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Abstract. A variety V of algebras of a finite type is almost ff -universal if there is
a finiteness-preserving faithful functor F : G → V from the category G of all graphs and
their compatible maps such that Fγ is nonconstant for every γ and every nonconstant
homomorphism h : FG → FG′ has the form h = Fγ for some γ : G → G′. A variety V
is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any
quasivariety of algebras of a finite type as the quotient of its sublattice. For a variety V of
modular 0-lattices it is shown that V is almost ff -universal if and only if V is Q-universal,
and that this is also equivalent to the non-distributivity of V.

A concrete category K is (algebraically) universal if the category G of all
graphs and all their compatible mappings has a full embedding intoK. When
such a full embedding sends every finite graph to a K-object whose under-
lying set is finite, we say that K is finite-to-finite universal (ff -universal).
All universal categories have quite a rich structure: for instance, for ev-
ery monoid M they contain a proper class of pairwise non-isomorphic ob-
jects whose endomorphism monoids are isomorphic to M (see [8]). An ff -
universal category relevant to our considerations is formed by all (0, 1)-
homomorphisms between (0, 1)-lattices from the variety Var0,1(M3) gener-
ated by the five-element modular nondistributive lattice M3 (this fact and
the fact that Var0,1(M3) is a minimal universal variety follow from the classi-
fication of universal varieties of (0, 1)-lattices given in [5] and from [10]). On
the other hand, the category of all lattices and all their homomorphisms is
not universal because of the existence of constant homomorphisms, and nei-
ther is the category of all 0-lattices and their 0-preserving homomorphisms.
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Yet both these categories are almost ff -universal , that is, each contains
a class of objects determining a full subcategory whose nonconstant mor-
phisms are closed under composition and form an ff -universal category. In
fact, already the varieties Var(M3,3) and Var0(M3,3) generated by the mod-
ular eight-element lattice M3,3 given by 0 < a, b, c < d and c < d, e, f < 1
are almost ff -universal, and the variety Var(M3,3) is also minimal in this
respect (see [6]). For an overview of universality, we refer the reader to [8].

According to Sapir [9], a quasivariety Q of algebras of a finite similarity
type is Q-universal if the inclusion-ordered lattice L(Q) of its subquasiva-
rieties has the property that for any quasivariety R of algebras of a finite
type, the lattice L(R) is a quotient lattice of a sublattice of L(Q). Just
as for categorical universality, numerous instances of Q-universal varieties
exist and are documented by Adams and Dziobiak in [1, 2], for instance.
Of particular interest here is the result by Dziobiak [4] characterizing the
Q-universal varieties of modular lattices as those which contain the variety
Var(M3,3).

The two types of universality are linked through the remarkable Adams–
Dziobiak Theorem [3] saying that any ff -universal quasivariety of algebras
of a finite type must be Q-universal (the converse implication is known
to be false, see [3]). To further improve their result, Adams and Dziobiak
asked whether a weaker form of categorical universality (such as almost ff -
universality) would still imply Q-universality. Motivated by this question,
in [7] we found an example showing that the categorical hypothesis cannot
be weakened to its natural extreme.

The above discussion of known facts indicates the reasons for asking
whether the variety Var0(M3) is almost ff -universal or Q-universal. In the
two sections below we show that Var0(M3)—and hence also Var1(M3)—have
both these properties.

1. Categorical universality. In this section we show that the variety
Var0(M3) is finite-to-finite almost universal, by means of embedding an ff -
universal full subcategory of the variety Var0,1(M3) of (0, 1)-lattices (see
[5]) into Var0(M3) via an almost full functor preserving finiteness. First we
present a general form of the construction (to be also used elsewhere), and
then its specific application.

Throughout the paper, we identify any natural number n with the set
{0, 1, . . . , n−1}. For a poset P and any p ∈ P we write [p) = {x ∈ P | p ≤ x},
(p] = {x ∈ P | x ≤ p} and, for any p, q ∈ P with p ≤ q we write [p, q] =
{x ∈ P | p ≤ x ≤ q}. Given lattices A and B, we say that a sublattice
C ⊆ A×B is subdirect in A×B if the restriction of both projections to C
is surjective. A family Σ ⊆ hom0,1(A,B) of lattice (0, 1)-homomorphisms is
separating if for any distinct x, y∈A there exists an f ∈Σ with f(x) 6=f(y).
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Thus hom0,1(A,B) contains a separating family exactly when A is a sublat-
tice of some Cartesian power of B.

Next we present the basic step of the general lattice construction.

Construction. Let A and Q be (0, 1)-lattices, let a ∈ A \ {0, 1}, and
let c, d ∈ Q satisfy 0 < c < d < 1 and Q = [c) ∪ (d]. For fixed c, d ∈ Q, we
write A ∗a Q = S0 ∪ S1 ∪ S2 ∪ S3 ∪ S4 ⊆ A × Q with the (not necessarily
disjoint) sets S0 = {0} × (d], S1 = (a]× [c, d], S2 = {a} × [c), S3 = [a)× [d)
and S4 = A× {d}.

In what follows, we also assume that (d] \ [c) is not a singleton.

Lemma 1.1. For any (0, 1)-lattice A and a ∈ A\{0, 1}, the set A∗aQ =
A ∗Q is a (0, 1)-sublattice subdirect in A×Q, and

(1) [(0, d), (1, d)] = A× {d} ⊆ A ∗Q;
(2) if h : A → A′ is a lattice (0, 1)-homomorphism (or a 0-homomor-

phism) satisfying h(a) = a′ then the domain-range restriction h ∗ 1
of h × 1Q to A ∗ Q and A′ ∗a′ Q is a lattice (0, 1)-homomorphism
(or a 0-homomorphism) such that (h ∗ 1)(z, q) = (h(z), q) for all
(z, q) ∈ A ∗Q;

(3) if h : A → A′ is a lattice 0-homomorphism with h(a) = a′ then
(h ∗ 1)−1{(0, q)} = {(0, q)} for all q ∈ (d] \ [c);

(4) if h : A → A′ is a lattice 0-homomorphism with h(a) = a′ then
(h ∗ 1)−1{(a′, q)} = {(a, q)} for all q ∈ Q incomparable with d.

Proof. First we show that A∗Q is a sublattice of A×Q. It is easy to see
that Si ⊆ A×Q is a sublattice for each i ∈ 5. We proceed by exhausting the
remaining possibilities. To make the verification easier, we use the explicit
list below.

• s0 = (a0, q0) ∈ S0 iff a0 = 0 and q0 ≤ d;
• s1 = (a1, q1) ∈ S1 iff a1 ≤ a and c ≤ q1 ≤ d;
• s2 = (a2, q2) ∈ S2 iff a2 = a and c ≤ q2;
• s3 = (a3, q3) ∈ S3 iff a ≤ a3 and d ≤ q3;
• s4 = (a4, q4) ∈ S4 iff a4 ∈ A and q4 = d.

{0, i} for i=1, 2, 3, 4. Let s0∈S0 and si∈Si. Then s0 ∧ si = (0, q0 ∧ qi)
∈ S0 because q0 ∧ qi ≤ q0 ≤ d. Further s0 ∨ si = (ai, q0 ∨ qi) for any i ∈ 5. If
i = 1 then c ≤ q1 ≤ q1 ∨ q0 ≤ d because q0, q1 ≤ d and s0 ∨ s1 ∈ S1. If i = 2
then s0 ∨ si = (a, q0 ∨ q2) ∈ S2 because c ≤ q2 ≤ q0 ∨ q2. If i = 3 or i = 4
then s0 ∨ si = (ai, qi) = si ∈ Si because q0 ≤ d = q4 ≤ q3.
{3, i} for i = 1, 2, 4. Let s3 ∈ S3 and si ∈ Si. Then a3 ≥ a and q3 ≥ d

and hence s3 ∨ si = (a3 ∨ ai, q3 ∨ qi) ∈ S3 because a ≤ a3 ≤ a3 ∨ ai and
d ≤ q3 ≤ q3 ∨ qi. If i = 1 then s3 ∧ s1 = s1 ∈ S1 because a1 ≤ a ≤ a3 and
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q1 ≤ d ≤ q3. If i = 2 then s3 ∧ s2 = (a, q2 ∧ q3) ∈ S2 because q3 ≥ d ≥ c. If
i = 4 then s3 ∧ s4 = (a3 ∧ a4, d) ∈ S4 because q3 ≥ d = q4.
{1, 2}. Let s1 ∈ S1 and s2 ∈ S2. Then s1∨ s2 = (a, q1∨ q2) ∈ S2 because

a1 ≤ a = a2 and c ≤ q2 ≤ q1 ∨ q2, and s1 ∧ s2 = (a1, q1 ∧ q2) ∈ S1 because
c ≤ q1, q2 and q1 ∧ q2 ≤ q1 ≤ d.
{1, 4}. Let s1 ∈ S1 and s4 ∈ S4. Then s1 ∨ s4 = (a1 ∨ a4, d) ∈ S4, and

s1 ∧ s4 = (a1 ∧ a4, q1) ∈ S1 because a1 ∧ a4 ≤ a1 ≤ a and c ≤ q1 ≤ d.
{2, 4}. Let s2 ∈ S2 and s4 ∈ S4. Then s2 ∨ s4 = (a2 ∨ a4, q2 ∨ q4) ∈ S3

because a2∨a4 ≥ a2 = a and q2∨q4 ≥ q4 = d, and s2∧s4 = (a2∧a4, q2∧q4)
∈ S1 because a2 ∧ a4 ≤ a2 = a and c = c ∧ d ≤ q2 ∧ q4 ≤ q4 = d.

