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JORDAN ∗-DERIVATION PAIRS
ON STANDARD OPERATOR ALGEBRAS AND RELATED RESULTS

BY

DILIAN YANG (Waterloo, ON)

Abstract. Motivated by Problem 2 in [2], Jordan ∗-derivation pairs and n-Jordan
∗-mappings are studied. From the results on these mappings, an affirmative answer to
Problem 2 in [2] is given when E = F in (1) or when A is unital. For the general case,
we prove that every Jordan ∗-derivation pair is automatically real-linear. Furthermore,
a characterization of a non-normal prime ∗-ring under some mild assumptions and a
representation theorem for quasi-quadratic functionals are provided.

1. Introduction. Let R be a ∗-ring. An additive mapping D : R→ R is
called a Jordan ∗-derivation if D(x2) = D(x)x∗+ xD(x) (x ∈ R). A Jordan
∗-derivation of the form Da(x) = ax∗ − xa for some a ∈ R is called inner.
The study of Jordan ∗-derivations has been motivated by the problem of
the representability of quasi-quadratic functionals by sesquilinear ones (see,
for instance, [4], [5], [8] and the references there). It turns out that the
solvability of the latter problem is intimately connected with the structure
of Jordan ∗-derivations [6], [7].

Later, Zalar introduced a more general notion of Jordan ∗-derivation
pairs. In [2], Molnár generalized it further. Let M be an R-bimodule. He
calls the additive pair (E,F ) a Jordan ∗-derivation pair if E,F : R → M
satisfy the system of equations

{
E(x3) = E(x)x∗2 + xF (x)x∗ + x2E(x),

F (x3) = F (x)x∗2 + xE(x)x∗ + x2F (x)
(1)

for all x ∈ R. A Jordan ∗-derivation pair in this note is in the sense of (1).
We also call Jordan ∗-derivation pairs of the form Ea,b(x) = ax∗ − xb,
Fa,b(x) = bx∗ − xa for some a, b ∈ M inner. Here we should mention that
if in the above M is a ∗-ring and R is a subring of M, then R need not be
self-adjoint, i.e., x ∈ R implies x∗ ∈ R. This convention is also applicable to
other ∗-mappings in subsequent sections. We use this without any further
explanations.
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For a given real or complex Hilbert space H, throughout this note, by
B(H) we mean the algebra of all bounded linear operators on H. We denote
by F(H) the subalgebra of all bounded finite-rank operators. A subalgebra
A of B(H) is called standard provided that A contains F(H). In [2], Molnár
gave a class of complex ∗-algebras A such that every Jordan ∗-derivation
pair from A into an A-bimoduleM can be represented by some two double
centralizers (refer to [2] for the definition). As a result, he proved that every
Jordan ∗-derivation pair from a standard operator algebra A to B(H) is
inner, where H is a complex Hilbert space. Furthermore, he proposed two
open problems. One of them is whether the above result holds for real Hilbert
spaces of dimension greater than 1. (The necessity of dimH > 1 can be seen
from [5].) Let us state this problem itself more precisely:

Problem (Problem 2 of [2]). Let H be a real Hilbert space of dimension
greater than 1. Suppose (E,F ) is a Jordan ∗-derivation pair from a standard
operator algebra A to B(H). Are there S, T ∈ B(H) such that E(A) =
SA∗ −AT and F (A) = TA∗ − AS for all A ∈ A?

As said in [2], answering the above question would be interesting and
may turn out to be rather difficult.

In this note, motivated by the results in [1], [2], [8] and inspired by
the idea of [3], we make some contributions to solving the above problem
and give some related results. More precisely, we first study n-Jordan ∗-
mappings (n ≥ 3), another natural generalization of Jordan ∗-derivations,
and prove that an n-Jordan ∗-mapping is a Jordan ∗-derivation in some
cases (Proposition 2.1 and Theorem 2.3).

As a result, an affirmative answer to Problem 2 of [2] is given when
E = F in (1). Under some suitable conditions, we also show that if Jor-
dan ∗-derivations are inner then so are Jordan ∗-derivation pairs (Propo-
sition 3.1). As an application, we solve Problem 2 in [2] when A is unital
(Corollary 3.2). For the general case, we prove that every Jordan ∗-derivation
pair is automatically real-linear (Theorem 3.3). As two more applications
of Proposition 3.1, a characterization of a non-normal prime ∗-ring under
some mild assumptions and a representation theorem for quasi-quadratic
functionals are provided (Proposition 4.1 and Corollary 4.2).

