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Abstract. The aim of the paper is two-fold. First, we investigate the ψ-Bessel po-
tential spaces on Rn+1

0+ and study some of their properties. Secondly, we consider the
fractional powers of an operator of the form

−A± = −ψ(Dx′)±
∂

∂xn+1
, (x′, xn+1) ∈ Rn+1

0+ ,

where ψ(Dx′) is an operator with real continuous negative definite symbol ψ: Rn → R. We
define the domain of the operator −(−A±)α and prove that with this domain it generates
an Lp-sub-Markovian semigroup.

0. Introduction. Consider the operator

(0.1) (−A±)α =
(
ψ(Dx′)±

∂

∂xn+1

)α
, 0 < α < 1, x = (x′, xn+1) ∈ Rn+1

0+ ,

where ψ(Dx′) is an operator with a real-valued continuous negative definite
symbol, satisfying some special conditions, and Rn+1

0+ = Rn × [0,∞).
It has been proved that the operator with a real continuous negative

definite symbol is the generator of an Lp-sub-Markovian semigroup, and it
is even possible to determine the domain of such an operator in Lp in terms
of certain function spaces (see [FJS] and also [J2]). In [JK1] and [Kn2]
these results were extended to some cases when the symbol of the operator
considered is not necessarily real.

The aim of this paper is to show that the operator of the form (0.1)
with a suitable domain is the generator of an Lp-sub-Markovian semigroup
in Lp(Rn+1

0+ ) and investigate these semigroups, which will depend on the
condition on the boundary xn+1 = 0. We note that this problem was con-
sidered in [Kr] (see also [JK2]) for the situation when the operator can be
decomposed into two parts: one is the one-dimensional fractional deriva-
tive for which the boundary value problem is posed, and the other is some
pseudo-differential operator, which acts “inside” the boundary.

2000 Mathematics Subject Classification: 60J35, 60J75, 46E35, 46B70.
Key words and phrases: sub-Markovian semigroup, generator, ψ-Bessel potential

space.

[221]



222 V. KNOPOVA

To handle this problem we first need to determine the domain of (−A±)α,
0 < α < 1, in terms of appropriate function spaces. In view of [JK1] or [Kn1],
the natural candidates for such domains are the <-Bessel potential spaces
on Rn+1

0+ , where < = Re symb(−A±)α. Note that semigroups generated by
(−A±)α depend on the boundary conditions.

In the first section we collect fundamental results on ψ-Bessel potential
spaces, fractional powers of operators, and subordination in the sense of
Bochner.

In Section 2 we define the ψ-Bessel potential spaces of order s on the half-
space Rn0+, i.e. H̃ψ,s

p,0+ and Hψ,s
p,0+, and investigate some of their properties,

namely we find some dense sets in these spaces, isomorphisms between such
spaces of different order, prove the existence of retractions and coretractions,
as well as interpolation theorems.

In the third section we prove that the operators (−(−A±)α,H<,2p,0+) and

(−(−A±)α, H̃<,2p,0+) are generators of Lp-sub-Markovian semigroups, and find
explicit representations of these semigroups. Solving this problem, we find,
using the Laplace transform technique, the solutions to the equation

(λ+ (−A)α±)f(x) = g(x), x = (x′, xn+1) ∈ Rn+1
+ ,(0.2)

where f ∈ H<,2p,0+ or H̃<,2p,0+, and g ∈ Lp(Rn+1
0+ ), with the Dirichlet (zero or

non-zero) and zero Neumann boundary conditions. Then the representations
of the resolvents of (0.2) give us the corresponding semigroups. In [Kn3] we
considered the operator (0.1) with zero Dirichlet boundary condition; now
we will treat a more general situation.

Acknowledgments. The author thanks Prof. Niels Jacob for a lot of
fruitful discussions and Dr. René Schilling for useful remarks.

1. Preliminaries. In this section we summarize the main results from
the theory of semigroups and subordination in the sense of Bochner, and
recall the definition of ψ-Bessel potential spaces. We refer to [Y], [J2], and
[FJS].

There is one-to-one correspondence between the Bernstein functions f
and the convolution semigroups (ηt)t≥0 via the Laplace transform, i.e.

∞�

0

e−sx ηt(ds) = e−tf(x).(1.1)

We recall that the convolution semigroup of measures ηαt (dx) = σα(x, t)dx
with densities σα(x, t), t > 0, corresponding to the Bernstein function f(x)
= xα is called the one-sided stable semigroup of order α.



OPERATORS ON THE HALF-SPACE 223

Some properties of the functions σα(x, t), t > 0, will be helpful.

(1) The Laplace transform of σα(x, t), x > 0, with respect to t is
∞�

0

e−tµσα(x, t) dt =
e′α(x, µ)
−µ , µ > 0,(1.2)

where e′α(x, µ) is the derivative of the Mittag-Leffler type function
eα(x, µ), µ > 0:

eα(x, µ) := Eα,1(−µyα) =
∞∑

k=0

(−µ)kyαk

Γ (αk + 1)
, x > 0.(1.3)

Here Eα,β(z) is the Mittag-Leffler function. For the properties of such
functions see [BE, Vol. 3, §18.1].

