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HYPERSURFACES IN SPACES OF CONSTANT CURVATURE
SATISFYING SOME RICCI-TYPE EQUATIONS

BY

KATARZYNA SAWICZ (Częstochowa)

Abstract. We investigate hypersurfaces M in semi-Riemannian spaces of constant
curvature satisfying some Ricci-type equations and for which the tensor H3 is a linear
combination of the tensor H2, the second fundamental tensor H of M and the metric
tensor g of M .

1. Introduction. Let (M,g), n = dimM ≥ 4, be a semi-Riemannian
manifold and let ∇, R, S, C and κ be the Levi–Civita connection, the
curvature tensor, the Ricci tensor, the Weyl conformal curvature tensor and
the scalar curvature of (M,g), respectively. Let UR, US and UC be to subsets
of M defined by

UR =
{
x ∈M

∣∣∣∣R−
κ

(n− 1)n
G 6= 0 at x

}
,

US =
{
x ∈M

∣∣∣∣S −
κ

n
g 6= 0 at x

}
,

UC = {x ∈M | C 6= 0 at x}.
Evidently, US ⊂ UR and UC ⊂ UR. Further, let the (0, 4)-tensor B be a gen-
eralized curvature tensor on M . According to [24] the generalized curvature
tensor B on M satisfies the Ricci-type equation if on M we have R·B = B ·B.
If either B = C or B = R− C satisfies the Ricci-type equation then

R · C = C · C,(1)

C ·R = C · C,(2)

respectively. We extend the above notion. Namely, the equation C ·B = B ·B
will also be called a Ricci-type equation. If the tensors B = R or B = C−R
satisfy the latter equation then

R · C = R ·R,(3)
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C ·R = R ·R,(4)

respectively. Clearly, we consider (1)–(4) on UC ∩ US ⊂ M . For a more
general extension of the notion of the Ricci-type equation we refer to [2].

Let M be a hypersurface in a semi-Riemannian space Nn+1
s (c) of con-

stant curvature with signature (s, n + 1 − s), n ≥ 4, where κ̃ is the scalar
curvature of the ambient space and c = κ̃/n(n+ 1). We denote by UH the
set of all points of M at which the tensor H2, the square of the second fun-
damental tensor H of M , is not a linear combination of the metric tensor g
and H. It is known that UH ⊂ UC ∩ US ⊂ M . For precise definitions of the
symbols used we refer to Sections 2 and 3. We investigate hypersurfaces M
in Nn+1

s (c), n ≥ 4, satisfying on UH ⊂ M one of the Ricci-type equations
(1)–(4). In the case of (1) or (2), in addition, we assume that on UH we have

H3 = φH2 + ψH + %g,(5)

where φ, ψ and % are some functions on UH . In the case of (3) or (4) we
do not need this additional assumption (see Remark 3.2). We prove (see
Theorem 4.1) that if at every point of UH either (1), or (2), or (3) and (5),
or (4) and (5) is satisfied then on this set we have

H3 = tr(H)H2 + ψH + %g.(6)

Further, in Section 5 we prove that if at every point of UH one of the
equations (1)–(4) is satisfied then on this set we have

rankH = 2,(7)

which is equivalent on UH to (see Theorem 3.2)

R ·R =
κ̃

n(n+ 1)
Q(g,R).(8)

Thus the hypersurface M is pseudosymmetric ([7, Theorem 3.1]). We note
that (7) implies (cf. Proposition 3.1)

H3 = tr(H)H2 + ψH,(9)

i.e. on UH we have % = 0.
We recall that a semi-Riemannian manifold (M,g), n ≥ 4, is said to be

pseudosymmetric ([8, Section 3.1]), resp., a manifold with pseudosymmetric
Weyl tensor ([8, Section 12.6]), if at every point of M the tensors R ·R and
Q(g,R), resp. C ·C and Q(g, C), are linearly dependent. The first condition
is equivalent on UR ⊂M to

R ·R = LRQ(g,R),(10)

where LR is some function on UR. The second condition is equivalent on
UC ⊂M to

C · C = LCQ(g, C),(11)
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where LC is some function on UC . If on M we have

R ·R = 0(12)

then the manifold (M,g) is called semisymmetric. Theorem 4.3 of [22] and
Lemma 4.1 and Theorem 4.1 of [5] imply

Theorem 1.1. If M is a hypersurface in Nn+1
s (c), n ≥ 4, with pseu-

dosymmetric Weyl tensor , satisfying (9) on UH ⊂M , then (8) holds on this
set.

Theorem 5.2 of [27] shows that the above theorem remains true if we
replace (9) by (6). We note that on the subset M − UH of a hypersurface
M in Nn+1

s (c), n ≥ 4, (10) and (11) are always satisfied (see e.g. [22, Theo-
rem 3.1]). Hypersurfaces satisfying (10), resp. (11), were investigated in [3],
[5], [6], [7], [15] and [23], resp. in [20], [21] and [22]. We say that (10) and
(11) are conditions of pseudosymmetry type. For a recent review of results
on manifolds satisfying such conditions we refer to [4] (see also references
therein).

