Next we use the lattices $L(j)=L(n(j), A(j))$ from Lemma 2.4 to build permutation lattices representing finite sets of natural numbers. Let $Y=$ $\left\{y_{0}, \ldots, y_{k-1}\right\}$ be a nonvoid subset of $\mathbb{N}=\{0,1, \ldots\}$ indexed in the ascending order, that is, let $y_{0}<y_{1}<\cdots<y_{k-1}$.

We define $m_{Y}^{0}=0$ and $m_{Y}^{p}=\sum_{i=0}^{p-1} n\left(y_{i}\right)$ for $p \in\{1, \ldots, k\}$, and write $m_{Y}=m_{Y}^{k}$. In the first step, a lattice $L\left(m_{Y}, C_{Y}\right)$ is defined as the permutation lattice whose interval $J_{p}=\left[\left(m_{Y}^{p}, m_{Y}^{p}\right),\left(m_{Y}^{p+1}, m_{Y}^{p+1}\right)\right]$ is isomorphic to the lattice $L\left(y_{p}\right)=L\left(n\left(y_{p}\right), A\left(y_{p}\right)\right)$ for each $p \in k$. Described formally, the set C_{Y} consists of all $(q, r) \in m_{Y} \times m_{Y}$ for which there exists $p \in k$ such that $m_{Y}^{p} \leq q, r<m_{Y}^{p+1}$ and $\left(q-m_{Y}^{p}, r-m_{Y}^{p}\right) \in L\left(y_{p}\right)$.

It is then clear that $(0,0, s)$-blocks of $L\left(m_{Y}, C_{Y}\right)$ are exactly those with $s=m_{Y}^{i}$ for some $i \leq k$, and the intervals $J_{p}=\left[\left(m_{Y}^{p}, m_{Y}^{p}\right),\left(m_{Y}^{p+1}, m_{Y}^{p+1}\right)\right]$ with $p \in k$ isomorphic to $L\left(y_{p}\right)$ are also blocks of $L\left(m_{Y}, C_{Y}\right)$. For each $p \in k$, define $\pi_{p}=\bigwedge\left\{\pi(q, r) \mid(q, r) \in J_{p} \cap C_{Y}\right\}$, and let α_{p} be the congruence of $L\left(m_{Y}, C_{Y}\right)$ complementary to π_{p}. Thus α_{p} is the least congruence collapsing the interval J_{p} for each $p \in k$. The lattice $L\left(m_{Y}, C_{Y}\right) / \pi_{p}$ is thus isomorphic to $L\left(y_{p}\right)$ for each $p \in k$, and $L\left(m_{Y}, C_{Y}\right)$ is a subdirect product of the lattices $L\left(y_{p}\right)$ with $p \in k$.

In the second step, we extend $L\left(m_{Y}, C_{Y}\right)$ to a permutation lattice $L\left[B_{Y}\right]$ $=L\left(m_{Y}+1, B_{Y}\right)$ by the requirement that $(q, r) \in B_{Y}$ iff either $(q-1, r) \in$ C_{Y} or $(q, r)=\left(0, m_{Y}\right)$. It is clear that $L\left[B_{Y}\right]$ is a permutation lattice which is subdirect in the product of $L\left(m_{Y}, C_{Y}\right)$ and a single copy of M_{3}.

Lemma 2.5. If $Y \subset \mathbb{N}$ is finite and nonvoid then
(1) $L\left[B_{Y}\right]$ has no proper $(0,0, q)$-block;
(2) $L\left[B_{Y}\right]$ has no $(0,1, q)$-block at all;
(3) the $(1,0, q)$-blocks of $L\left[B_{Y}\right]$ and the $(0,0, q)$-blocks of $L\left(m_{Y}, C_{Y}\right)$ are the same.

Lemma 2.6. For any i and Y, the only 0-homomorphism $f: L(i) \rightarrow$ $L\left[B_{Y}\right]$ is constant.

Proof. If $f: L(i) \rightarrow L\left[B_{Y}\right]$ is nonconstant, then it is surjective, by Corollary 2.3(2) and Lemma 2.5(1). Let $h_{p}: L\left[B_{Y}\right] \rightarrow L\left(y_{p}\right)$ be the surjective homomorphism with $\operatorname{Ker} h_{p}=\pi_{p} \vee \alpha\left(0, m_{Y}\right)$ for some $p \in k$. Then $h_{p} \circ f: L(i) \rightarrow L\left(y_{p}\right)$ is surjective, and hence $i=y_{p}$ and $h_{p} \circ f$ is the identity,
by Lemma 2.4. But then f is also injective, and it maps a proper subinterval of $L\left[B_{Y}\right]$ isomorphically onto $L\left[B_{Y}\right]$-a contradiction.