(3) The Laplace transform of e′α(x,µ)
−µ in x is

Lx→z

[
e′α(x, µ)
−µ

]
=

1
µ+ zα

, Re z > 0.(1.4)

(4) The Laplace transform of eα(x, µ) in x is

Lx→z[eα(x, µ)] =
zα

µ+ zα
, Re z > 0.(1.5)

We will need the notion of the subordinated semigroup. Starting with a
sub-Markovian semigroup (Tt)t≥0 on a Banach space X, and the convolution
semigroup (ηt)t≥0 which corresponds to the Bernstein function f , we can
construct the subordinated semigroup

T ft u =
∞�

0

Tsu ηt(ds), u ∈ X,(1.6)

which is again sub-Markovian (see [J1]).
Starting with a closed linear operator (A,D(A)) on the Banach space

X we may apply the Hille–Yosida theorem to check if this operator is the
generator of a strongly continuous contraction semigroup. We will quote the
version of the Hille–Yosida theorem given in [J1].

Denote by R(A) the range of the operator A.

Theorem 1.1 (Hille–Yosida theorem). A closed operator (A,D(A)) on
a Banach space (X, ‖ ·‖X) is the generator of a strongly continuous contrac-
tion semigroup (Tt)t≥0 if and only if the following conditions hold :

(1) D(A) ⊂ X is dense;
(2) A is a dissipative operator , i.e. ‖(λ−A)u‖X ≥ λ‖u‖ for all u ∈ D(A)

and some λ > 0;
(3) R(λ− A) = X for some λ > 0.
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Having the generator (A,D(A)) of a strongly continuous contraction
semigroup (Tt)t≥0 on a Banach space X one may construct for 0 < α < 1
the fractional powers of −A:

(−A)αu =
1

Γ (−α)

∞�

0

t−α−1(Ttu− u) dt, u ∈ D(A),(1.7)

and

(−A)−αu =
1

Γ (α)

∞�

0

tα−1Ttu dt, u ∈ X.(1.8)

Formulae (1.7) and (1.8) are called Balakrishnan’s formulae (see [Y] and
[S]).

We recall the definition of ψ-Bessel potential spaces on Rn. Our refer-
ences on these spaces are [FJS] and [J2].

Let ψ : Rn → R be a continuous negative definite function with the
representation

ψ(ξ) =
�

Rn\{0}
(1− cos(y · ξ)) ν(dy),(1.9)

where the Lévy measure ν(dy) is such that � Rn\{0}(|y|2 ∧ 1) ν(dy) < ∞.
Further, let A be the generator of an Lp-sub-Markovian semigroup (Tt)t≥0,
associated with ψ. For s ≥ 0 define the ψ-Bessel potential space of order s
as

Hψ,s
p = Hψ,s

p (Rn) = (I − A)−s/2(Lp(Rn)),

with the norm given by

‖u‖
Hψ,s
p

= ‖f‖Lp for u = (I −A)−s/2f.

The space Hψ,s
p coincides (see [FJS]) with the closure of S(Rn), the Schwartz

space on Rn, with respect to the norm

‖F−1((1 + ψ(·))s/2û)‖Lp .(1.10)

The spaces Hψ,s
p are defined for a real-valued continuous negative definite

function ψ; however, in some cases we can define them for complex-valued
functions. Let χ(ξ) = ψ(ξ′) + iξn+1, ξ = (ξ′, ξn+1) ∈ Rn+1, where ψ is a
real-valued continuous negative definite function with representation (1.9).
Then we can define the χ-Bessel potential space Hχ,2,1

p = Hχ,2,1
p (Rn+1) as

the closure of the tensor product Hψ,2
p ⊗H1

p with respect to the graph norm
of the operator with symbol χ(ξ) (see [Kn1] for details). Here H1

p is the
classical Sobolev space of order 1.

Lemma 1.2. Suppose that the operators (A,D(A)) and (B,D(B)) with
D(A) ⊂ Lp(X, dµ1) and D(B) ⊂ Lp(Y, dµ2) can be extended to generators
of strongly continuous contraction semigroups (T1(t))t≥0 and (T2(t))t≥0 on
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Lp(X, dµ1) and Lp(Y, dµ2). Then the closure (C,D(A)⊗D(B)
‖·‖C ) of the

operator C = A⊕B = A⊗IX+IY ⊗B with domain D(A)⊗D(B) generates a
strongly continuous contraction semigroup (T (t))t≥0 on Lp(X×Y, dµ1⊗dµ2).
The operator (C,D(C)) is sub-Markovian if (A,D(A)) and (B,D(B)) are.