Hypersurfaces M in Nn+1
s (c), n ≥ 4, satisfying (9) on UH ⊂ M were

investigated in many papers: [1], [3], [5]–[7], [9]–[13], [15], [17], [19]–[23]
and [26]. These papers are also related to the P. J. Ryan problem (see
e.g. [10] and [11]).

Hypersurfaces M in Nn+1
s (c), n ≥ 4, satisfying (6) on UH ⊂ M were

investigated in [2], [18] and [27]. In the present paper we continue the inves-
tigation of hypersurfaces satisfying (6). We will impose no restrictions on
the signature of the ambient space. Thus in particular, the ambient space
can be an (n + 1)-dimensional, n ≥ 4, Lorentzian space of constant curva-
ture or in particular an (n + 1)-dimensional, n ≥ 4, Minkowski space. We
mention that semisymmetric and conformally flat Lorentzian hypersurfaces
in Minkowski spaces were investigated in [28] and [29], respectively. We also
refer to [30] for results related to semisymmetric hypersurfaces in anti-de
Sitter space.

Our main results are given in Theorems 5.1–5.4. We prove that if at
every point of UH ⊂M one of the equations (1)–(4) is satisfied then on this
set we have

κ̃

n+ 1
=

κ

n− 1
.(13)

This together with Proposition 4.3 reduces (1), (3) and (4) to R ·C = C ·C
= 0, R ·C = R ·R = 0 and C ·R = R ·R = 0, respectively. Moreover, on UH
we have κ = κ̃ = 0. If (2) holds on UH then C ·R = C ·C = 0 and (8) hold
on this set. However, the scalar curvatures κ and κ̃ are not necessarily equal
to zero. At the end of Section 5 we give examples of hypersurfaces related
to our main results.
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The author would like to express her thanks to Professor Ryszard Deszcz
for his help during the preparation of this paper.

2. Preliminaries. Throughout this paper all manifolds are assumed
to be connected paracompact manifolds of class C∞. Let (M,g) be an n-
dimensional, n ≥ 3, semi-Riemannian manifold and let ∇ be its Levi-Civita
connection and Ξ(M) the Lie algebra of vector fields on M . We define on
M the endomorphisms X ∧A Y and R(X,Y ) of Ξ(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where A is a symmetric (0, 2)-tensor on M and X,Y,Z ∈ Ξ(M). The Ricci
tensor S, the Ricci operator S and the scalar curvature κ of (M,g) are
defined by S(X,Y ) = tr{Z 7→ R(Z,X)Y }, g(SX,Y ) = S(X,Y ) and κ =
trS. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1
n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.

Now the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R and
the Weyl conformal curvature tensor C of (M,g) are defined by

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3,X4),

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4),

where Xi ∈ Ξ(M). Let B(X,Y ) be a skew-symmetric endomorphism of
Ξ(M) and let B be the (0, 4)-tensor associated with B(X,Y ) by

B(X1,X2,X3,X4) = g(B(X1,X2)X3,X4).(14)

The tensor B is said to be a generalized curvature tensor if

B(X1,X2,X3,X4) +B(X2,X3,X1,X4) +B(X3,X1,X2,X4) = 0,

B(X1,X2,X3,X4) = B(X3,X4,X1,X2).

Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be
defined by (14). We extend B(X,Y ) to a derivation B(X,Y )· of the algebra
of tensor fields on M , by assuming that it commutes with contractions and
B(X,Y ) · f = 0 for any smooth function f on M . Now for a (0, k)-tensor
field T , k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . ,Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . ,Xk;X,Y )

= −T (B(X,Y )X1,X2, . . . ,Xk)− · · · − T (X1, . . . ,Xk−1,B(X,Y )Xk).

In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-
tensor Q(A, T ) by
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Q(A, T )(X1, . . . ,Xk;X,Y ) = (X ∧A Y · T )(X1, . . . ,Xk;X,Y )

= −T ((X ∧A Y )X1,X2, . . . ,Xk)− · · · − T (X1, . . . ,Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting in
the above formulas B = R or B = C, T = R or T = C or T = S, A = g or
A = S, we get the tensors R · R, R · C, C · R, C · C, R · S, C · S, Q(g,R),
Q(S,R), Q(g, C) and Q(g, S).

For symmetric (0, 2)-tensors E and F we define their Kulkarni–Nomizu
product E ∧ F by

(E ∧ F )(X1,X2,X3,X4) = E(X1,X4)F (X2,X3) + E(X2,X3)F (X1,X4)

−E(X1,X3)F (X2,X4)− E(X2,X4)F (X1,X3).