For a nonvoid subset Z of a finite $Y \subset \mathbb{N}$ define

$$
\pi_{Z}=\bigwedge\left\{\pi_{p} \mid y_{p} \in Z\right\}=\alpha\left(0, m_{Y}\right) \vee \bigvee\left\{\alpha_{q} \mid y_{q} \in Y \backslash Z\right\}
$$

where π_{p} and α_{q} are respectively the largest and the least extensions of the identically named congruences from the interval $L\left(m_{Y}, C_{Y}\right)$ to all of $L\left[B_{Y}\right]$. Thus $\pi_{p} \geq \alpha\left(0, m_{Y}\right)$ and $\alpha_{p} \wedge \alpha\left(0, m_{Y}\right)$ is the diagonal congruence for every $y_{p} \in Y$.

Proposition 2.7. If $Y=\left\{y_{0}, \ldots, y_{k-1}\right\}$ and $Z=\left\{z_{0}, \ldots, z_{l-1}\right\}$ are nonvoid subsets of \mathbb{N}, then
(1) there exists a nonconstant 0-homomorphism $L\left[B_{Y}\right] \rightarrow L\left[B_{Z}\right]$ only when $Z \subseteq Y$;
(2) if $Z \subseteq Y$ and $f: L\left[B_{Y}\right] \rightarrow L\left[B_{Z}\right]$ is a nonconstant 0 -homomorphism then f is direct and surjective, and $\operatorname{Ker}(f)=\pi_{Z} \wedge \pi\left(0, m_{Y}\right)$;
(3) if $Z, Z^{\prime} \subseteq Y$ are nonvoid, then $L\left[B_{Y}\right]$ is isomorphic to a sublattice of $L\left[B_{Z}\right] \times L\left[B_{Z^{\prime}}\right]$ if and only if $Y=Z \cup Z^{\prime}$.

Proof. Let $f: L\left[B_{Y}\right] \rightarrow L\left[B_{Z}\right]$ be a nonconstant 0-homomorphism. Then f is surjective, by Corollary $2.3(2)$ and Lemma $2.5(1)$. Since f is surjective and because only $(0,1)$ and $(1,0)$ are the atoms in $L\left[B_{Z}\right]$, we must have $f(1,0) \in\{(0,0),(1,0),\{0,1)\}$. If $f(1,0)=(0,1)$ then Corollary 2.3 and Lemma $2.5(2)(3)$ imply that $f\left(m_{Y}+1, m_{Y}\right)=(0,1)$, and thus $f\left(1, m_{Y}\right)=$ $(0,1)$. But then $f\left(0, m_{Y}\right) \leq(0,1)$, and from $f(1,0) \wedge f\left(0, m_{Y}\right)=(0,0)$ it follows that $f\left(0, m_{Y}\right)=(0,0)$. Since $\left(0, m_{Y}\right) \in B_{Y}$ and $(0,0) \notin B_{Z}$ we get the contradictory $(0,1)=f(1,0) \leq f\left(1, m_{Y}+1\right)=(0,0)$. Thus $f(1,0) \neq(0,1)$. Suppose that $f(1,0)=(0,0)$. Then f maps the $\left(1,0, m_{Y}\right)-$ block of $L\left[B_{Y}\right]$ isomorphic to $L\left(m_{Y}, C_{Y}\right)$ onto $L\left[B_{Z}\right]$, by Lemma 2.5(1) and Corollary 2.3(2); in particular, $f\left(m_{Y}+1, m_{Y}\right)=\left(m_{Z}+1, m_{Z}+1\right)$. On the other hand, by Lemma 2.6, the restriction of f to the $\left(1,0, m_{Y}^{1}\right)$-block of $L\left[B_{Y}\right]$ isomorphic to $L\left(y_{0}\right)$ must be constant, that is, $f\left(m_{Y}^{1}, m_{Y}^{1}+1\right)=(0,0)$. Then the restriction of f to the $\left(m_{Y}^{1}, m_{Y}^{1}+1, n\left(y_{1}\right)\right)$-block of $L\left(m_{Y}, C_{Y}\right)$ isomorphic to $L\left(y_{1}\right)$ preserves the zero, and hence must be constant by Lemma 2.6 again; and a simple inductive argument along these lines shows that $f\left(m_{Y}+1, m_{Y}\right)=(0,0)$, a contradiction. The only remaining possibility is that $f(1,0)=(1,0)$. Therefore f is direct.