Here ‖f‖C = ‖Cf‖p,X×Y +‖f‖p,X×Y is the graph norm of the operator C.
The proof of the strong continuity and contractivity of (T (t))t≥0 =

(T1(t)⊕ T2(t))t≥0 is standard and we omit it (see [Kn1] and [Kr]).

2. The ψ-Bessel potential spaces on Rn0+. In the previous section we
gave the definition of the ψ-Bessel potential spaces on Rn. Now we extend
this definition to the case of half-spaces.

Definition 2.1. Let ψ be a continuous negative definite function with
representation (1.9). We define

Hψ,s
p,+ := {f : ∃g ∈ Hψ,s

p , f = g|Rn0+
}

with the norm

‖f‖ψ,s,+ = ‖f‖ψ,s,p,+ = inf
g∈Hψ,s

p , f=g|Rn0+

‖g‖ψ,s,p,

and
H̃ψ,s
p,+ := {f : f ∈ Hψ,s

p , supp f ⊂ Rn0+}

with the norm of Hψ,s
p .

Similarly we can define the spaces Hψ,s
p,− and H̃ψ,s

p,−.

Though we do not need a more general definition, we point out that in
Definition 2.1 we can replace the space Rn0+ by an arbitrary G ⊂ Rn.

We also note that this definition is also applicable to the spaces Hχ,2,1
p ,

where χ±(ξ) = ψ(ξ′) ± iξn+1, ξ = (ξ′, ξn+1) ∈ Rn+1, and the continuous
negative definite function ψ admits representation (1.9).

One may see that

Hψ,s
p,+ = Hψ,s

p

/
H̃ψ,s
p,−, s ∈ R.(2.1)

Knowing dense sets in Hψ,s
p , we can easily find dense sets in Hψ,s

p,0+ and

H̃ψ,s
p,0+:

Theorem 2.2. (a) C∞0 (Rn0+) = C∞0 (Rn)|Rn0+
is dense in Hψ,s

p,+ for all
s > 0.

(b) C∞0 (Rn+) = {f : f ∈ C∞0 (Rn), supp f ⊂ Rn0+} is dense in H̃ψ,s
p,+ for all

s > 0.

For the proof we refer to [Kn2].



226 V. KNOPOVA

Consider the <-Bessel potential spaces, where < = Re symb(−A±)α =
(χ±)α, 0 < α < 1. In [Kn2] it was proved that under some conditions
the operators (−A±)α are isomorphisms between H<,sp and H<,s−2

p . These
conditions are:

(A1) ψ(ξ) = f(φ(ξ)), where f is a Bernstein function, and φ is a real
continuous negative definite function such that for all i, 1 ≤ i ≤ n,
φ′i exists for |ξi| > 0 and does not depend on ξj , i 6= j (we denote
by g′i the derivative of g(ξ1, . . . , ξn) with respect to ξi);

(A2) For ξ ∈ Rn with |ξ| > 0,

sup
ξ∈Rn, |ξj |>0

∣∣∣∣
ξ1 · · · ξkφ′1 · · ·φ′k

φk

∣∣∣∣ <∞, k = 1, . . . , n.

It follows from the Paley–Wiener theorem that the operator (−A+)α is also
an isomorphism between H̃<,sp,0+ and H̃<,s−2

p,0+ .

Theorem 2.3. Let −∞ < t <∞ and 1 < p <∞. Then

(−A+)α : H̃<,tp,+ → H̃<,t−2
p,+

isomorphically , where A+ is an operator with symbol χ+.

Proof. We proceed similarly to [T2, Theorem 2.10.3]. It was proved in
[Kn1] that (−A+)α: H<,tp → H<,t−2

p . What we need to know is that if f ∈
C∞0 (Rn+1) with supp f ⊂ Rn+1

0+ , then supp (−A+)αf ⊂ Rn+1
0+ . For this we

use the Paley–Wiener theorem (see [Y, pp. 226–229]).
Let g ∈ C∞0 (R) be such that supp g ⊂ (−∞, ε) for some ε > 0. Then

we derive an estimate for the Fourier–Laplace transform ĝ(z) of g, where
z = ξ + iη:

|(1 + |z|)N ĝ(z)| =
∣∣∣∣

ε�

−∞

e−izx

(2π)1/2
(1− (−∆)1/2)Ng(x) dx

∣∣∣∣(2.2)

=
∣∣∣∣

ε�

−∞

exη−ixξ

(2π)1/2
(1− (−∆)1/2)Ng(x) dx

∣∣∣ ≤ Cg,Neηε

for all N ∈ N and some constant Cg,N .
Consider

F−1((iξn+1 + ψ(ξ′))αf̂(ξ))

=
�

Rn

∞�

−∞
ei(x

′,ξ′)+ixn+1ξn+1(iξn+1 + ψ(ξ′))αf̂(ξ) dξn+1 dξ
′.