Clearly, the tensors R, C, G and E∧F are generalized curvature tensors. For
a symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = 1

2E ∧ E.
We have g = G = 1

2g∧g. We note that the Weyl tensor C can be represented
in the form

C = R− 1
n− 2

g ∧ S +
κ

(n− 2)(n− 1)
G.(15)

We also have (see e.g. [12, Section 3])

Q(E,E ∧ F ) = −Q(F,E).(16)

Now (15) and (16) yield

Q(g, C) = Q(g,R) +
1

n− 2
Q(S,G).(17)

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define their
Kulkarni–Nomizu product E ∧ T by ([10])

(E ∧ T )(X1,X2,X3,X4;Y3, . . . , Yk)

= E(X1,X4)T (X2,X3, Y3, . . . , Yk) + E(X2,X3)T (X1,X4, Y3, . . . , Yk)

− E(X1,X3)T (X2,X4, Y3, . . . , Yk)− E(X2,X4)T (X1,X3, Y3, . . . , Yk).

Using the above definitions we can prove

Lemma 2.1 ([10], [23]). Let E1, E2 and F be symmetric (0, 2)-tensors at
a point x of a semi-Riemannian manifold (M,g), n ≥ 3. Then at x we have

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧E2).

If E = E1 = E2 then

E ∧Q(E,F ) = −Q(F,E).(18)

3. Hypersurfaces in spaces of constant curvature. Let M , n ≥ 3,
be a connected hypersurface isometrically immersed in a semi-Riemannian
manifold (N, gN). We denote by g the metric tensor induced on M from gN .
Further, we denote by ∇ and ∇N the Levi-Civita connections corresponding
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to the metric tensors g and gN , respectively. Let ξ be a local unit normal
vector field on M in N and let ε = gN (ξ, ξ) = ±1. We can write the Gauss
formula and the Weingarten formula of (M,g) in (N, gN) in the following
form: ∇NXY = ∇XY + εH(X,Y )ξ and ∇NXξ = −AX, respectively, where
X,Y are vector fields tangent to M , H is the second fundamental tensor
of (M,g) in (N, gN), A is the shape operator and Hk(X,Y ) = g(AkX,Y ),
k ≥ 1, H1 = H and A1 = A. We denote by R and RN the Riemann–
Christoffel curvature tensors of (M,g) and (N, gN), respectively.

Let xr = xr(yk) be the local parametric expression of (M,g) in (N, gN),
where yk and xr are local coordinates of M and N , respectively, and h, i, j, k
∈ {1, . . . , n} and p, r, t, u ∈ {1, . . . , n+ 1}. The Gauss equation of (M,g) in
(N, gN) has the form

Rhijk = RNprtuB
p
h B

r
i B

t
j B

u
k + ε(HhkHij −HhjHik),

Bk
r =

∂xr

∂yk
,

(19)

where RNprtu, Rhijk and Hhk are the local components of the tensors RN , R
and H, respectively.

If (N, gN) is a conformally flat space then we have ([15, Section 4])

Chijk = µGhijk + εHhijk +
ε

n− 2
(g ∧ (H2 − tr(H)H))hijk,(20)

µ =
1

(n− 2)(n− 1)
(κ− 2S̃rtBr

hB
t
kg
hk + κ̃),(21)

where S̃rt are the local components of the Ricci tensor S̃ of the ambient
space, Ghijk are the local components of the tensor G, and κ̃ and κ are the
scalar curvatures of (N, gN) and (M,g), respectively. From (20) we get

C ·H =
ε

n− 2
(Q(g,H3) + (n− 3)Q(H,H2)(22)

− tr(H)Q(g,H2)) + µQ(g,H),

C ·H2 = ε(Q(H,H3) +
1

n− 2
(Q(g,H4)− tr(H)Q(g,H3)(23)

− tr(H)Q(H,H2))) + µQ(g,H2).

We have

Theorem 3.1 ([21, Theorem 3.1]). Every 2-quasi-umbilical hypersur-
face M , dimM ≥ 4, in a conformally flat semi-Riemannian manifold is
a manifold with pseudosymmetric Weyl tensor.

Let now M be a hypersurface in Nn+1
s (c), n ≥ 4. Clearly, (19) and (21)

read

Rhijk = εHhijk +
κ̃

n(n+ 1)
Ghijk,(24)
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µ =
1

n− 2

(
κ

n− 1
− κ̃

n+ 1

)
,(25)

respectively. Contracting (24) with gij and gkh, we obtain

Shk = ε(tr(H)Hhk −H2
hk) +

(n− 1)κ̃
n(n+ 1)

ghk,(26)

κ = ε((tr(H))2 − tr(H2)) +
(n− 1)κ̃
n+ 1

,(27)

where tr(H) = ghkHhk, tr(H2) = ghkH2
hk and Shk are the local components

of the Ricci tensor S of M . Further, on every hypersurface M in Nn+1
s (c),

n ≥ 4, we have ([19])

R ·R−Q(S,R) = − (n− 2)κ̃
n(n+ 1)