Altogether A ∗Q is a (0, 1)-sublattice of A×Q because (0, 0) ∈ S0 and
(1, 1) ∈ S3. We have A× {d} = S4 ⊆ A ∗Q, and

(
{a} × [c)

)
∪
(
{0} × (d]

)
=

S3 ∪ S1 ⊆ A ∗Q and Q = [c) ∪ (d], and hence the lattice A ∗Q is subdirect
in A×Q.

Claim (1) holds because [(0, d), (1, d)] = S4 in A × Q. Since h(a) = a′

and h(0) = 0, the homomorphism h× 1Q maps the set Si ⊆ A ∗Q into the
corresponding set S′i ⊆ A′ ∗a′ Q for each i ∈ 5, and (2) follows. To prove (3)
observe that (z, q) ∈ A ∗ Q for some q ∈ (d] \ [c) only when z = 0. Since
(h ∗ 1)(z, q) = (0, q′) implies q = q′, we obtain (3). For (4), suppose that q is
incomparable with d and (h ∗ 1)(z, p) = (a′, q). Then p = q is incomparable
to d, and hence z = a by the definition of A ∗Q.

Let K be a concrete category with a forgetful functor U : K → Set. We
say that a functor F : C→ K is pointed if for every C-object C there exists
an element aC ∈ (U ◦ F )C of the underlying set of its image FC such that
(U ◦ F )f(aC) = aC′ for all C-morphisms f : C → C ′.

Let L be the variety of all (0, 1)-lattices, let F : C → L be a pointed
faithful functor such that aC 6= 0, 1 for all C-objects C, and let Q ∈ L.
Lemma 1.1 shows that setting (F ∗Q)C = FC ∗aC Q for every C-object C
and (F ∗Q)h = Fh ∗ 1 for every C-morphism h defines a faithful functor

F ∗Q : C→ L.

Let C2 = {0 < a < 1} be the chain of length two. For any C-object C,
let ξC : C2 → FC denote the lattice (0, 1)-homomorphism with ξC(a) = aC .

For a pointed functor F : C→ L, a (0, 1)-lattice A ∈ L and for a category
K of (0, 1)-lattices that includes all (0, 1)-homomorphisms between any two
of its objects, we shall consider these conditions:

(c0) for every C-object C there is a separating family

ΣC ⊆ hom0,1(FC,A)

such that f(aC) 6= 0, 1 for all f ∈ ΣC ;
(c1) FC ∗aC Q is a K-object for every C-object C.
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Define B = {f(aC) ∈ A | C is a C-object and f ∈ ΣC}. For each b ∈ B, let

ωb : C2 → A

be the lattice (0, 1)-homomorphism with ωb(a) = b.

(c2) C2 ∗a Q and A ∗b Q are K-objects for all b ∈ B;
(c3) if b ∈ B and a K-morphism k : C2 ∗a Q → A ∗b Q are such that

there is a C-object C and a lattice (0, 1)-homomorphism from FC
into the interval [k(0, d), k(1, d)] of A ∗b Q then either k is constant
or k = ωb ∗ 1.

Observe that condition (c0) implies that aC 6= 0, 1 for every C-object C,
and that condition (c1) and Lemma 1.1(2) imply that F ∗ Q is a functor
from C to K.

Lemma 1.2. Let F : C → L be a pointed full embedding , let A ∈ L be
a (0, 1)-lattice and let K be a category satisfying conditions (c0)–(c3). Then
F ∗ Q : C → K is an almost full embedding. If , moreover , no constant
K-morphism from C2 ∗a Q to A ∗b Q exists for any b ∈ B, then F ∗ Q is a
full embedding of C into K.

Proof. By Lemma 1.1(1), the mapping ιC : FC → FC ∗aC Q given by
ιC(y) = (y, d) for all y ∈ FC is a lattice isomorphism of FC onto the interval
FC × {d} = [(0, d), (1, d)] of FC ∗aC Q. We know that the functor F ∗Q is
faithful and that (F ∗Q)h is a (0, 1)-homomorphism for every C-morphism h.
We thus need only show that it is almost full.

Let C and C ′ be C-objects and let g : FC ∗aC Q → FC ′ ∗aC′ Q be a
K-morphism. For any given f ∈ ΣC′ we define gf = (f ∗ 1) ◦ g ◦ (ξC ∗ 1) and
b = f(aC′), as shown in the diagram below.

FC FC ∗aC Q FC ′ ∗aC′ Q

C2 ∗a Q A ∗b Q

ιC // g //

f∗1
��gf //

ξC∗1

OO

for b = f(aC′) ∈ B

Choose any f ∈ ΣC′ . Then (f ∗ 1) ◦ g ◦ ιC is a lattice (0, 1)-homomorphism
of FC into the interval [((f ∗ 1) ◦ g)(0, d), ((f ∗ 1) ◦ g)(1, d)] of A ∗b Q.
Since (ξC ∗ 1)(0, d) = (0, d) and (ξC ∗ 1)(1, d) = (1, d), we have gf (0, d) =
((f ∗ 1) ◦ g)(0, d) and gf (1, d) = ((f ∗ 1) ◦ g)(1, d), and, by condition (c3),
the K-morphism gf is either constant or else gf = ωb ∗ 1.

Suppose that f ∈ ΣC′ is such that gf = ωb ∗ 1. We aim to prove that
gf ′ = ωb′ ∗ 1 for all f ′ ∈ ΣC′ , where b′ = f ′(aC′). First we note that
gf (0, y) = (0, y) for any y ∈ (d]\[c) and, by Lemma 1.1(3), (f∗1)−1{(0, y)} =
{(0, y)}. But (ξC ∗ 1)(0, y) = (0, y), and hence g(0, y) = (0, y). Since (d] \ [c)
is not a singleton, for distinct y, z ∈ (d] \ [c) we obtain g(0, y) = (0, y)
and g(0, z) = (0, z), so that gf ′(0, y) = (0, y) and gf ′(0, z) = (0, z) for each
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f ′ ∈ ΣC′ . It follows that gf ′ = (ωb′ ∗1) for all f ′ ∈ ΣC′ (where b′ = f ′(aC′)).
Therefore

(a) gf is either constant for all f ∈ ΣC′ or gf = ωb ∗ 1 for all f ∈ ΣC′ ,
where b = f(aC′).

Next we show that

(b) g is constant if and only if gf is constant for all f ∈ ΣC′ .
Clearly, if g is constant then gf is constant for every f ∈ ΣC′ . So assume

that g is nonconstant, and let y, z ∈ FC∗aCQ be such that v = g(y) < g(z) =
w in FC ′ ∗aC′ Q. Thus πQ(v) < πQ(w) for the projection πQ : FC ′×Q→ Q
or πFC′(v) < πFC′(w) for the projection πFC′ : FC ′ × Q → FC ′. In the
first case (f ∗ 1)(v) < (f ∗ 1)(w) for all f ∈ ΣC′ . In the second, there exists
f ∈ ΣC′ with f(πFC′(v)) < f(πFC′(w)) because ΣC′ is separating and
hence (f ∗ 1)(v) < (f ∗ 1)(w). Thus in either case there exists an f ∈ ΣC′
for which gf is not constant, and (b) holds.