Since the function iz + ψ(ξ′), z ∈ C, has a root z0: Re z0 = 0, Im z0 = ψ(ξ′)
> 0, we extend (see [T, §3.1]) the function (iz+ψ(ξ′))αf̂(ξ′, z) to the lower
half-plane of C. Consider the rectangle {−k ≤ Re z ≤ k, −N ≤ Im z ≤ 0},
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where k,N ≥ 0. In view of (2.2) for f ∈ C∞0 (Rn+1) with supp f ⊂ Rn ×
(−∞, ε), we have

|(1 + ψ(ξ′) + |z|)N f̂(ξ′, z)| ≤ Cf,N,εeηε(2.3)

for some constant Cf,N,ε (uniformly in ξ′, because we can make N large,
and the growth in ξ′ in the denominator will “kill” the growth in ξ′ in the
numerator).

The integrals along {Re z = −k, Im z from −N to 0} and {Re z = k, Im z
from 0 to −N} tend to 0 as k →∞. Indeed, integrating along {Re z = −k,
Im z from −N to 0} we obtain

∣∣∣
0�

−N
ei(x

′,ξ′)−ikxn+1−xτ (−ik − τ + ψ(ξ′))αf̂(ξ′,−k + iτ) dτ
∣∣∣

≤ Cf,N,ε
0�

−N
e(ε−xn+1)τ (k2 + (ψ(ξ′)− τ)2)α/2

(1 + ψ(ξ′) + (τ 2 + k2)1/2)N
dτ,

and the right-hand side tends to 0 as k → ∞ by the Lebesgue dominated
convergence theorem. For the integral along {Re z = k, Im z from 0 to −N}
the estimate is similar.

Therefore in view of the Cauchy theorem, we obtain
∞�

−∞
ei(x

′,ξ′)+ixn+1z(iz + ψ(ξ′))αf̂(ξ) dz

= lim
k→∞

−iN+k�

−iN−k
ei(x

′,ξ′)+ixn+1z(iz + ψ(ξ′))αf̂(ξ′, z) dz

=
∞�

−∞
ei(x

′,ξ′)+ixn+1τ−Nxn+1(iτ +N + ψ(ξ′))αf̂(ξ′, τ − iN) dτ.

In view of (2.3), for some large N and a constant Cf,N,ε we have

|ei(x′,ξ′)+ixn+1τ−Nxn+1(iτ +N + ψ(ξ′))αf̂(ξ′, τ − iN)|

≤ Cf,N,εe
−(ε−xn+1)N (τ2 + (N + ψ)2)α/2

|(1 + ψ(ξ′) + (τ 2 +N2)1/2)N | ,

and thus by the Lebesgue dominated convergence theorem we get
∞�

−∞
ei(x

′,ξ′)+ixn+1z(iz + ψ(ξ′))αf̂(ξ′, z) dz = 0.

Thus, if f ∈ C∞0 (Rn+1) and supp f ⊂ Rn × (−∞, ε) then

F−1((iξn+1 + ψ(ξ′))αf̂(ξ))(x′, xn+1) = 0,(2.4)
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and letting ε → 0 we obtain (2.4) for f ∈ C∞0 (Rn+1) with supp f ⊂ Rn ×
(∞, 0]. By density arguments,

suppF−1((iξn+1 + ψ(ξ′))αf̂(ξ))(x′, xn+1) ⊂ Rn × [0,∞)

for all f ∈ H̃<,2p,+.

From Theorem 2.3 we immediately derive, in view of (2.1),

Theorem 2.4. Let −∞ < t <∞ and 1 < p <∞. Then

(−A−)α : H<,tp+ → H<,t−2
p+(2.5)

isomorphically , where A− is an operator with symbol χ−.

Now we want to prove the existence of retractions and coretractions
between the spaces H̃<,sp,+ (see [T2, §1.2.4]).

Denote by L(A,B) the space of continuous linear operators from A to B,
where A and B are normed vector spaces.

Let A and B be two complex Banach spaces. The operator R ∈ L(A,B)
is called a retraction if there exists an operator S ∈ L(B,A) such that

RS = I.(2.6)

An operator S such that (2.6) holds is called a coretraction corresponding
to R.

Theorem 2.5. Let 1 < p < ∞ and s ∈ R. Then for all s there exists a
coretraction from H̃<,sp,+ to H<,sp , and for all s with |s| < 2N there exists a

retraction from H<,sp to H̃<,sp,+.

The idea of the proof is the following. We want to construct the retrac-
tion and the coretraction using the known result, proved in [T2, Theorem
2.10.4/2], for the case of Triebel–Lizorkin spaces. We formulate this theorem
for the Bessel potential spaces Hs

p (= F sp2).