Q(g, C),(28)

which by making use of (17) and (18) turns into

R ·R = Q(S,R)− (n− 2)κ̃
n(n+ 1)

Q(g,R)− κ̃

n(n+ 1)
Q(S,G).(29)

If (8) holds on UH then (29) yields

Q(S,R) =
κ̃

n(n+ 1)
((n− 1)Q(g,R) +Q(S,G)).(30)

Let A be the (0, 2)-tensor on M defined by ([13])

A = H3 − tr(H)H2 +
εκ

n− 1
H.(31)

From Theorem 5.1 of [17] it follows that A, defined by (31), vanishes on
the subset UH of any quasi-Einstein Ricci-semisymmetric hypersurface M
in En+1

s , n ≥ 4. It is also known ([13, Theorem 5.1]) that A = 0 on the subset
UH of a hypersurface M in Nn+1

s (c), n ≥ 4, if and only if on UH we have

R · C − C ·R =
1

n− 2
Q(S,R) +

(n− 1)κ̃
(n− 2)n(n+ 1)

Q(g,R).

Examples of hypersurfaces with nonzero tensor A are given in [13].
On any hypersurface M in Nn+1

s (c), n ≥ 4, we have the following iden-
tities ([13, Theorem 3.1]):

R · C = Q(S,R)− (n− 2)κ̃
n(n+ 1)

Q(g,R)(32)

− (n− 3)κ̃
(n− 2)n(n+ 1)

Q(S,G) +
1

n− 2
g ∧Q(H,A),

C ·R =
n− 3
n− 2

Q(S,R)− (n2 − 3n+ 3)κ̃
(n− 2)n(n+ 1)

Q(g,R)(33)

− (n− 3)κ̃
(n− 2)n(n+ 1)

Q(S,G) +
1

n− 2
H ∧Q(g,A).
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Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (5) on UH ⊂ M .

We set

β1 = ε(φ− tr(H)),

β2 =− ε

n− 2
(φ(2 tr(H)− φ)− (tr(H))2 − ψ − (n− 2)εµ),

β3 = εµ tr(H) +
1

n− 2
(ψ(2 tr(H)− φ) + (n− 3)%),

β4 = β3 − εβ2 tr(H) +
(n− 1)κ̃β1

n(n+ 1)
,

β5 =
κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)
+ β1 tr(H),

β6 = β2 −
(n− 3)κ̃
n(n+ 1)

,

(34)

where the functions φ, ψ and % are defined by (5). If (9) holds on UH then
(34) yields

β1 = 0,

β2 =
1

n− 2

(
εψ +

κ

n− 1
− κ̃

n+ 1

)
,

β3 = ε tr(H)β2,

β4 = 0,

β5 =
κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)
,

β6 = β2 −
(n− 3)κ̃
n(n+ 1)

.

(35)

To end this section we present some results from [3], [5], [7] and [23]
which we apply in the next section.

Theorem 3.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4.

(i) ([3, Theorem 3.1]) The conditions (10) and R ·C = LRQ(g, C) are
equivalent on UC ⊂M .

(ii) ([5, Lemma 4.1 and Theorem 4.1]) If M is pseudosymmetric then
(8) holds on UH ⊂M .

(iii) ([7, Theorem 3.1]) If (7) holds on UH ⊂M then so does (8).
(iv) ([7, Theorem 5.1]) If M is pseudosymmetric then (7) holds on

UH ⊂M .

Remark 3.1. Examples of hypersurfaces in Nn+1
s (c), n ≥ 4, satisfying

(7) are given in [15].
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Proposition 3.1. If M is a pseudosymmetric hypersurface in Nn+1
s (c),

n ≥ 4, then on UH ⊂M we have (9) with

ψ =
1
2

(tr(H2)− (tr(H))2) =
ε(n− 1)

2

(
κ̃

n+ 1
− κ

n− 1

)
.(36)

Proof. Since M is pseudosymmetric, from Theorem 3.2(iv) it follows
that (7) holds on UH . Now, using Lemma 2.1(i) of [9] and (27) we get our
assertion.

Remark 3.2. (i) It is well known that any semi-Riemannian manifold
(M,g), n ≥ 4, satisfies the Walker identity

(37) (R ·R)(X1,X2,X3,X4;X5,X6) + (R ·R)(X3,X4,X5,X6;X1,X2)

+ (R ·R)(X5,X6,X1,X2;X3,X4) = 0,

where X1, . . . ,X6 are vector fields on M .
(ii) Let now M be a hypersurface in Nn+1

s (c), n ≥ 4. Clearly, if (3) or (4)
is satisfied on UH ⊂M then on this set we have

(38) (R · C)(X1,X2,X3,X4;X5,X6) + (R · C)(X3,X4,X5,X6;X1,X2)