There exists a unique $(r, s) \in B_{Y}$ such that $f(r, s)=\left(0, m_{Z}\right)$, and we cannot have $r>0$ because $f(1,0)=(1,0)$. Thus $f\left(0, m_{Y}\right)=\left(0, m_{Z}\right)$ and $f\left(1, m_{Y}+1\right)=\left(1, m_{Z}+1\right)$, and there are surjective $g, h: C_{m_{Y}+1} \rightarrow C_{m_{Z}+1}$ such that $f(i, j)=(g(i), h(j))$ for $i, j \in C_{m_{Y}+1}$. In particular, $h\left(m_{Y}\right)=m_{Z}$ and $g\left(m_{Y}+1\right)=h\left(m_{Y}+1\right)=m_{Z}+1$. Therefore $\operatorname{Ker}(f) \subseteq \pi\left(0, m_{Y}\right)$, and f is a direct 0 -homomorphism that maps the interval $\left[(1,0),\left(m_{Y}+1, m_{Y}\right)\right]$
of $L\left[B_{Y}\right]$ isomorphic to $L\left(m_{Y}, C_{Y}\right)$ onto the interval $\left[(1,0),\left(m_{Z}+1, m_{Z}\right)\right]$ isomorphic to $L\left(m_{Z}, C_{Z}\right)$. We shall now investigate the surjective domainrange restriction f^{\prime} of f to these intervals, temporarily setting $f^{\prime}(i, j)=$ $f(i+1, j)$ to simplify the notation.

Since the $(0,0, s)$-blocks of the lattice $L\left(m_{Y}, C_{Y}\right)$ are exactly those with $s=m_{Y}^{i+1}$ for some $i \in k$ and because $L\left(m_{Z}, C_{Z}\right)$ has a similar property, there is an order-preserving surjective mapping $\phi:(k+1) \rightarrow(l+1)$ such that $\phi(0)=0, \phi(k)=l$ and $f^{\prime}\left(m_{Y}^{i}, m_{Y}^{i}\right)=\left(m_{Z}^{\phi(i)}, m_{Z}^{\phi(i)}\right)$ for every $i \in k$.

Choose $z_{j} \in Z$ and select $\left(q^{\prime}, r^{\prime}\right) \in C_{Z}$ with $m_{Z}^{j}<q^{\prime}, r^{\prime}<m_{Z}^{j+1}$. By Lemma 2.2(1a) and the definitions of $L\left(z_{j}\right)$ and of $L\left(m_{Y}, C_{Y}\right)$, there is a unique $(q, r) \in C_{Y}$ such that $f^{\prime}(M(q, r))=M\left(q^{\prime}, r^{\prime}\right)$, and a unique $y_{i} \in Y$ such that $m_{Y}^{i}<q, r<m_{Y}^{i+1}$. Let $e_{i}: L\left(y_{i}\right) \rightarrow L\left(m_{Y}, C_{Y}\right)$ denote the isomorphism from $L\left(y_{i}\right)$ onto the interval $\left[\left(m_{Y}^{i}, m_{Y}^{i}\right),\left(m_{Y}^{i+1}, m_{Y}^{i+1}\right)\right]$ of $L\left(m_{Y}, C_{Y}\right)$, and let $p_{j}: L\left(m_{Z}, C_{Z}\right) \rightarrow L\left(z_{j}\right)$ be the surjective homomorphism with $\operatorname{Ker}\left(p_{j}\right)=\pi_{j}$. Since f^{\prime} is nonconstant on the image of e_{i} and π_{j} is the diagonal congruence on the interval $\left[\left(m_{Z}^{j}, m_{Z}^{j}\right),\left(m_{Z}^{j+1}, m_{Z}^{j+1}\right)\right]$ of $L\left(m_{Z}, C_{Z}\right)$, the composite $\gamma_{i, j}=p_{j} \circ f^{\prime} \circ e_{i}$ is nonconstant. In addition, $\left(m_{Z}^{\phi(i)}, m_{Z}^{\phi(i)}\right)=f^{\prime}\left(m_{Y}^{i}, m_{Y}^{i}\right) \leq f^{\prime}(q, r)=\left(q^{\prime}, r^{\prime}\right)$, so that $p_{j}\left(m_{Z}^{\phi(i)}, m_{Z}^{\phi(i)}\right)$ is the zero of $L\left(z_{j}\right)$. Thus $\gamma_{i, j}: L\left(y_{i}\right) \rightarrow L\left(z_{j}\right)$ is a nonconstant 0-homomorphism, and hence $y_{i}=z_{j}$ and $\gamma_{i, j}$ is the identity map, by Lemma 2.4. But then $Z \subseteq Y$, and (1) is proved.