Theorem 2.6. Let 1 < p <∞ and −∞ < s <∞. Define

R̃ϕ(x) = 1{xn≥0}(x)
(
ϕ(x)−

N+1∑

j=1

ajϕ(x′;−λjxn)
)
, ϕ ∈ C∞0 (R),

where 1{xn≥0} is the characteristic function of Rn0+, 0 < λ1 < · · · < λN+1
<∞ and the coefficients aj are such that

∂k

∂xkn
ϕ(x′, xn)

∣∣∣∣
xn=0

=
N+1∑

j=1

aj
∂k

∂xkn
ϕ(x′,−λjxn)

∣∣∣∣
xn=0

.

Then R̃ extends to a continuous retraction R from Hs
p to H̃s

p,+, |s| < N ,
with coretraction

Sf =
{
f, xn ≥ 0,

0 xn < 0.
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We also refer to Theorem 2.10.3.a in [T2], where it was proved that

Jsf = F−1(ixn + (1 + |x′|1/2)sf̂)

is an isomorphic mapping from H̃σ
p,+ to H̃σ−s

p,+ .

Proof of Theorem 2.5. Since (−A±)α : H<,sp → H<,s−2
p is an isomor-

phism (see [JK1]), we can deduce, applying (−A+)±α N times, that
(−A+)αN : H<,2Np → Lp is an isomorphism, and then, by Theorem 2.3,
that so is (−A+)αN : H̃<,2Np,+ → Lp. Then, using Theorem 2.6 and Theo-
rem 2.10.3.a of [T2] we can construct the diagrams

Hψ,2N
p Lp Hs

p

H̃ψ,2N
p,+ Lp,+ H̃s

p,+

(−A+)αN //

R0
��

J−1
s //

R
��

(−A+)−αNoo Jsoo

and

Hψ,2N
p Lp Hs

p

H̃ψ,2N
p,+ Lp,+ H̃s

p,+

(−A+)αNoo Jsoo

S0

OO

(−A+)−αN // J−1
s //

S

OO

and without loss of generality we can put s = 2N in the definition of Js.
Since here all operators are isomorphisms, it follows that

S0 = (−A+)−αNJ2NS J
−1
2N (−A+)αN

is a coretraction from H̃<,2Np,+ to H<,2Np which corresponds to the retrac-

tion R0 = (−A+)−αNJ2NRJ
−1
2N (−A+)αN . The same is true for H̃<,−2N

p,+

and H<,−2N
p . Then, by applying Theorem 1.2.4 of [T2], we conclude that

R0S0 = I, that is, S0 and R0 are a coretraction and retraction for the
spaces H̃<,sp,+ and H<,sp , |s| < 2N .

Analogously, we obtain

Theorem 2.7. For all −∞ < s < ∞ and 1 < p < ∞, and ψ satisfying
conditions (A1) and (A2), the restriction from H<,sp to H<,sp,+ is a retraction
and for all N there exists a coretraction which does not depend on p and s,
|s| < N .

Proof. The proof is a modification of the proof of Theorem 2.5 by taking
the coretraction S1 given by

S1f =
{
f, xn ≥ 0,∑N+1

j=1 ajf(x′;−λjxn), xn < 0,
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instead of S; S1 corresponds to the retraction R1, restriction to the half-
space Rn0+. Next, we apply the operators Isf = F−1((1 + |ξ′|2)1/2 − iξn)sf̂)
and (−A−)±α to construct the desired retraction and coretraction between
H<,sp,+ and H<,sp .

The interpolation theorem for the spaces H̃ψ,s
p,0+ follows immediately from

Theorem 1.17.1/1 of [T2]:

Theorem 2.8. Let 1 < p0, p1 < ∞, −∞ < s0, s1 < ∞, 0 < θ < 1,
1/p = (1− θ)/p0 + θ/p1, and s = (1− θ)s0 + θs1. Then

[H̃<,s0p0,+, H̃
<,s1
p1,+]θ = H̃<,sp,+.

Remark 2.9. Since H<,sp,+ = H<,sp /H̃<,sp,−, for the same parameters we
have

[H<,s0p0,+,H
<,s1
p1,+]θ = H<,sp,+.

This follows from Theorem 1.17.2 in [T2].

3. Semigroups generated by (−(−A±)α,D((−A±)α). Now we are
ready to formulate our main results. We start with the case α = 1, i.e. we
want to prove that (−A±,D(A±)) with symb(A±) = χ± = ψ(ξ′) ± iξn+1,
ξ = (ξ′, ξn+1) ∈ Rn+1, are generators of Lp-sub-Markovian semigroups on
Lp(Rn+1

0+ ). First we note that we can define the operators −A± on the tensor
product of Hψ,2

p and H1
p,+ (or H̃1

p,+), and the closure of Hψ,2
p ⊗H1

p,+ (resp.

Hψ,2
p ⊗ H̃1

p,+) with respect to the graph norm of A± gives us the domains
of A±. We show this in detail in the proof below.

In the following we assume that

ψ(ξ′) ≥ (1 + |ξ′|2)δ/2, ξ′ ∈ Rn,(3.1)

for some δ, 0 < δ < 2.