Assume that g is not constant, that is, let gf = ωb ∗ 1 for all f ∈ ΣC′
and b = f(aC′). Then gf (0, d) = (0, d) and gf (1, d) = (1, d) for all f ∈ ΣC′ .
Since ΣC′ is separating, for every y ∈ FC ′ \ {0, 1} there exist f ′, f ′′ ∈ ΣC′
with gf ′(y, d) 6= (0, d) and gf ′′(y, d) 6= (1, d), and since (f ∗ 1)−1(A×{d}) ⊆
FC ′ × {d} for every f ∈ ΣC′ , it follows that g(0, d) = (0, d) and g(1, d) =
(1, d). Thus the domain-range restriction h : FC → FC ′ of g to the re-
spective intervals [(0, d), (1, d)] of FC ∗aC Q and of FC ′ ∗aC′ Q is a lattice
(0, 1)-homomorphism. Since F is a pointed full embedding, we also have
h(aC) = aC′ . Thus

(c) there exists a unique (0, 1)-homomorphism h : FC → FC ′ such that
h(aC) = h(aC′) and g(z, d) = (h(z), d) for all z ∈ FC.

Next we aim to show that g = h ∗ 1.
Let q ∈ (d] first. We begin by showing that g(0, q) = (0, q). We have

g(0, q) ≤ g(0, d) = (0, d) by (c), and hence g(0, q) = (0, p) for some p ≤ d.
Since gf = ωb∗1 for any f ∈ ΣC′ and from the definition of gf it follows that
(0, q) = ((f∗1)◦g)(0, q) = (f∗1)(0, p) = (0, p). Thus g(0, q) = (0, q) for every
q ∈ (d]. Now let q ∈ (d] and (z, q) ∈ FC∗aCQ. From (0, d)∧(z, q) = (0, q) and
(0, d)∨ (z, q) = (z, d) we obtain (0, d)∧ g(z, q) = (0, q) and (0, d)∨ g(z, q) =
(h(z), d). It is easy to see that the last pair of equations has a unique solution
g(z, q) = (h(z), q). This completes the case of q ∈ (d].

Analogously we find that g(z, q) = (h(z), q) for all (z, q) ∈ FC ∗aC Q
with q ∈ [d).

It remains to consider the elements (z, q) ∈ FC ∗aC Q with q ∈ Q incom-
parable to d. Such elements have the form (z, q) = (aC , q) with q ≥ c. Let
f ∈ ΣC′ be arbitrary and let b = f(aC′). From the definition of gf and the
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fact that gf = ωb ∗ 1 it follows that (f ∗ 1)(g(aC , q)) = gf (a, q) = (b, q), and
hence g(aC , q) = (aC′ , q) = (h(aC), q) by Lemma 1.1(4).

Altogether, g = h ∗ 1 for any nonconstant g, and hence F ∗ Q : C → K
is an almost full embedding. If every g is nonconstant, then F ∗Q is a full
embedding.

Now we apply this general construction to the full embedding F : C →
Var0,1(M3) of an ff -universal category C constructed in [5] into the full
subcategory K of Var0(M3) determined by its (0, 1)-lattices, and to the
lattice Q ∈ Var(M3) of Figure 1. We note that Q = (d]∪ [c) and that (d]\ [c)
is not a singleton.

c

t

u

v

w

d

Fig. 1. The lattice Q

Figure 2 shows the lattice L1 = C2 ∗a Q, where the interval [z, x] is
C2 × {d}, and y = (a, d) for the nonextremal element a ∈ C2.

t

u

v

w

(a, c)

(a, d) = y

(1, d) = x

(0, d) = z

p

q

Fig. 2. The lattice L1 = C2 ∗Q
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Similarly, in the lattice L0 = M3 ∗b Q of Figure 3, the interval [z, x] is
M3 × {d}, and y = (b, d) for an arbitrary nonextremal element b ∈ M3. In
Figures 2 and 3, the letter r ∈ {t, u, v} denotes the element (0, r) and w
denotes the element (a,w).

t

u

v

w

y

x

z

p

q

Fig. 3. The lattice L0 = M3 ∗Q

Next we describe the lattice 0-homomorphisms from L1 to L0.

Lemma 1.3. Any 0-homomorphism f : L1 → L0 has one of these prop-
erties:

(1) f is the inclusion 0-homomorphism, or
(2) f is the constant map with the value 0, or
(3) f(z)<f(x) and L0 has no copy of M3 with the bounds f(z) and f(x).

Proof. For r ∈ {t, u, v, w}, let M (r) denote the copy of M3 in L1 contain-
ing r, and let 0r, 1r ∈ M (r) denote its respective bounds. The congruence
lattice of L1 is Boolean and its atoms are the four congruences αr collaps-
ing M (r) for r ∈ {t, u, v, w} and the two principal congruences θ(z, y) and
θ(y, x).

We begin with an easy observation about L0.

(a) If A is a sublattice of L0 isomorphic to M3 then 0 /∈ A, and if B 6= A
is a sublattice of L0 isomorphic to M3 then A ∩B = ∅.

Next we investigate properties of the kernel Ker(f) of f .
First, since 0t ∧ 0u = 0 and 0t ≤ 1u in L1, by (a) it follows that

(b) αu ⊆ Ker(f) implies αt ⊆ Ker(f).

Next suppose that αv ⊆ Ker(f). Then the elements mu = 1u∧1v ∈M (u)

and mt = 1u ∧ 0v ∈ M (t) satisfy f(mu) = f(mt). Thus, by (a), either
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αt ⊆ Ker(f) or αu ⊆ Ker(f). If αt ⊆ Ker(f) then from f(1t) ≥ f(0u) and
0t ∧ 0u = 0 we get f(0u) = f(1t) ∧ f(0u) = f(0t) ∧ f(0u) = 0 and, by (a),
αu ⊆ Ker(f). Using (a) for the case when αu ⊆ Ker(f), we conclude that

(c) αv ⊆ Ker(f) implies αu ∨ αt ⊆ Ker(f).

Next we show that

(d) αw ⊆ Ker(f) implies αv ∨ αu ∨ αt ⊆ Ker(f).

Indeed, if αw ⊆ Ker(f), then from 0v ≤ 1w and 1t = 0v ∧ 0w it follows
that f(0v) = f(1t) and, by (a), either αv ⊆ Ker(f) or αt ⊆ Ker(f). In
the first case the conclusion of (d) follows from (c), so let us assume that
αw ∨αt ⊆ Ker(f). We have mv = 1w ∧ 1v ∈M (v) and mu = 0t ∨ 0u ∈M (u).
Since 0w ∧ 1v = 1t ∨ 0u in L1 we obtain f(mv) = f(0w ∧ 1v) = f(1t ∨ 0u) =
f(mu) and, by (a), it follows that αv ⊆ Ker(f) or αu ⊆ Ker(f). The first
case is covered by (c), in the second case from 0 = 0t ∧ 0u, 0t ≤ 1u and
αu ⊆ Ker(f) it follows that f(0t) = f(0) = 0 and from 0v = v ∧ 1w,
1t = v∧ 0w and αt ∨αw ⊆ Ker(f) it follows that f(0v) = f(1t) = f(0t) = 0,
and (a) completes the proof of (d).

Now we apply these four properties as follows.
If αw ⊆ Ker(f), then f(z) = 0 follows by (d), and hence f satisfies (2)

or (3). In the remainder of the proof we thus assume that f is one-to-one
on M (w).