+ (R · C)(X5,X6,X1,X2;X3,X4) = 0,

(39) (C ·R)(X1,X2,X3,X4;X5,X6) + (C ·R)(X3,X4,X5,X6;X1,X2)

+ (C ·R)(X5,X6,X1,X2;X3,X4) = 0,

respectively, where X1, . . . ,X6 are vector fields on UH . In [13, Proposition
4.1] it is shown that (38), (39) and

(40) (R · C − C ·R)(X1,X2,X3,X4;X5,X6)

+ (R · C − C ·R)(X3,X4,X5,X6;X1,X2)

+ (R · C − C ·R)(X5,X6,X1,X2;X3,X4) = 0

are equivalent on any semi-Riemannian manifold (M,g), n ≥ 4. Proposi-
tion 5.2 of [23] implies that if on UH ⊂M of a hypersurface M in Nn+1

s (c),
n ≥ 4, (3) or (4) is satisfied then (6) holds on this set.

(iii) In the next section we prove (see Theorem 4.2) that if (5) holds on
UH ⊂M of a hypersurface M in Nn+1

s (c), n ≥ 4, then on this set we have

(41) (C · C)(X1,X2,X3,X4;X5,X6) + (C · C)(X3,X4,X5,X6;X1,X2)

+ (C · C)(X5,X6,X1,X2;X3,X4) = 0.

(iv) The relations (38)–(41) are called the Walker-type identities.

Theorem 3.3. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on

UH ⊂M ,

R · C = LQ(g, C),(42)

where L is some function on UH , then (7) and (9) hold on UH , i.e. (6) holds
with % = 0.
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Proof. Clearly, from (42) it follows that (38) holds on UH . Now, in view
of Proposition 5.1 of [23], on UH we have (6) and

R · S =
κ̃

n(n+ 1)
Q(g, S) + %Q(g,H).(43)

On the other hand, from (42), in view of Theorem 3.2(i), (ii), it follows
that (8) holds on UH , which in view of Theorem 3.2(iv) implies (7) on
UH . Further, from (8), by contraction, we get R · S = κ̃

n(n+1) Q(g, S). This
together with (43) gives % = 0. Our theorem is thus proved.

4. Hypersurfaces satisfying H3 = φH2 + ψH + %g. In this section
we consider hypersurfaces M in Nn+1

s (c), n ≥ 4, satisfying (5) on UH ⊂M .
Applying (5) to (31) we obtain

A = (φ− tr(H))H2 +
(
ψ +

εκ

n− 1

)
H + %g.(44)

Proposition 4.1. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying

(5) on UH ⊂ M for some functions φ, ψ and % on UH , then on this set we
have

(45) (n− 2)R · C = (n− 2)Q(S,R)− (n− 2)2κ̃

n(n+ 1)
Q(g,R)

− (n− 3)κ̃
n(n+ 1)

Q(S,G) + %Q(H,G) + (φ− tr(H))g ∧Q(H,H2),

(46) (n− 2)C ·R =
(

κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)

+ (n− 3)Q(S,R)− (n− 3)κ̃
n(n+ 1)

Q(S,G) + (φ− tr(H))H ∧Q(g,H2),

(n− 2)C · C = β1Q(S, g ∧H) + β4Q(H,G)(47)

+ (n− 3)Q(S,R) + β5Q(g,R) + β6Q(S,G),

where β1, . . . , β6 are defined by (34).

Proof. (32), by making use of (18) and (44), yields (45). Applying now
(5) to (33) and using (18) and (44), we get (46). Further, (5) and (31) yield

H3 − tr(H)H2 = (φ− tr(H))H2 + ψH + %g,
(48)

H4 − tr(H)H3 = (ψ + φ(φ− tr(H)))H2

+ (%+ ψ(φ− tr(H)))H + %(φ− tr(H))g,

Applying (48) to (22) and (23) we obtain

C ·H =
ε(φ− tr(H))

n− 2
Q(g,H2) +

(
µ+

εψ

n− 2

)
Q(g,H)(49)

+
(n− 3)ε
n− 2

Q(H,H2),
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C ·H2 = ε

(
φ− tr(H)

n− 2

)
Q(H,H2)(50)

+
(
µ+

ε

n− 2
(ψ + φ(φ− tr(H)))

)
Q(g,H2)

+
ε

n− 2
(ψ(φ− tr(H))− (n− 3)%)Q(g,H).

Using (25), (26), (34), (49) and (50) we find

C · S = εC · (tr(H)H −H2) +
(n− 1)κ̃
n(n+ 1)

C · g(51)

= −εβ1Q(H,H2)− εβ2Q(g,H2) + β3Q(g,H).