Theorem 3.1. The operators (−A+,H
χ,2,1
p,+ ) and (−A+, H̃

χ,2,1
p,+ ) are gen-

erators of Lp-sub-Markovian semigroups (T (1)
t )t≥0 and (T (2)

t )t≥0 respectively.
Moreover ,

T
(1)
t f(x) =

�

Rn

f(x′ − y′, xn+1 − t)Wt(y′) dy′

(2π)n/2
1{xn+1≥t}(x)(3.2)

+
�

Rn

h(x′ − y′)Wxn+1(y′) dy′

(2π)n/2
1{xn+1<t}(x)

and

T
(2)
t f(x) =

�

Rn

f(x′ − y′, xn+1 − t)Wt(y′) dy′

(2π)n/2
1{xn+1≥t}(x),(3.3)
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where Wt = F−1(e−ψ(ξ′)t) exists as a function, ψ satisfies (A1), (A2) and
(3.1), h ∈ trRn H

χ,2,1
p,+ (the trace space of Hχ,2,1

p,+ on Rn), and f(x′, xn+1) = 0
for xn+1 ≤ 0 in (3.3).

Remark 3.2. It is possible to find the trace spaces for the operators we
consider, but we will not do it now, because it requires the study of spaces of
generalized smoothness, which is not the aim of this paper. Now for us it is
important that the trace exists; for this we suppose below that 1/p < α < 1.

Proof. That (−A+, H̃
χ,2,1
p,+ ) is the generator of the Lp-sub-Markovian

semigroup (3.3) was proved in [Kn3]. Now we will prove the second part
of the theorem.

First we show that Hχ,2,1
p,+ and H̃χ,2,1

p,+ are domains of A+, i.e.

Hψ,2
p ⊗H1

p,+

‖·‖A
= Hχ,2,1

p,+ and Hψ,2
p ⊗ H̃1

p,+

‖·‖A
= H̃χ,2,1

p,+ .

Indeed,

Hψ,2
p ⊗ H̃1

p,+ = {f : f ∈ Hψ,2
p ⊗H1

p , supp f ⊂ Rn+1
0+ }

gives the second equality; the first is proved analogously.
By Lemma 1.2 the operators (−A+,H

χ,2,1
p,+ ) and (−A+, H̃

χ,2,1
p,+ ) are gen-

erators of Lp-sub-Markovian semigroups. To find these semigroups, we con-
sider the equation

(λ+A+)f(x) = g(x), g ∈ Lp(Rn+1
0+ ), x ∈ Rn+1

+ ,

λf(x′, 0) = h(x′), h ∈ trRn H
χ,2,1
p,+ .

(3.4)

Denote by ĝ(ξ, η) the function Lxn+1→ηFx′→ξ′(g(x′, xn+1)), where Lxn+1→η
is the Laplace transform, Fx′→ξ′ the Fourier transform, and set ĝ(ξ′, 0) =
Fx′→ξ′(g(x′, 0)) and ĝ(ξ′, xn+1) = Fx′→ξ′(g(x′, xn+1)).

Taking the Fourier transform Fx′→ξ′ of the left-hand side of (3.4)1,

Fx′→ξ′((λ+ A+)f)(ξ′, xn+1)

= λf̂(ξ′, xn+1) + ψ(ξ′)f̂(ξ′, xn+1) +
∂

∂xn+1
f̂(ξ′, xn+1),

and then the Laplace transform Lxn+1→η,

Lxn+1→ηFx′→ξ′((λ+ A+)f)(ξ′, xn+1) = (λ+ ψ(ξ′) + η)f̂(ξ, η)− f̂(ξ′, 0),

we finally derive that

f̂(ξ, η) =
ĝ(ξ, η) + f̂(ξ′, 0)
(λ+ ψ(ξ′) + η)

(3.5)

is the Lxn+1→ηFx′→ξ′-transform of the solution to (3.4)1 with some boundary
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conditions. Consider the operator

T
(1)
t g(x) =

�

Rn

g(x′ − y′, xn+1 − t)Wt(y′) dy′

(2π)n/2
1{xn+1≥t}(x)

+
�

Rn

h(x′ − y′)Wxn+1(y′) dy′

(2π)n/2
1{xn+1<t}(x),

where g ∈ Lp(Rn+1
0+ ) and h ∈ trRn H

χ,2,1
p,+ . It is bounded in Lp(Rn+1

0+ ). Indeed,

since Wt(y′) = F−1(e−tψ(ξ′)) is an Lp-multiplier, we have T (1)
t g(·, xn+1) ∈

Lp(Rn) for g ∈ Lp(Rn+1
0+ ). Further, the first term in the representation of

T
(1)
t g(x′, ·) belongs to Lp(R0+) since g(x′, ·) does, and the second is bounded

and with finite support with respect to xn+1.
Let S(Rn+1

0+ ) = S(Rn+1)|Rn+1
0+

, where S(Rn+1) is the Schwartz space. If

we show that for g ∈ S(Rn+1
0+ ) and h ∈ S(Rn) the resolvent

Rλg =
∞�

0

e−λtT (1)
t g(x) dt

solves (3.4), then by density of S(Rn+1
0+ ) in Lp(Rn+1

0+ ) we deduce that (T (1)
t )t≥0

defined on Lp(Rn+1
0+ ) is a semigroup generated by −A+.