Case 1: f does not collapse M (t). Then f is one-to-one on all sublattices
M (r) of L1 with r ∈ {t, u, v, w} (see (b) and (c)). Since 0t ∧ 0u = 0 and
0t ≤ 1u and t, u are the only elements of L0 with these properties, it
follows that f(0t) = 0t, f(0u) = 0u and f(1t) = 1t, f(1u) = 1u. From
0v ∧ 1u ≤ 1t and 0u ≤ 1v we then obtain f(0v) ∧ 1u ≤ 1t and 0u ≤ f(1v),
and f(0v) = 0v and f(1v) = 1v follow. But then f(z) = f(1u) ∨ f(1v) = z.
Next we note that 0w ∧ 0v = 1t implies that f(0w) ∧ 0v = 1t, so that
f(0w) = 0w and f(1w) = 1w. Thus f(y) = f(1v ∨ 0w) = y and f(y ∨ 1w) =
y ∨ 1w, and thus f is the inclusion on the sublattice B ⊆ L1 generated
by y, z and the extremal elements of the four copies of M3 in L1. In both
L1 and L0, the doubly irreducible element p is the unique complement of
1u ∧ 1v ∈ B in the interval [0t, 1v], and hence f(p) = p. Similarly, q is
the unique complement of 1v ∧ 1w ∈ B in the interval [0u, 1w], and hence
f(q) = q. But then f is the inclusion map on the distributive sublattice
(y ∨ 1w] \ {t, u, v, w} of L1 generated by B ∪ {p, q}, and it follows that the
restriction of f to (y ∨ 1w] is the inclusion map. For the element x we have
f(x) ≥ f(y) = y, and from x∧w = 0w it follows that f(x)∧w = 0w. Hence
f(x) ∈ {x, y}. If f(x) = y, then the interval [f(z), f(x)] = [z, y] has two
elements, and hence (3) holds. If f(x) = x, then f is the inclusion map, that
is, (1) holds.
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Case 2: f collapses M (t) (but not M (w)). Thus f satisfies neither (1)
nor (2). Arguing indirectly, we suppose that there is a copy M(f) of M3

isomorphic to a (0, 1)-sublattice of the interval [f(z), f(x)] ⊆ L0. We also
note that any interval [a, b] ⊆ L0 containing a (0, 1)-copy of M3 is, in fact,
isomorphic to M3.

Case 2.1: f(z) = f(y). Noting that z ∧ 0w = 1t ∨ 1u, y ≥ 0w and
0t ≤ 1u we obtain f(0w) = f(y) ∧ f(0w) = f(0t) ∨ f(1u) = f(1u) because
f(0t) = f(1t). Since f is one-to-one on M (w), (a) implies that αu ⊆ Ker(f).
Thus f(0w) = f(0u) and f(1t) = f(0t) = f(0t ∧ 1u) = f(0t) ∧ f(0u) =
f(0) = 0. Also, since f(y) = f(z), from 1u ∨ 1v = z and 0u ≤ 1v we obtain
f(y) = f(1v). But then f(y ∧ 1w) = f(1v ∧ 1w) ∈ f(M (w)) ∩ f(M (v)), and
hence f(0v) = f(1v), by (a). From 0u ≤ 1v and 0u ∧ 0v ≤ 1t it then follows
that f(0w) = f(0u) = f(0u∧0v) ≤ f(1t) = 0. This is a contradiction to (a).
Therefore this case cannot occur.

Case 2.2: f(z) < f(y). First we show that Ker(f) ⊆ αt∨θ(x, y). Indeed,
should αv ⊆ Ker(f), then f(0v ∨ 0w) = f(1v ∨ 0w) ∈ M(f) ∩ f(M (w)),
contrary to (a). Thus f is one-to-one also on M (v). Similarly, if αu ⊆ Ker(f),
then the contradictoryM(f)∩f(M (v)) 6= ∅ results. Therefore f is one-to-one
on each M (r) with r ∈ {u, v, w} and hence Ker(f) ⊆ αt∨θ(x, y), as claimed.
Next, from z = 1u ∨ 1v it follows that f(z) = f(1u) ∨ f(1v), that is, the
zero of M(f) is the join of the units f(1u) and f(1v) of the lattices f(M (u))
and f(M (v)) isomorphic to M3. But this occurs in L0 only when f(z) = z,
and from 1v ≥ 0u and 1u 6≥ 0v it follows that f(1u) = 1u and f(1v) = 1v.
Thus f(0u) = 0u and f(0v) = 0v as well. And f(1w) = 1w and f(0w) = 0w
because 0v ∨ 1u ≤ 1w. But then f(0t) = f(1t) = f(0v ∧ 0w) = 0v ∧ 0w = 1t
and hence f(0) = f(0t ∧ 0u) = 1t ∧ 0u > 0, a contradiction. Therefore
any lattice 0-homomorphism f : L1 → L0 collapsing M (t) but not M (w)

satisfies (3).

Now let L2 be the (0, 1)-lattice in Figure 4 and let L3 be the (0, 1)-
sublattice of L2 × L2 consisting of all (x, y) ∈ L2 × L2 such that x = 0 or
y = 1. Thus both the ideal ((0, 1)] and the filter [(0, 1)) of L3 are isomorphic
to L2 and L3 = ((0, 1)] ∪ [(0, 1)).

Lemma 1.4. Let f : Li → L0 be a lattice homomorphism for i = 2, 3.
Then Im(f) is either a singleton or an interval of L0 isomorphic to M3.

Proof. Consider a lattice homomorphism f : L2 → L0. Observe that the
interval [u0, u1] in L2 is subdirect in (M3)6, that [u0, u1]/% is isomorphic
to M3 for any coatom congruence % of the interval [u0, u1], and that if σ
is a congruence of the interval [u0, u1] other than the universal congruence
or any coatom congruence, then [u0, u1]/σ contains two distinct copies of
M3 that intersect. Any two distinct sublattices of L0 isomorphic to M3 are
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u0

u1

v0

v1

Fig 4. The lattice L2

disjoint, however, and it follows that the restriction of Ker(f) to the interval
[u0, u1] is either its coatom congruence (with f [u0, u1] ∼= M3) or the universal
congruence. By symmetry, the same conclusion holds for the interval [v0, v1]
of L2. Since [u0, u1]∩ [v0, v1] = {u1 ∧ v1}, and because distinct copies of M3

are disjoint in L0, it follows that Ker(f) is the universal congruence on at
least one of these intervals. If f(u0) = f(u1) then Im(f) = f([v0, v1]), and if
f(v0) = f(v1) then Im(f) = f([u0, u1]). Hence Im(f) is either a sublattice
of L0 isomorphic to M3 or a singleton, and the claim holds for L2.

Now let f : L3 → L0 be a lattice homomorphism. Since L3 = ({0}×L2)
∪ (L2×{1}), the claim for L2 implies that f({0}×L2) and f(L2×{1}) are
either singletons or sublattices isomorphic to M3. But (0, 1) ∈ ({0} × L2) ∩
(L2 × {1}), and hence f({0} × L2) or f(L2 × {1}) is a singleton, and the
claim holds for L3 as well.

Now we show how the present and certain earlier results combine to give
the almost ff -universality of Var0(M3).

In [5], Goralč́ık et al. presented an ff -universal category C and a finite-
to-finite full embedding F : C→ L such that

(1) for every C-object C there is a separating family

ΣC ⊆ hom0,1(FC,M3)

consisting of surjective homomorphisms;
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(2) there exists an injective lattice (0, 1)-homomorphism λC : L3 → FC
for every C-object C.

Property (1) just says that every FC is a subdirect power of the lattice M3.
For the sake of completeness, we recall that the lattice L2 is denoted as
L∅,∅ in [5], that Statement 4.6 in [5] gives an injective homomorphism from
L∅,∅ into Lδ,ε for all δ, ε ⊆ 4, and that Lemma 5.1 in [5] gives an injective
lattice (0, 1)-homomorphism from ({0} ×Lδ,ε)∪ (Lδ,ε × {1}) into FC. This
establishes (2).

In [6], where the functor F : C→ Var0,1(M3) was also used, it was shown
that

(3) for every C-object C there exists an element aC ∈ FC such that
Fh(aC) = aC′ for every C-morphism h : C → C ′, and f(aC) = b ∈
M3 \ {0, 1} for every f ∈ ΣC .

By (3), the functor F is pointed. Choose A = M3 and B = {b} as in (3).
Then condition (c0) follows from (1) and (3). For the full subcategory K
of Var0(M3) determined by its (0, 1)-lattices, conditions (c1) and (c2) are
satisfied by Lemma 1.1 and (3). To prove (c3), let k : L1 → L0 be a 0-homo-
morphism, and let h be a (0, 1)-homomorphism from FC to the interval
[k(0, d), k(1, d)] of L0. For the (0, 1)-homomorphism λC from (2), the com-
posite γ = h◦λC is a (0, 1)-homomorphism from L3 to [k(0, d), k(1, d)] whose
image Im(γ) is either a singleton or it is isomorphic to M3, by Lemma 1.4.
But Lemma 1.3 then implies that k is either a constant or the inclusion map
ωb ∗ 1. This proves (c3). By Lemma 1.2, the functor F ∗ Q : C → K is an
almost full embedding, and since Q is finite, F ∗Q preserves finiteness. Since
C is ff -universal, this completes the proof of the theorem below.

Theorem 1.5. The variety Var0(M3) is almost ff -universal.