Applying (26) and (34) in (51) we get

C · S = β1Q(H,S) + β4Q(g,H) + β2Q(g, S).(52)

Now (15), (18), (44), (46) and (52) imply

(53) (n− 2)C · C = (n− 2)C ·R− g ∧ (C · S)

= (n− 2)C ·R− g ∧ (β1Q(H,S) + β4Q(g,H) + β2Q(g, S))

= (n− 3)Q(S,R) +
(

κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)

+
(
β2 −

(n− 3)κ̃
n(n+ 1)

)
Q(S,G) + β4Q(H,G)

+ β1(εH ∧Q(g,H2)− g ∧Q(H,S)).

Further, using (24) and (26) and Lemma 2.1 we obtain

(54) H ∧Q(g, εH2)− g ∧Q(H,S)

= H ∧Q(g, ε tr(H)H)−H ∧Q(g, S)− g ∧Q(H,S)

= tr(H)Q(g,R)− (H ∧Q(g, S) + g ∧Q(H,S))

= tr(H)Q(g,R) +Q(S, g ∧H).

Applying (54) and (34) in (53) we get (47). Our proposition is thus proved.

Theorem 4.1. Let M be a hypersurface in Nn+1
s (c), n ≥ 4.

(i) If (3) or (4) hold on UH ⊂M then (44) becomes

A =
(
ψ +

εκ

n− 1

)
H + %g,(55)

i.e. (6) holds on UH , where ψ and % are some functions on UH .
(ii) If (1) or (2) hold on UH ⊂ M and in addition on UH we have (5)

then (44) becomes (55).
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Proof. (i) Since we assume that (3) or (4) holds at a point x ∈ UH , our
assertion is an immediate consequence of Corollary 4.1 of [13].

(ii) Let now (1) or (2) be satisfied at a point x ∈ UH . Applying (47) to
these relations we find that at x the tensors R ·C and C ·R are expressed as
linear combinations of finite sums of tensors of the form Q(E,B), where E is
a symmetric (0, 2)-tensor and B is a generalized curvature tensor. Therefore
our assertion is a consequence of Corollary 4.1 of [13].

Theorem 4.2. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (5)

on UH ⊂ M for some functions φ, ψ and % on UH , then the Walker-type
identity (41) holds on this set.

Proof. This follows immediately from (47) and the fact that for any
symmetric (0, 2)-tensor A and any generalized curvature tensor T we have
the identity

Q(A, T )(X1,X2,X3,X4;X5,X6) +Q(A, T )(X3,X4,X5,X6;X1,X2)

+Q(A, T )(X5,X6,X1,X2;X3,X4) = 0.

Proposition 4.2. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying

(6) on UH ⊂M for some functions ψ and % on UH , then on this set we have

(n− 2)R · C = (n− 2)Q(S,R)− (n− 2)2κ̃

n(n+ 1)
Q(g,R)(56)

− (n− 3)κ̃
n(n+ 1)

Q(S,G) + %Q(H,G),

(n− 2)C ·R =
(

κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)(57)

+ (n− 3)Q(S,R)− (n− 3)κ̃
n(n+ 1)

Q(S,G),

(n− 2)C · C = (n− 3)Q(S,R) + β4Q(H,G)(58)

+β5Q(g,R) + β6Q(S,G),

where β2, . . . , β6 are defined by (34).

Proof. This is an immediate consequence of Proposition 4.1 and Theo-
rem 4.1.

Proposition 4.3. If M is a pseudosymmetric hypersurface in Nn+1
s (c),

n ≥ 4, then on UH ⊂M we have

R · C =
κ̃

n(n+ 1)
Q(g, C),(59)

C ·R =
n− 3

2(n− 2)

(
κ̃

n+ 1
− κ

n− 1

)
Q(g,R),(60)
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C · C =
n− 3

2(n− 2)

(
κ̃

n+ 1
− κ

n− 1

)
Q(g, C).(61)

Proof. From Proposition 3.2 it follows that (9) and (36) hold on UH .
In addition, on UH we have % = 0. Applying this, (17), (30) and (35) in
(56)–(58) we obtain (59)–(61), completing the proof.

Remark 4.1. Proposition 2.1 of [26] states that C ·R = LQ(g,R) implies
C · C = LQ(g, C) on UC ⊂ M of any semi-Riemannian manifold (M,g),
n ≥ 4.

We finish this section with the following two lemmas.

Lemma 4.1. Let M be a hypersurface in Nn+1
s (c), n ≥ 4. Suppose that

at x ∈ UH ⊂M the following condition is satisfied :

Q(S,R)− α1Q(g,R)− α2Q(S,G) + α3Q(H,G) = 0,(62)

where α1, α2, α3 ∈ R.

(i) At x we have

(63) α2 =
κ̃

n(n+ 1)
,

(64) H ∧H2 − ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
g ∧H + εα3G = λH,

(65) Q(H,H3)− ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
Q(g,H2) + α3Q(g,H)

= λQ(H,H2),

where λ ∈ R.
(ii) Moreover , if (6) holds at x then at this point we have

α1 =
(n− 1)κ̃
n(n+ 1)

, α3 = %, λ = tr(H),(66)

Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

n(n+ 1)
G

)
+ α3Q(H,G) = 0.(67)

(iii) If the above assumptions are satisfied and , in addition, % = 0 at x,
then ψ = 0 at x, i.e. (13) holds at x.