Now if $\phi(i)<j$, then $\left(m_{Z}^{j}, m_{Z}^{j}\right)=f^{\prime}(u, v)$ for some (u, v) satisfying $\left(m_{Y}^{i}, m_{Y}^{i}\right)<(u, v)<(q, r)$, and hence $p_{j}\left(f^{\prime}(u, v)\right)$ is the zero of $L\left(z_{j}\right)$, contradicting the fact that $\gamma_{i, j}$ is the identity map. Therefore $\phi(i)=j$. We also know that $p_{j}\left(m_{Z}^{\phi(i+1)}, m_{Z}^{\phi(i+1)}\right)=p_{j}\left(f^{\prime}\left(m_{Y}^{i+1}, m_{Y}^{i+1}\right)\right)$ is the unit of $L\left(z_{j}\right)$. If $\phi(i+1)>j+1$ then there must be some (s, t) satisfying $(q, r)<$ $(s, t)<\left(m_{Y}^{i+1}, m_{Y}^{i+1}\right)$ such that $f^{\prime}(s, t)=\left(m_{Z}^{j+1}, m_{Z}^{j+1}\right)$. But then $p_{j}\left(f^{\prime}(s, t)\right)$ is the unit of $L\left(z_{j}\right)$ and hence $\gamma_{i, j}$ is not the identity. Therefore $\phi(i+1)=$ $j+1=\phi(i)+1$ as well as $\phi(i)=j$, and hence $\operatorname{Ker}\left(f^{\prime}\right) \subseteq \pi_{j}$ for every $z_{j} \in Z$. Therefore $\operatorname{Ker}(f) \subseteq \pi_{Z}$.

If $y_{i} \in Y \backslash Z$, then $\gamma_{i, j}: L\left(y_{i}\right) \rightarrow L\left(z_{j}\right)$ is the constant map for every $z_{j} \in Z$ in view of Lemma 2.4. Since $L\left(m_{Z}, C_{Z}\right)$ is a subdirect product of the lattices $L\left(z_{j}\right)$ with $z_{j} \in Z$, it follows that $\alpha_{i} \subseteq \operatorname{Ker}\left(f^{\prime}\right)$. Altogether, $\operatorname{Ker}(f)=\pi_{Z} \wedge \pi\left(0, m_{Y}\right)$, and hence (2) holds.

For (3), let f and $f^{\prime}: L\left[B_{Y}\right] \rightarrow L\left[B_{Z^{\prime}}\right]$ be 0-homomorphisms as in (2). If $Y=Z \cup Z^{\prime}$ then $\operatorname{Ker}(f) \wedge \operatorname{Ker}\left(f^{\prime}\right)$ is the diagonal congruence. If $y_{p} \in$ $Y \backslash\left(Z \cup Z^{\prime}\right)$, then $\alpha_{p} \subseteq \operatorname{Ker}(f) \wedge \operatorname{Ker}\left(f^{\prime}\right)$, and hence no homomorphism $L\left[B_{Y}\right] \rightarrow L\left[B_{Z}\right] \times L\left[B_{Z^{\prime}}\right]$ can be injective.

The definition of \mathcal{A}. We let \mathcal{A} consist of the singleton lattice A_{\emptyset} and all lattices $A_{W}=L\left[B_{W}\right]$ with finite nonvoid $W \subset \mathbb{N}$.

Theorem 2.8. The variety $\operatorname{Var}_{0}\left(M_{3}\right)$ is Q-universal.
Proof. We show that the set \mathcal{A} just defined satisfies conditions (P 1)(P4).

Condition (P1) obviously holds. For (P2), let $X=Y \cup Z$ be finite. Then A_{X} is isomorphic to a 0-sublattice of $A_{Y} \times A_{Z}$ by Proposition 2.7(3), and hence $A_{X} \in \mathbf{Q}\left\{A_{Y}, A_{Z}\right\}$. For (P3), suppose that $X \neq \emptyset$ and $A_{X} \in \mathbf{Q}\left\{A_{Y}\right\}$. Then A_{X} is a sublattice of some Cartesian power A_{Y}^{k}. The restriction of a product projection $A_{Y}^{k} \rightarrow A_{Y}$ to A_{X} is a nonconstant 0 -homomorphism $A_{X} \rightarrow A_{Y}$ only when $Y \subseteq X$ is nonvoid, and all of these restrictions have the same kernel $\theta=\pi_{Y} \wedge \pi\left(0, m_{X}\right)$, by Proposition 2.7. But θ is the diagonal congruence only when $Y=X$, and hence (P3) holds.