Remark 1.6. Since the variety D0 of distributive 0-lattices is the only
nontrivial variety of modular 0-lattices not containing Var0(M3) and because
for any D ∈ D0 and any x ∈ D \ {0} there is an endomorphism fx of D
with Im(fx) = {0, x}, the variety D0 is not almost universal. Thus, in fact,
Theorem 1.5 characterizes almost universal varieties of modular 0-lattices.

2. Q-universality. For a set S of algebras of the same similarity type,
let QS denote the smallest quasivariety containing S.

For a collection A = {AW | W ⊆ N finite} of finite algebras of a given
finite similarity type, we consider the following four conditions, in which X,
Y and Z denote finite subsets of N.

(P1) A∅ is a singleton algebra;
(P2) if X = Y ∪ Z, then AX ∈ Q{AY , AZ};
(P3) if X 6= ∅ and AX ∈ Q{AY }, then X = Y ;
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(P4) if B,C ∈ QA are finite algebras and if AX is a subalgebra of B×C,
then there exist Y and Z such that AY ∈ Q{B}, AZ ∈ Q{C} and
X = Y ∪ Z.

In [4] and in [2] it was shown that any quasivariety K of a finite type
containing a collection A of finite algebras satisfying (P1)–(P4) has various
other properties that imply Q-universality. The reader is referred to [2] for a
review of these properties. We aim to prove the Q-universality of Var0(M3)
by constructing an infinite set A of its finite members satisfying conditions
(P1)–(P4).

For a positive integer n, let Cn denote the chain 0 < 1 < . . . < n of
length n, and recall that n = {0, 1, . . . , n− 1}. We say that A ⊆ n× n is a
permutation set if A = {(i, φ(i)) | i ∈ n} for some permutation φ : n → n.
In other words, for every i ∈ n there is a unique j ∈ n such that (i, j) ∈ A,
and for every j ∈ n there is a unique i ∈ n such that (i, j) ∈ A.

For a permutation set A ⊆ n × n, let L(n,A) be the disjoint extension
of the lattice Cn × Cn by the set {ui,j | (i, j) ∈ A}, with the least partial
order in which

(d) (i, j) < ui,j < (i+ 1, j + 1) for every (i, j) ∈ A.

Then L(n,A) ∈ Var(M3) is a lattice, and we call it a permutation lattice
(for an example of such a lattice, see Figure 1). It is clear that each interval

M(i, j) = {(i, j), (i+ 1, j), ui,j , (i, j + 1), (i+ 1, j + 1)}
of L(n,A) with (i, j) ∈ A is isomorphic to M3 and that L(n,A) contains no
other copies of M3. For the permutation set A−1 given by the permutation
inverse to that defining A, it is clear that the map (i, j) 7→ (j, i) determines
a unique isomorphism of L(n,A) onto L(n,A−1).

For (p, q) ∈ A, let α(p, q) denote the equivalence on L(n,A) whose non-
singleton classes are all doubletons {(i, q), (i, q + 1)} with i /∈ {p, p + 1},
all doubletons {(p, j), (p+ 1, j)} with j /∈ {q, q + 1} and the interval [(p, q),
(p+ 1, q+ 1)] isomorphic to M3. The restriction of α(p, q) to the (0, 1)-sub-
lattice Cn ×Cn of L(n,A) is thus the congruence θ(p, p+ 1)× θ(q, q+ 1) of
Cn × Cn. Since all elements ui,j with (i, j) ∈ A are doubly irreducible, the
equivalence α(p, q) is a congruence of L(n,A).

Further, for (p, q) ∈ A, let π(p, q) denote the equivalence on L(n,A)
whose classes are the intervals (p]× (q], (p]× [q+ 1), [p+ 1)× (q], [p+ 1)×
[q + 1) of L(n,A) and the singleton {up,q}. It is easily seen that π(p, q) is a
congruence and that L(n,A)/π(p, q) ∼= M3.

Lemma 2.1. The congruence lattice of L(n,A) is Boolean. Its atoms are
the n congruences α(p, q) associated with the elements (p, q) ∈ A. The con-
gruence π(p, q) is complementary to α(p, q) for each (p, q) ∈ A.
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Proof. The congruence π(p, q) is a coatom because L(n,A)/π(p, q) ∼= M3

is simple. It is easy to see that α(p, q) is the complement of π(p, q), so that
α(p, q) is an atom for every (p, q) ∈ A. If (p, q), (p′, q′) ∈ A are distinct then
α(p, q) 6= α(p′, q′) and hence α(p, q) ∧ α(p′, q′) is the diagonal congruence.
Since the join of all α(p, q) with (p, q) ∈ A is the total congruence, no other
atoms exist.

Lemma 2.2. Let L(n,A) and L(m,B) be permutation lattices. Then

(1) for any congruence θ, the quotient L(n,A)/θ is isomorphic to a
permutation lattice L(k,C) with k ≤ n; there are surjective homo-
morphisms g, h : Cn → Ck and a surjective homomorphism f :
L(n,A) → L(k,C) with Ker(f) = θ such that f(i, j) = (g(i), h(j))
for all (i, j) ∈ C2

n, and for any (p, q) ∈ A either α(p, q) ⊆ θ (and
hence f(M(p, q)) = {f(p, q)}, g(p+ 1) = g(p) and h(q + 1) = h(q)),
or else θ ⊆ π(p, q) and g(p + 1) = g(p) + 1, h(q + 1) = h(q) + 1,
(g(p), h(q)) ∈ C and f(up,q) = ug(p),h(q); furthermore,

(1a) for each (p′, q′) ∈ C there is a unique (p, q) ∈ A such that

f(M(p, q)) = M(p′, q′);

(2) if L(k,C) is a permutation lattice with k > 1 and if e : L(k,C) →
L(m,B) is an injective 0-homomorphism, then k ≤ m and Im(e) =
((k, k)]; there is an injective 0-homomorphism

ẽ : L(k,C)→ L(m,B)

such that Im(ẽ) = Im(e), and either ẽ(i, j) = (i, j) for all (i, j) ∈ C2
k

and C ⊆ B, or else ẽ(i, j) = (j, i) for all (i, j) ∈ C2
k and C−1 ⊆ B.

Proof. First we prove (1). Let t : L(n,A) → L(n,A)/θ be a surjective
homomorphism with Ker(t) = θ. According to Lemma 2.1, there is a subset
A′ = {(p, q) | θ ⊆ π(p, q)} = {(p, q) | α(p, q) 6⊆ θ} of A for which

θ =
∧
{π(p, q) | (p, q) ∈ A′} =

∨
{α(p, q) | (p, q) ∈ A \A′}.

For any (p, q) ∈ A \ A′, the restriction of α(p, q) to the sublattice C2
n of

L(n,A) is the product congruence θ(p, p + 1) × θ(q, q + 1). For the con-
gruences σ =

∨{θ(p, p + 1) | (p, q) ∈ A \ A′} and τ =
∨{θ(q, q + 1) |

(p, q) ∈ A \ A′} on Cn let g : Cn → Cn/σ and h : Cn → Cn/τ be the
corresponding surjective homomorphisms. Then Cn/σ ∼= Cn/τ ∼= Ck for
k = |A′|. Writing Cn/σ = Cn/τ = Ck, we then conclude that g(i + 1)
∈ {g(i), g(i) + 1} and h(j + 1) ∈ {h(j), h(j) + 1} for any i, j ∈ Cn, and that
g(i+ 1) = g(i) + 1 and h(j + 1) = h(j) + 1 if and only if (i, j) ∈ A′. It also
follows that there is an injective homomorphism d : C2

k → L(n,A)/θ such
that t(i, j) = d(g(i), h(j)) for all (i, j) ∈ C2

n ⊆ L(n,A). Now if (i, j) ∈ A′,
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then θ ⊆ π(i, j), and hence t is injective on M(i, j). Since t is surjec-
tive, the copy t(M(i, j)) of M3 is an interval in L(n,A)/θ, and g(i + 1) =
g(i) + 1 and h(j + 1) = h(j) + 1. Define C = {(g(i), h(j)) | (i, j) ∈ A′}.
If (i, j), (i′, j′) ∈ A′ are distinct then g(i) 6= g(i′) and h(j) 6= h(j′), and
hence C is a permutation set. For each (i, j) ∈ A′, add a new element
ug(i),h(j) satisfying (g(i), h(j)) < ug(i),h(j) < (g(i)+1, h(j)+1) to the lattice
C2
k = (g×h)(C2

n), thereby obtaining a permutation lattice L(k,C). Extend-
ing d to all of L(k,C) by setting d(ug(i),h(j)) = t(ui,j) for each (i, j) ∈ A′
gives rise to an isomorphism d : L(k,C)→ L(n,A)/θ. To complete the proof
of (1), we set f = d−1 ◦ t.