Proof. (i) We suppose that κ̃
n(n+1) − α2 6= 0 at x. Now (62) turns into

Q(S,R− α2G)− α1Q(g,R− α2G)

+α3

(
κ̃

n(n+ 1)
− α2

)−1(
Q

(
H,

(
κ̃

n(n+ 1)
− α2

)
G

)
+Q(H, εH)

)
= 0,

whence

Q(S − α1g,R− α2G) + α3

(
κ̃

n(n+ 1)
− α2

)−1

Q(H,R− α2G) = 0,
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and so

Q

(
S − α1g + α3

(
κ̃

n(n+ 1)
− α2

)−1

H,R− α2G

)
= 0.(68)

Since x ∈ UH , at this point we have

S − α1g + α3

(
κ̃

n(n+ 1)
− α2

)−1

H = −εH2

+
(
ε tr(H) + α3

(
κ̃

n(n+ 1)
− α2

)−1)
H +

(
(n− 1)κ̃
n(n+ 1)

− α1

)
g 6= 0.

Now from (68), in view of Lemma 3.4 of [14], it follows that

(R− α2G) · (R− α2G) = Q(S − (n− 1)α2g,R− α2G).

Applying the identity

(R− α2G) · (R− α2G) = R ·R− α2Q(g,R)

we get

R ·R−Q(S,R) = −(n− 2)α2

(
Q(g,R) +

1
n− 2

Q(S,G)
)
,

which, in virtue of (15)–(17), turns into

R ·R−Q(S,R) = −(n− 2)α2Q(g, C).

Comparing the right hand sides of (28) and the last equation we obtain
α2 = κ̃/n(n+ 1), a contradiction. Thus (63) holds at x. Further, applying
(24), (26) and (63) in (62) we find

Q(H2,H)− ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
Q(g,H)− α3Q(H,G) = 0.

This, by making use of (16), yields

−Q(H,H ∧H2) + ε

(
(n− 1)κ̃
n(n+ 1)

− α1

)
Q(H, g ∧H)− α3Q(H,G) = 0,

whence

Q

(
H,H ∧H2 − ε

(
(n− 1)κ̃
n(n+ 1)

− α1

)
g ∧H + α3G

)
= 0.

Since rankH > 1 at x, Lemma 3.4 of [14] now implies (64), and the latter
yields

HhkH
2
ij +HijH

2
hk −HhjH

2
ik −HikH

2
hj + α3(ghkgij − ghjgik)

− ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
(ghkHij + gijHhk − ghjHik − gikHhj)

= λ(HhkHij −HhjHik).
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Transvecting with Hh
l = ghkHkl we find

(69) HijH
3
kl −HikH

3
jl +H2

ijH
2
kl −H2

ikH
2
jl + α3(gijHkl − gikHjl)

− ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
(HijHkl −HjlHik + gijH

2
kl − gikH2

jl)

= λ(HijH
2
kl −HikH

2
jl).

This by symmetrization in l, i leads to (65).
(ii) If (6) holds at x then (65) turns into

(tr(H)− λ)Q(H,H2)− ε
(

(n− 1)κ̃
n(n+ 1)

− α1

)
Q(g,H2) + (α3 − %)Q(g,H) = 0.

Since x ∈ UH , Lemma 2.4(ii) of [19] now implies (66). Now (62) turns
into (67).

(iii) Under our assumptions, (69) reduces to

HijH
3
kl −HikH

3
jl +H2

ijH
2
kl −H2

ikH
2
jl = tr(H)(HijH

2
kl −HikH

2
jl).(70)

Applying (9) we get

ψ(HijHkl −HikHjl) +H2
ijH

2
kl −H2

ikH
2
jl = 0.

Contracting with gij we obtain ψ(tr(H)H −H2) + tr(H2)H2−H4 = 0. We
note that (9) implies H4 = (ψ+ (tr(H))2)H2 +ψ tr(H)H. Now the last two
relations give ψH2 = 0, whence ψ = 0 at x. This, by (36), gives (13), which
completes the proof.

Lemma 4.2. Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on

UH the condition

Q

(
S − αg,R− κ̃

n(n+ 1)
G

)
= 0.(71)

Then (8) holds on UH , where α is a function on UH .

Proof. From (71), in view of Lemma 3.4 of [14], at every point x ∈ UH
we have either rank(S − αg) = 1 or

R− κ̃

n(n+ 1)
G =

λ

2
(S − αg) ∧ (S − αg),

where λ ∈ R − {0}. In the first case, in view of Lemma 2.3 of [16], at x
we have R · R = γ1Q(g,R), γ1 ∈ R. Similarly, in the second case, in view
of Lemma 3.4 of [14], at x we have R · R = γ2Q(g,R), γ2 ∈ R. But from
Theorem 3.2(ii) it follows that γ1 = γ2 = κ̃/n(n+ 1) at x. Thus (8) holds
on UH . Our lemma is thus proved.