To prove (P 4), suppose that $B, C \in \mathbf{Q} \mathcal{A}$ are finite and A_{X} is a 0 sublattice of $B \times C$. It suffices to consider the case of $X \neq \emptyset$. Let r_{B} : $A_{X} \rightarrow B$ and $r_{C}: A_{X} \rightarrow C$ denote the domain restrictions of the two product projections. If r_{B} is constant, then A_{X} is isomorphic to a 0-sublattice of C and hence (P 4) holds for $Y=\emptyset$ and $Z=X$. We may thus assume that both r_{B} and r_{C} are nonconstant. It is also clear that A_{X} is a 0-sublattice of $\operatorname{Im}\left(r_{B}\right) \times \operatorname{Im}\left(r_{C}\right)$. Since $B \in \mathbf{Q} \mathcal{A}$ is finite, the lattice B is a 0-sublattice of some finite product $P=\prod\left\{A_{Y_{i}} \mid i \in I^{\prime}\right\}$; let $p_{i}: P \rightarrow A_{Y_{i}}$ denote the product projection, and let I be the set of all $i \in I^{\prime}$ for which the composite $f_{i}=p_{i} \circ r_{B}: A_{X} \rightarrow A_{Y_{i}}$ is nonconstant, and hence also $Y_{i} \neq \emptyset$. For each $i \in I$ we obtain $Y_{i} \subseteq X$ by Proposition 2.7(1) and $\operatorname{Ker}\left(f_{i}\right)=\pi_{Y_{i}} \wedge \pi\left(0, m_{X}\right)$ by Proposition 2.7.(2). For the subset $Y=\bigcup\left\{Y_{i} \mid i \in I\right\}$ of X we then have $\pi_{Y} \wedge \pi\left(0, m_{X}\right)=\operatorname{Ker}\left(r_{B}\right)$ because the projections p_{i} with $i \in I^{\prime}$ separate points of $\operatorname{Im}\left(r_{B}\right)$, and Proposition $2.7(2)$ then implies that $\operatorname{Im}\left(r_{B}\right) \subseteq B$ is isomorphic to A_{Y} (with nonvoid Y). Therefore $A_{Y} \in \mathbf{Q}\{B\}$. The same argument shows that $\operatorname{Im}\left(r_{C}\right) \cong A_{Z} \in \mathbf{Q}\{C\}$ for some nonvoid $Z \subseteq X$. But then $X=Y \cup Z$, by Proposition 2.7(3), and hence (P 4) holds.

Remark 2.9. The only nontrivial variety of modular 0-lattices not containing $\operatorname{Var}_{0}\left(M_{3}\right)$ is the variety \mathbb{D}_{0} of distributive 0 -lattices, and the only nontrivial critical algebra in \mathbb{D}_{0} is the 2 -element lattice. Theorem 2.8 thus gives a complete characterization of Q-universal varieties of modular 0lattices. Together with Remark 1.6, this observation justifies the claim made in the abstract.

REFERENCES

[1] M. E. Adams and W. Dziobiak, Lattices of quasivarieties of 3-element algebras, J. Algebra 166 (1994), 181-210.
[2] -, 一, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059.
[3] M. E. Adams and W. Dziobiak, Finite-to-finite universal quasivarieties are Q universal, Algebra Universalis 46 (2001), 253-283.
[4] W. Dziobiak, On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices, Algebra Universalis 122 (1986), 205-214.
[5] P. Goralčík, V. Koubek and J. Sichler, Universal varieties of (0,1)-lattices, Canad. Math. J. 42 (1990), 470-490.
[6] V. Koubek and J. Sichler, On almost universal varieties of modular lattices, Algebra Universalis 45 (2001), 191-210.
[7] -, 一, On relative universality and Q-universality, Studia Logica 78 (2004), 279291.
[8] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.
[9] M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180.
[10] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50.

Department of Theoretical Computer Science and Institute of Theoretical Computer Science
Faculty of Mathematics and Physics
Charles University
Department of Mathematics
University of Manitoba

Malostranské nám. 25
11800 Praha 1, Czech Republic
E-mail: koubek@ksi.ms.mff.cuni.cz

[^0]: 2000 Mathematics Subject Classification: Primary 06C05; Secondary 08C15, 18B15.
 Key words and phrases: modular lattice, variety, quasivariety, $f f$-universality, Q universality.

 The authors gratefully acknowledge the support of the NSERC of Canada, of the project LN00A056 of the Czech Ministry of Education, and also of the Grant Agency of the Czech Republic under the grant 201/02/0148.