Claim (1a) follows from the fact that, for each (p, q) ∈ A′, the singleton
{up,q} is a class of the coatom congruence π(p, q).

We turn to (2). First we observe that nonzero elements of L(m,B) meet
the zero element (0, 0) only when one of them lies in ((m, 0)] ∪ {up,0} and
the other in ((0,m)] ∪ {u0,q} for some (p, 0), (0, q) ∈ B. And we have
e(k, 0) ∧ e(0, k) = (0, 0), of course.

Case A. Suppose that e(k, 0) ∈ ((m, 0)]∪{up,0} and e(0, k) ∈ ((0,m)]∪
{u0,q}. Then k ≤ m, and e(k − 1, 0) ≤ (m − 1, 0), e(0, k − 1) ≤ (0,m − 1)
because e is injective and (p, 0) (resp. (0, q)) is the only element of L(m,B)
covered by up,0 (resp. by u0,q). For any i ≤ k−1, define g and h by e(i, 0) =
(g(i), 0) and e(0, i) = (0, h(i)). The maps g and h defined, so far, for i ≤ k−1
are injective, and e(i, j) = (g(i), h(j)) for i, j ≤ k − 1.

Let i ≤ k − 2. Then (i, j) ∈ C for some j ≤ k − 1. Since e is injective,
the sublattice e(M(i, j)) of L(m,B) isomorphic to M3 is the interval [e(i, j),
e(i+ 1, j + 1)]. Thus (g(i), h(j)) = e(i, j) ∈ B and hence g(i+ 1) = g(i) + 1.
From g(0) = 0 it now follows that g(i) = i for each i ≤ k− 1. Together with
a similar argument for the other component, this shows that

(1,1) e(i, j) = (i, j) for all i, j ≤ k − 1.

A.1. Suppose that e(k, 0) ≤ (m, 0). We have (k − 1, q) ∈ C for some
q ≤ k − 1 and hence e(k − 1, q) = (k − 1, q), by (1,1). Thus (k − 1, q) ∈ B,
and the sublattice e(M(k−1, q)) of L(m,B) isomorphic to M3 is the interval
[(k−1, q), (k, q+1)], so that e(k, q+1) = (k, q+1). But then e(k, 0) = (k, 0)
and, from (1,1),

(0,1) e(i, j) = (i, j) for all i ≤ k and j ≤ k − 1.

A.2. Similarly we find that e(0, k) ≤ (0,m) implies that

(1,0) e(i, j) = (i, j) for all i ≤ k − 1 and j ≤ k.
A.3. Suppose that e(k, 0) 6≤ (m, 0), that is, let e(k, 0) = uk−1,0. By

(1,1), for the element (i, 0) ∈ C we have (i, 0) = e(i, 0) ∈ B, and hence
i = k−1. We have e(M(k−1, 0)) = M(k−1, 0) and thus e(k, 1) = (k, 1), and
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e(k−1, 1) = (k−1, 1), e(k−1, 0) = (k−1, 0) by (1,1). Since e(k, 0) = uk−1,0, it
follows that e(uk−1,0) must be the remaining element (k, 0) of the sublattice
e(M(k − 1, 0)) = M(k − 1, 0) of L(m,B). The mapping α1 : L(k,C) →
L(k,C) exchanging (k, 0) and uk−1,0 and leaving all other elements fixed is
an automorphism of L(k,C), and the composite e1 = e ◦ α1 satisfies (0,1).

A.4. Suppose that e(0, k) 6≤ (0,m). Then e(0, k) = u0,k−1. Similarly to
A.3, for the automorphism α2 of L(k,C) exchanging (0, k) and u0,k−1, the
composite e ◦ α2 satisfies (1,0).

We have α2 ◦α1 = α1 ◦α2 because k > 1. Applying these automorphisms
when needed, we obtain an embedding ẽ with Im(ẽ) = Im(e) and ẽ(i, j) =
(i, j) for all i, j ≤ k.

Case B. If e(k, 0) ∈ ((0,m)]∪ {u0,q} and e(0, k) ∈ ((m, 0)]∪ {up,0}, we
apply the previous argument to the map e∗ given by e∗(x, y) = e(y, x).

Let m ≥ 1. An interval [(i, j), (i + m, j + m)] of a lattice L is called
its (i, j,m)-block if it is isomorphic to some permutation lattice L(m,B).
Thus the interval [(i, j), (i + m, j + m)] of a permutation lattice L(n,A)
is its (i, j,m)-block if and only if for any p ∈ {i, . . . , i + m − 1} there is
q ∈ {j, . . . , j+m−1} with (p, q) ∈ A and vice versa. Thus the (i, j, 1)-blocks
of L(n,A) are exactly its intervals M(i, j) with (i, j) ∈ A.

We say that a 0-homomorphism s : L(n,A) → L(m,B) is standard if
s(C2

n) ⊆ C2
m. By Lemma 2.2, the restriction of s to C2

n ⊂ L(n,A) has the
form s(i, j) = (g(i), h(j)) or s(i, j) = (h(j), g(i)) for some surjective maps
g, h : Cn → Ck with k ≤ m,n.

Corollary 2.3. Let f : L(n,A) → L(m,B) be a nonconstant 0-homo-
morphism. Then

(1) Im(f) is a (0, 0, k)-block for some k ≤ m,n;
(2) if L(m,B) has no (0, 0, k)-block with k < m then f is surjective;
(3) there is a standard 0-homomorphism s : L(n,A) → L(m,B) such

that Ker(s) = Ker(f) and Im(s) = Im(f); if s(i, j) = (g(i), h(j)) for
all (i, j) ∈ C2

n we say that f is direct and if s(i, j) = (h(j), g(i)) we
say that f is reversing;

(4) for any (i, j, q)-block Q, if f is direct then f(Q) = {(g(i), h(j))} or
f(Q) is a (g(i), h(j), k)-block for k = g(i+q)−g(i) = h(j+q)−h(j) ≤
q; and if f is reversing then f(Q) = {(h(j), g(i))} or f(Q) is an
(h(j), g(i), k)-block for k = g(i+ q)− g(i) = h(j + q)− h(j) ≤ q.

Thus if f : L(n,A) → L(m,B) is a 0-homomorphism, then Im(f) =
((k, k)] for some k ≤ m,n and f is standard whenever (0, k−1), (k−1, 0) /∈ B.

Next we define specific permutation lattices L(i) = L(n(i), A(i)) with
i = 0, 1, . . . .
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We set n(i) = 3i+ 9 for every i ≥ 0, and let A(i) consist of the pairs

(1) (3k, 3k + 2) and (3k + 2, 3k) with k ∈ {0, . . . , i+ 2},
(2) (3k − 2, 3k + 1) with k ∈ {1, . . . , i+ 2},
(3) (n(i)− 2, 1).

Lemma 2.4. If i, j ≥ 0 and f : L(i) → L(j) is a nonconstant 0-homo-
morphism, then i = j and f is the identity mapping of L(i).

Proof. First we show that the lattice L(j) has no (0, 0, l)-block with
l < n(j). There is no such block for l ≤ 2 because (0, 2), (2, 0) ∈ A(j). Since
(n(j) − 2, 1) ∈ A(j), there is no (0, 0, l)-block with 3 ≤ l ≤ n(j) − 2. For
l = n(j) − 1, we have l = 3j + 8 and (3j + 6, 3j + 8) ∈ A(j)—and since
3j + 6 < l, this completes the proof that L(j) has no proper (0, 0, l)-blocks.
Therefore f : L(i) → L(j) is surjective and standard, and n(i) ≥ n(j), by
Corollary 2.3.