Rewrite T (1)
t g(x) as

T
(1)
t g(x) = (2π)−n/2

�

Rn
ei(x

′,ξ′)−tψ(ξ′){ĝ(ξ′, xn+1 − t)1[0,xn+1)(t)

+ ĥ(ξ′)1[xn+1,∞)(t)} dξ′.

We want to check if the Laplace transform of the semigroup (T (1)
t )t≥0 gives

us the solution to (3.4).

Applying the Fubini theorem to Lxn+1→ηFx′→ξ′Lt→λ(T (1)
t g) we get

Lt→λLxn+1→ηFx′→ξ′(T
(1)
t g)

= Lt→λLxn+1→η

[
1[t,∞)(xn+1)

�

Rn

�

Rn

e−i(ξ
′,x′)g(x′−y′, xn+1− t)Wt(y′)

(2π)n
dy′ dx′

]

+ Lt→λLxn+1→η

[
1[0,t)(xn+1)

�

Rn

�

Rn

e−i(ξ
′,x′)h(x′ − y′)Wxn+1(y′)

(2π)n
dy′ dx′

]

= Lt→λLxn+1→η[ĝ(ξ′, xn+1 − t)e−tψ(ξ′)1[t,∞)(xn+1)

+ 1[0,t)(xn+1)ĥ(ξ′)e−xn+1ψ(ξ′)]

=
ĝ(ξ′, η)

λ+ ψ(ξ′) + η
+

ĥ(ξ′)
λ(λ+ ψ(ξ′) + η)

.
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Thus for λf(x′, 0) = h(x′) we have

Lt→λLxn+1→ηFx′→ξ′(T
(1)
t g) =

ĝ(ξ′, η)
λ+ ψ(ξ′) + η

+
f̂(ξ′, 0)

λ+ ψ(ξ′) + η
,

which equals (3.5).

Therefore, the Laplace transform of T (1)
t g indeed gives the solution to

(3.4). Since there is one-to-one correspondence between the images and pre-
images of the Fourier–Laplace transform, we conclude that the operators
(T (1)
t )t≥0 form a strongly continuous contraction semigroup with generator

(−A+,H
χ,2,1
p ), which proves (3.2).

Evidently, (3.3) can be obtained from (3.2) by putting h(x′) = 0.

Remark 3.3. The semigroup generated by (−A+,H
χ,2.1
p ) can be differ-

ent, if we impose different boundary conditions in (3.4). If we take

∂

∂xn+1
f(x′, 0) = 0,

then the semigroup generated by (−A+,H
χ,2.1
p ) is the following:

T
(1′)
t g(x) =

�

Rn

g(x′ − y′, xn+1 − t)Wt(y′) dy′

(2π)n/2
1[t,∞)(xn+1)(3.6)

+
�

Rn

g(x′ − y′, 0)Wt(y′) dy′

(2π)n/2
1[0,t)(xn+1).

Analogously, we have

Theorem 3.4. The operator (−A−,Hχ,2,1
p,+ ) is the generator of the Lp-

sub-Markovian semigroup (T (3)
t )t≥0 given by

T
(3)
t f(x) =

�

Rn

f(x′ − y′, xn+1 + t)Wt(y′) dy′

(2π)n/2
.(3.7)

Now let us consider the fractional power of −A+, (−A+)α, 0 < α < 1.
First consider functions from D1 = H̃χ,2,1

p,+ and D2 = Hχ,2,1
p,+ . From [J1,

Theorem 4.3.7] the domain of the generator A+ of a strongly continuous
contraction semigroup is dense in D((−A+)α), and D(A+) is a core for
(−A+)α, 0 < α < 1. Then

D
‖·‖(−A+)α

1 = D
‖·‖<,2
1 = {f : ‖f‖<,2 <∞, supp f ⊂ Rn+1

0+ } = H̃<,2p,+,

and analogously D
‖·‖(−A+)α

2 = H<,2p,+. For the operator −(−A−)α with
symb(A−) = χ−, the situation is similar.
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To solve the boundary-value problem for the operator (−A±)α, we need
the existence of the trace f(·, xn+1) if f ∈ D((−A±)α). Since

(ψ2(ξ′) + ξ2
n+1)α/2 ≥ ψα(ξ′) + |ξn+1|α

2
,

by the Lizorkin multiplier theorem (see [Liz]) we obtain

H<,2p,+ ↪→ Hψα,2
p (Rn)⊗Hα

p (R0+),

where the closure is taken with respect to the graph norm of the operator
ψ(Dx′)α+(−∆xn+1)α/2. Thus, since the trace in the spaceHα

p (R0+) exists for

1/p < α < 1, for such α the trace will exist in the space H<,2p,+. Analogously,

for 1/p < α < 1 the trace exists in the space H̃<,2p,+ and is equal to zero.