5. The Ricci-type equations. In this section we consider hypersur-
faces M in Nn+1

s (c), n ≥ 4, satisfying on UH ⊂ M one of the Ricci-type
equations (1)–(4).



198 K. SAWICZ

Theorem 5.1. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (1)

on UH ⊂ M then the ambient space is a semi-Euclidean space and on this
set we have R · C = C · C = 0 and κ = 0.

Proof. From Theorem 4.1 it follows that (6) holds on UH . Now (1), by
(34), (56) and (58), turns into

Q(S,R)−
(
εψ +

κ

n− 1
− (n− 1)κ̃
n(n+ 1)

)
Q(g,R)(72)

− 1
n− 2

(
εψ +

κ

n− 1
− κ̃

n+ 1

)
Q(S,G) +

%

n− 2
Q(H,G) = 0.

Clearly, this relation is of the form (62). Therefore Lemma 4.1(ii) implies
% = 0. Thus (72) reduces to (71). Now, in view of Lemma 4.2, (8) holds
on UH . Since % = 0, Lemma 4.1(iii) implies (13), which together with (1),
(59) and (61) completes the proof.

Theorem 5.2. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (2)

on UH ⊂M then on this set we have (8), (13) and C ·R = C · C = 0.

Proof. From Theorem 4.1 it follows that (6) holds on UH . Now (2), by
(34), (57) and (58), turns into

β2Q(S,G) +
(n− 3)%
n− 2

Q(H,G) = 0.(73)

Clearly, this is of the form (62). Therefore Lemma 4.1(ii) implies % = 0.
Thus (72) reduces to (71). Now, in view of Lemma 4.2, (8) holds on UH .
Since % = 0, Lemma 4.1(iii) implies (13), which together with (60) and (61)
completes the proof.

Theorem 5.3. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (3)

on UH ⊂ M then the ambient space is a semi-Euclidean space and on UH
we have R ·C = R ·R = 0 and κ = 0.

Proof. From Theorem 4.1 it follows that (6) holds on UH . Now (4), by
making use of (26), (29) and (56), yields

Q

((
εκ̃

n(n+ 1)
tr(H) + %

)
H − εκ̃

n(n+ 1)
H2 +

(n− 1)κ̃2

n2(n+ 1)2 g,G

)
= 0.

By a suitable contraction this gives(
εκ̃

n(n+ 1)
tr(H) + %

)
H − εκ̃

n(n+ 1)
H2 + αg = 0,

where α is some function on UH . It follows that κ̃ = % = 0 on UH . Thus
(6) reduces to (9). This implies (8), which reduces to (12). Evidently, (12)
implies R · C = 0. Further, (12) and (28) imply Q(S,R) = 0. Now in view
of Lemma 4.1(iii) we have (13) and in consequence κ = 0, which completes
the proof.
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Theorem 5.4. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (4)

on UH ⊂ M then the ambient space is a semi-Euclidean space and on UH
we have (8), (13), R ·R = C ·R = 0 and κ = 0.

Proof. From Theorem 4.1 it follows that (6) holds on UH . Now (4), by
making use of (29) and (57), yields

Q(S,R)− κ̃

n(n+ 1)
Q(S,G)−

(
κ

n− 1
+ εψ − (n− 1)κ̃

n(n+ 1)

)
Q(g,R) = 0,

whence

Q

(
S −

(
κ

n− 1
+ εψ − (n− 1)κ̃

n(n+ 1)

)
g,R− κ̃

n(n+ 1)
G

)
= 0.(74)

Clearly, this is of the form (71). Now, in view of Lemma 4.2, (8) holds on UH .
Since % = 0, Lemma 4.1(iii) implies (13), which together with (4) and (60)
completes the proof.

Example 5.1 (i) Examples 4.1 and 5.1 of [12] yield an example of a
hypersurface M in a semi-Euclidean space En+1

s , n ≥ 4, satisfying on UH ⊂
M among other things R · R = R · C = 0, C · S = 0 and κ = 0. Thus (13)
holds on UH . In addition on this set we have

C · C = C ·
(
R− 1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G

)

= C ·R− 1
n− 2

g ∧ (C · S) = 0.

(ii) In [15, Example 5.1] an example is given of a pseudosymmetric hyper-
surface M in Nn+1

s (c), n ≥ 4, c 6= 0, satisfying (13) on UH ⊂M . Evidently,
that example is related to our Theorem 5.2.

(iii) An example of a semisymmetric (R ·R = 0) Einstein (S = (κ/n)g)
hypersurface M in Nn+1

s (c), n ≥ 4, c 6= 0, is given in [25]. Clearly, the set
UH of that hypersurface is empty.
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