In this paragraph only, we say that sublatticesA,B ⊆ L(k) isomorphic to
M3 form an independent pair if no element of A is comparable to any element
of B. It is clear that sublattices f(A), f(B) ⊆ L(j) form an independent pair
only when A,B ⊆ L(i) do. It is routine to verify that for any (p, q) 6= (n(j)−
2, 1) the sublatticeM(p, q) ⊆ L(j) belongs to at most two independent pairs,
whileM(n(j)−2, 1) forms an independent pair with everyM(r, s) other than
those with (r, s) ∈ {(0, 2), (2, 0), (n(j)−3, n(j)−1), (n(j)−1, n(j)−3)}. Since
j ≥ 9, there are at least four independent pairs containing M(n(j)− 2, 1) ⊆
L(j) = Im(f). Each M(p, q) ⊆ L(i) with (p, q) 6= (n(i) − 2, 1) belongs to
at most two independent pairs, so that from Lemma 2.2 it follows that
f(M(n(i) − 2, 1)) = M(n(j) − 2, 1), and since n(j) − 2 > 1, the surjective
homomorphism f is direct, that is, there are surjective maps g, h : Cn(i) →
Cn(j) such that f(p, q) = (g(p), h(q)) for all p, q ∈ Cn(i). Clearly g(n(i)−2) =
n(j)− 2 and h(q) = q for q ∈ {0, 1, 2}.

If M(r, s) is the sublattice of L(i) for which f(M(r, s)) = M(2, 0) ⊆ L(j)
then h(s) = 0, and s = 0 follows because h(1) = 1 and h preserves order.
Thus g(2) = 2 and g(3) = 3, and hence g(p) = p for p ∈ {0, 1, 2, 3}. If
f(M(r, s)) = M(0, 2) then r = 0 because g(1) = 1 and g preserves order,
and hence h(q) = q for q ∈ {0, 1, 2, 3}. Altogether g(x) = h(x) = x for all
x ≤ 3.

Proceeding inductively from the initial claim that g(x) = h(x) = x for
all x ≤ 3, we next suppose that 1 ≤ k ≤ j + 2 is such that g(x) = h(x) = x
for every x ≤ 3k. First we note that the sublattice f(M(3k − 2, 3k + 1)) of
L(j) cannot be a singleton because g(3k−2) = 3k−2 < 3k−1 = g(3k−1).
Since L(j) is a permutation lattice, we must have f(M(3k − 2, 3k + 1)) =
M(3k − 2, 3k + 1) and hence h(3k + 1) = 3k + 1 and h(3k + 2) = 3k + 2.
Then f cannot collapse the sublattice M(3k + 2, 3k) ⊆ L(i) and hence
g(3k + 2) = 3k + 2 and g(3k + 3) = 3k + 3, that is, g(x) = x for every
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x ≤ 3(k + 1). We thus have f(M(r, s)) = M(3k, 3k + 2) ⊆ L(j) only for
(r, s) = (3k, 3k + 2), and hence also h(x) = x for all x ≤ 3(k + 1). This
induction shows that g(x) = h(x) = x for all x ≤ 3k with 1 ≤ k ≤ j + 3,
that is, for all x ≤ n(j). Now if n(j) < n(i) then n(j) < n(i)− 2 and hence
n(j) = g(n(j)) ≤ g(n(i)−2); but this contradicts the earlier found fact that
g(n(i)− 2) = n(j)− 2. Therefore i = j and g = h is the identity map of Cn,
and hence f is the identity endomorphism of L(i), as was to be shown.

Next we use the lattices L(j) = L(n(j), A(j)) from Lemma 2.4 to build
permutation lattices representing finite sets of natural numbers. Let Y =
{y0, . . . , yk−1} be a nonvoid subset of N = {0, 1, . . .} indexed in the ascending
order, that is, let y0 < y1 < · · · < yk−1.

We define m0
Y = 0 and mp

Y =
∑p−1
i=0 n(yi) for p ∈ {1, . . . , k}, and write

mY = mk
Y . In the first step, a lattice L(mY , CY ) is defined as the permuta-

tion lattice whose interval Jp = [(mp
Y ,m

p
Y ), (mp+1

Y ,mp+1
Y )] is isomorphic to

the lattice L(yp) = L(n(yp), A(yp)) for each p ∈ k. Described formally, the
set CY consists of all (q, r) ∈ mY ×mY for which there exists p ∈ k such
that mp

Y ≤ q, r < mp+1
Y and (q −mp

Y , r −m
p
Y ) ∈ L(yp).

It is then clear that (0, 0, s)-blocks of L(mY , CY ) are exactly those with
s = mi

Y for some i ≤ k, and the intervals Jp = [(mp
Y ,m

p
Y ), (mp+1

Y ,mp+1
Y )]

with p ∈ k isomorphic to L(yp) are also blocks of L(mY , CY ). For each p ∈ k,
define πp =

∧{π(q, r) | (q, r) ∈ Jp ∩ CY }, and let αp be the congruence of
L(mY , CY ) complementary to πp. Thus αp is the least congruence collapsing
the interval Jp for each p ∈ k. The lattice L(mY , CY )/πp is thus isomorphic
to L(yp) for each p ∈ k, and L(mY , CY ) is a subdirect product of the lattices
L(yp) with p ∈ k.

In the second step, we extend L(mY , CY ) to a permutation lattice L[BY ]
= L(mY + 1, BY ) by the requirement that (q, r) ∈ BY iff either (q − 1, r) ∈
CY or (q, r) = (0,mY ). It is clear that L[BY ] is a permutation lattice which
is subdirect in the product of L(mY , CY ) and a single copy of M3.

Lemma 2.5. If Y ⊂ N is finite and nonvoid then

(1) L[BY ] has no proper (0, 0, q)-block ;
(2) L[BY ] has no (0, 1, q)-block at all ;
(3) the (1, 0, q)-blocks of L[BY ] and the (0, 0, q)-blocks of L(mY , CY ) are

the same.

Lemma 2.6. For any i and Y , the only 0-homomorphism f : L(i) →
L[BY ] is constant.

Proof. If f : L(i) → L[BY ] is nonconstant, then it is surjective, by
Corollary 2.3(2) and Lemma 2.5(1). Let hp : L[BY ] → L(yp) be the sur-
jective homomorphism with Kerhp = πp ∨ α(0,mY ) for some p ∈ k. Then
hp◦f : L(i)→ L(yp) is surjective, and hence i = yp and hp◦f is the identity,
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by Lemma 2.4. But then f is also injective, and it maps a proper subinterval
of L[BY ] isomorphically onto L[BY ]—a contradiction.

For a nonvoid subset Z of a finite Y ⊂ N define

πZ =
∧
{πp | yp ∈ Z} = α(0,mY ) ∨

∨
{αq | yq ∈ Y \ Z},

where πp and αq are respectively the largest and the least extensions of the
identically named congruences from the interval L(mY , CY ) to all of L[BY ].
Thus πp ≥ α(0,mY ) and αp∧α(0,mY ) is the diagonal congruence for every
yp ∈ Y .

Proposition 2.7. If Y = {y0, . . . , yk−1} and Z = {z0, . . . , zl−1} are
nonvoid subsets of N, then

(1) there exists a nonconstant 0-homomorphism L[BY ] → L[BZ ] only
when Z ⊆ Y ;

(2) if Z ⊆ Y and f : L[BY ]→ L[BZ ] is a nonconstant 0-homomorphism
then f is direct and surjective, and Ker(f) = πZ ∧ π(0,mY );

(3) if Z,Z ′ ⊆ Y are nonvoid , then L[BY ] is isomorphic to a sublattice
of L[BZ ]× L[BZ′ ] if and only if Y = Z ∪ Z ′.

Proof. Let f : L[BY ]→ L[BZ ] be a nonconstant 0-homomorphism. Then
f is surjective, by Corollary 2.3(2) and Lemma 2.5(1). Since f is surjective
and because only (0, 1) and (1, 0) are the atoms in L[BZ ], we must have
f(1, 0) ∈ {(0, 0), (1, 0), {0, 1)}. If f(1, 0) = (0, 1) then Corollary 2.3 and
Lemma 2.5(2)(3) imply that f(mY + 1,mY ) = (0, 1), and thus f(1,mY ) =
(0, 1). But then f(0,mY ) ≤ (0, 1), and from f(1, 0) ∧ f(0,mY ) = (0, 0)
it follows that f(0,mY ) = (0, 0). Since (0,mY ) ∈ BY and (0, 0) /∈ BZ
we get the contradictory (0, 1) = f(1, 0) ≤ f(1,mY + 1) = (0, 0). Thus
f(1, 0) 6= (0, 1). Suppose that f(1, 0) = (0, 0). Then f maps the (1, 0,mY )-
block of L[BY ] isomorphic to L(mY , CY ) onto L[BZ ], by Lemma 2.5(1) and
Corollary 2.3(2); in particular, f(mY + 1,mY ) = (mZ + 1,mZ + 1). On
the other hand, by Lemma 2.6, the restriction of f to the (1, 0,m1

Y )-block of
L[BY ] isomorphic to L(y0) must be constant, that is, f(m1

Y ,m
1
Y +1) = (0, 0).