Theorem 3.5. For 1< p<∞ and 1/p< α< 1 the operators (−(−A+)α,
H̃<,2p,+) and (−(−A−)α,H<,2p,+) with symb(−A±) = χ±(ξ′) = ψ(ξ′) ± iξn+1,
where ψ satisfies (A1), (A2) and (3.1), are the generators of Lp-sub-Marko-

vian semigroups (T (4)
t )t≥0 and (T (5)

t )t≥0 given by

T
(4)
t g(x) = (2π)−n/2

�

Rn

xn+1�

0

g(x′ − y′, xn+1 − s)Ws(y′)σα(s, t) ds dy′,(3.8)

T
(5)
t g(x) = (2π)−n/2

�

Rn

∞�

0

g(x′ − y′, xn+1 + s)Ws(y′)σα(s, t) ds dy′.(3.9)

The statement about the operator (−(−A+)α, H̃<,2p,+) was proved in [Kn3]
by a straightforward application of the Hille–Yosida theorem (see also [Kn1]);
the second statement can be proved in a similar way. We only note that since
the operator (−A−)α, 0 < α < 1, is an isomorphism between H<,2p,+ and
Lp(Rn+1

0,+ ), the boundary condition with which (−A−)α generates (3.9) is

f(x′, 0) =
1

Γ (α)

∞�

0

�

Rn

g(x′ − y′, t)Wt(y′)
(2π)n/2t1−α

dy′ dt.

In Theorem 3.1 and Remark 3.3 we showed that (T (1)
t )t≥0 and (T (1′)

t )t≥0

are strongly continuous contraction semigroups generated by (−A+,H
χ,2,1
p,+ )

with different boundary conditions. By Bochner subordination, the candi-
dates for the semigroups generated by (−(−A+)α,H<,2p,+) are the semigroups
obtained by subordination with the Bernstein function f(x) = xα, x > 0,
0 < α < 1:

T
(6)
t g(x) = (2π)−n/2

xn+1�

0

�

Rn
g(x′ − y′, xn+1 − s)Ws(y′)σα(s, t) dy′ ds(3.10)

+ (2π)−n/2
∞�

xn+1

�

Rn
h(x′ − y′)Wxn+1(y′)σα(s, t) dy′ ds,
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which is obtained by subordination with f(x) from (T (1)
t )t≥0, and

T
(6′)
t g(x) = (2π)−n/2

xn+1�

0

�

Rn
g(x′ − y′, xn+1 − s)Ws(y′)σα(s, t) dy′ ds(3.11)

+ (2π)−n/2
∞�

xn+1

�

Rn
g(x′ − y′, 0)Ws(y′)σα(s, t) dy′ ds,

which is obtained by subordination with f(x) from (T (1′)
t )t≥0. These semi-

groups are again (by [J1, Theorem 4.3.1]) strongly continuous and contract-
ing. A straightforward application of the Hille–Yosida theorem gives

Theorem 3.6. For 1 < p <∞ and 1/p <α< 1, the operator (−(−A+)α,
H<,2p,+) with symb(−A+) = χ+(ξ) = ψ(ξ′) + iξn+1, where ψ satisfies (A1),
(A2) and (3.1), is the generator of the Lp-sub-Markovian semigroups (3.11)
and (3.12), depending on the boundary conditions.

The strongly continuous contraction semigroup (T (6)
t )t≥0 corresponds to

the boundary condition λf(x′, 0) = h(x′), which can be shown by applying
the Laplace transform to T (6)

t f(x).
Let us show that

∂f

∂xn+1
(x′, 0) = 0 for f(x) = Lt→λT

(6′)
t g(x).

We have

f(x) = Lt→λT
(6′)
t g(x)

=
xn+1�

0

�

Rn

g(x′ − y′, xn+1 − s)Ws(y′)e′α(s, λ)
−λ(2π)n/2

dy′ ds

+
∞�

xn+1

�

Rn

g(x′ − y′, 0)Ws(y′)e′α(xn+1, λ)
−λ(2π)n/2

dy′ ds.

Differentiating with respect to xn+1, we get

∂

∂xn+1
f(x) =

xn+1�

0

�

Rn

∂
∂xn+1

g(x′ − y′, xn+1 − s)Ws(y′)e′α(s, λ)

−λ(2π)n/2
dy′ ds,

which tends to zero a.e. if xn+1 → 0:

∂

∂xn+1
f(x′, 0) = 0 a.e.

Thus, the operator (−(−A+)α,H<,2p,+) with the zero Neumann boundary con-

dition generates the semigroup (T (6′)
t )t≥0.
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