Then the restriction of f to the (m1
Y ,m

1
Y + 1, n(y1))-block of L(mY , CY )

isomorphic to L(y1) preserves the zero, and hence must be constant by
Lemma 2.6 again; and a simple inductive argument along these lines shows
that f(mY +1,mY ) = (0, 0), a contradiction. The only remaining possibility
is that f(1, 0) = (1, 0). Therefore f is direct.

There exists a unique (r, s) ∈ BY such that f(r, s) = (0,mZ), and we
cannot have r > 0 because f(1, 0) = (1, 0). Thus f(0,mY ) = (0,mZ) and
f(1,mY + 1) = (1,mZ + 1), and there are surjective g, h : CmY +1 → CmZ+1

such that f(i, j) = (g(i), h(j)) for i, j ∈ CmY +1. In particular, h(mY ) = mZ

and g(mY + 1) = h(mY + 1) = mZ + 1. Therefore Ker(f) ⊆ π(0,mY ), and
f is a direct 0-homomorphism that maps the interval [(1, 0), (mY + 1,mY )]
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of L[BY ] isomorphic to L(mY , CY ) onto the interval [(1, 0), (mZ + 1,mZ)]
isomorphic to L(mZ , CZ). We shall now investigate the surjective domain-
range restriction f ′ of f to these intervals, temporarily setting f ′(i, j) =
f(i+ 1, j) to simplify the notation.

Since the (0, 0, s)-blocks of the lattice L(mY , CY ) are exactly those with
s = mi+1

Y for some i ∈ k and because L(mZ , CZ) has a similar property,
there is an order-preserving surjective mapping φ : (k + 1) → (l + 1) such
that φ(0) = 0, φ(k) = l and f ′(mi

Y ,m
i
Y ) = (mφ(i)

Z ,m
φ(i)
Z ) for every i ∈ k.

Choose zj ∈ Z and select (q′, r′) ∈ CZ with mj
Z < q′, r′ < mj+1

Z .
By Lemma 2.2(1a) and the definitions of L(zj) and of L(mY , CY ), there
is a unique (q, r) ∈ CY such that f ′(M(q, r)) = M(q′, r′), and a unique
yi ∈ Y such that mi

Y < q, r < mi+1
Y . Let ei : L(yi) → L(mY , CY ) denote

the isomorphism from L(yi) onto the interval [(mi
Y ,m

i
Y ), (mi+1

Y ,mi+1
Y )] of

L(mY , CY ), and let pj : L(mZ , CZ) → L(zj) be the surjective homomor-
phism with Ker(pj) = πj . Since f ′ is nonconstant on the image of ei and
πj is the diagonal congruence on the interval [(mj

Z ,m
j
Z), (mj+1

Z ,mj+1
Z )] of

L(mZ , CZ), the composite γi,j = pj ◦ f ′ ◦ ei is nonconstant. In addition,
(mφ(i)

Z ,m
φ(i)
Z ) = f ′(mi

Y ,m
i
Y ) ≤ f ′(q, r) = (q′, r′), so that pj(m

φ(i)
Z ,m

φ(i)
Z )

is the zero of L(zj). Thus γi,j : L(yi) → L(zj) is a nonconstant 0-homo-
morphism, and hence yi = zj and γi,j is the identity map, by Lemma 2.4.
But then Z ⊆ Y , and (1) is proved.

Now if φ(i) < j, then (mj
Z ,m

j
Z) = f ′(u, v) for some (u, v) satisfying

(mi
Y ,m

i
Y ) < (u, v) < (q, r), and hence pj(f ′(u, v)) is the zero of L(zj),

contradicting the fact that γi,j is the identity map. Therefore φ(i) = j.
We also know that pj(m

φ(i+1)
Z ,m

φ(i+1)
Z ) = pj(f ′(mi+1

Y ,mi+1
Y )) is the unit of

L(zj). If φ(i+ 1) > j + 1 then there must be some (s, t) satisfying (q, r) <
(s, t) < (mi+1

Y ,mi+1
Y ) such that f ′(s, t) = (mj+1

Z ,mj+1
Z ). But then pj(f ′(s, t))

is the unit of L(zj) and hence γi,j is not the identity. Therefore φ(i+ 1) =
j+1 = φ(i)+1 as well as φ(i) = j, and hence Ker(f ′) ⊆ πj for every zj ∈ Z.
Therefore Ker(f) ⊆ πZ .

If yi ∈ Y \ Z, then γi,j : L(yi) → L(zj) is the constant map for every
zj ∈ Z in view of Lemma 2.4. Since L(mZ , CZ) is a subdirect product of
the lattices L(zj) with zj ∈ Z, it follows that αi ⊆ Ker(f ′). Altogether,
Ker(f) = πZ ∧ π(0,mY ), and hence (2) holds.

For (3), let f and f ′ : L[BY ] → L[BZ′ ] be 0-homomorphisms as in (2).
If Y = Z ∪ Z ′ then Ker(f) ∧ Ker(f ′) is the diagonal congruence. If yp ∈
Y \ (Z ∪ Z ′), then αp ⊆ Ker(f) ∧ Ker(f ′), and hence no homomorphism
L[BY ]→ L[BZ ]× L[BZ′ ] can be injective.

The definition of A. We let A consist of the singleton lattice A∅ and
all lattices AW = L[BW ] with finite nonvoid W ⊂ N.
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Theorem 2.8. The variety Var0(M3) is Q-universal.

Proof. We show that the set A just defined satisfies conditions (P1)–
(P4).

Condition (P1) obviously holds. For (P2), let X = Y ∪Z be finite. Then
AX is isomorphic to a 0-sublattice of AY × AZ by Proposition 2.7(3), and
hence AX ∈ Q{AY , AZ}. For (P3), suppose that X 6= ∅ and AX ∈ Q{AY }.
Then AX is a sublattice of some Cartesian power AkY . The restriction of
a product projection AkY → AY to AX is a nonconstant 0-homomorphism
AX → AY only when Y ⊆ X is nonvoid, and all of these restrictions have
the same kernel θ = πY ∧π(0,mX), by Proposition 2.7. But θ is the diagonal
congruence only when Y = X, and hence (P3) holds.

To prove (P4), suppose that B,C ∈ QA are finite and AX is a 0-
sublattice of B × C. It suffices to consider the case of X 6= ∅. Let rB :
AX → B and rC : AX → C denote the domain restrictions of the two prod-
uct projections. If rB is constant, then AX is isomorphic to a 0-sublattice
of C and hence (P4) holds for Y = ∅ and Z = X. We may thus assume that
both rB and rC are nonconstant. It is also clear that AX is a 0-sublattice
of Im(rB) × Im(rC). Since B ∈ QA is finite, the lattice B is a 0-sublattice
of some finite product P =

∏{AYi | i ∈ I ′}; let pi : P → AYi denote the
product projection, and let I be the set of all i ∈ I ′ for which the composite
fi = pi ◦ rB : AX → AYi is nonconstant, and hence also Yi 6= ∅. For each
i ∈ I we obtain Yi ⊆ X by Proposition 2.7(1) and Ker(fi) = πYi ∧ π(0,mX)
by Proposition 2.7.(2). For the subset Y =

⋃{Yi | i ∈ I} of X we then have
πY ∧ π(0,mX) = Ker(rB) because the projections pi with i ∈ I ′ separate
points of Im(rB), and Proposition 2.7(2) then implies that Im(rB) ⊆ B is
isomorphic to AY (with nonvoid Y ). Therefore AY ∈ Q{B}. The same ar-
gument shows that Im(rC) ∼= AZ ∈ Q{C} for some nonvoid Z ⊆ X. But
then X = Y ∪ Z, by Proposition 2.7(3), and hence (P4) holds.

Remark 2.9. The only nontrivial variety of modular 0-lattices not con-
taining Var0(M3) is the variety D0 of distributive 0-lattices, and the only
nontrivial critical algebra in D0 is the 2-element lattice. Theorem 2.8 thus
gives a complete characterization of Q-universal varieties of modular 0-
lattices. Together with Remark 1.6, this observation justifies the claim made
in the abstract.
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