2. n-Jordan ∗-mappings. We start this section with a simple observa-
tion. Follow the notation of the Problem and setG := E+F and H := E−F .
It is easy to check that they satisfy the operator equations

G(A3) = G(A)A∗2 + AG(A)A∗ + A2G(A),(2)

H(A3) = H(A)A∗2 − AH(A)A∗ +A2H(A),(3)
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for all A ∈ A. So, to solve Problem 2 of [2], it is enough to find the solu-
tions to equations (2) and (3). In this section, we take care of equation (2).
Actually, we consider a natural generalization of (2).

Let R be a ∗-ring, M an R-bimodule, and n ≥ 3. Consider additive
mappings J : R→M satisfying

J(xn) =

n−1∑

i=0

xiJ(x)x∗(n−1−i) (x ∈ R).(4)

We call a mapping satisfying (4) an n-Jordan ∗-mapping. Clearly, the map-
ping G in (2) is nothing but a 3-Jordan ∗-mapping. Furthermore, a Jor-
dan ∗-derivation is an n-Jordan ∗-mapping for any n ≥ 3. This, in fact,
can be proved by simple induction once one notices the identity J(xn) =
J(x·xn−2·x) and the fact that a Jordan ∗-derivation is a 3-Jordan ∗-mapping
(see, e.g., [5]). In this section, we show that the converse is also true in some
cases. First of all, the following result says this is the case when R is a unital
real or complex ∗-algebra.

Proposition 2.1. If A is a unital real or complex ∗-algebra and M is
a unitary A-bimodule, then every n-Jordan ∗-mapping J : A → M is a
Jordan ∗-derivation.

Proof. It follows from (4) that

J((x+my)n) =

n−1∑

i=0

(x+my)iJ(x+my)(x+my)∗(n−1−i)

for all m ∈ Z. This can be written in the form
∑n

i=0 cim
i with coefficients

ci ∈ M. Since it holds for all integers m, each ci must be 0. In particular,
c1 = 0 gives

(5)
n−1∑

k=0

J(xkyxn−k−1)

=
n−1∑

k=0

{ k−1∑

l=0

xlJ(x)x∗(k−l−1)y∗x∗(n−k−1)

+ xkJ(y)x∗(n−k−1) +
n−k−2∑

l=0

xkyxlJ(x)x∗(n−k−l−2)
}
.

Let x = y = 1 in (5) to get nJ(1) = n2J(1), which implies that J(1) = 0.
Then putting y = 1 in (5) and using J(1) = 0, we have

nJ(xn−1) =
n−1∑

k=0

{ k−1∑

l=0

xlJ(x)x∗(n−l−2) +
n−k−2∑

l=0

x(k+l)J(x)x∗(n−k−l−2)
}
,

that is,
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nJ(xn−1) = n
n−2∑

l=0

xlJ(x)x∗(n−2−l).

Thus the above J is just an (n − 1)-Jordan ∗-mapping. The proof is now
completed by applying the above arguments successively.

It follows from Proposition 2.1 and Theorem in [2] that every n-Jordan
∗-mapping is inner when A is a unital complex ∗-algebra. That is, we have

Corollary 2.2. Suppose that A is a unital complex ∗-algebra and that
M is a unitary A-bimodule. Then every n-Jordan ∗-mapping is of the form
J(x) = ax∗ − xa for some a ∈ M.

Proof. Indeed, Proposition 2.1 tells us that J is a Jordan ∗-derivation.
So, applying Theorem in [2], we get J(x) = T (x∗) − S(x) for some double
centralizer (T, S), where T, S : A → M. Notice that A is unital. It is easy
to see that T and S satisfy T (x) = T (1)x, S(x) = xS(1) for all x ∈ R, and
T (1) = S(1) := a. Therefore, J(x) = ax∗ − xa, as required.

If the A in the last proposition is non-unital, the situation is more com-
plicated. However, we have the following

Theorem 2.3. Let H be a real or complex Hilbert space of dimension
greater than 1. Assume that A ⊆ B(H) is a standard operator algebra. Then
every n-Jordan ∗-mapping J : A → B(H) is inner : J(A) = TA∗ − AT
(A ∈ A) for some T ∈ B(H).

Proof. If dimH <∞, then we have A = B(H) for any standard operator
algebra A. Thus A is unital. Theorem 2.3 easily follows from Proposition 2.1
and Theorem in [4] (or Theorem 2.3 in [5]).

Now there is no loss of generality in assuming that dimH =∞. Suppose
first that A = F(H). The following idea is very much inspired by a result
of Šemrl in [3]. Let A ∈ F(H). Suppose that ImA is spanned by a set of
orthonormal vectors v1, . . . , vt, t (∈ N) <∞. It is well known that, by Zorn’s
lemma, the orthonormal set {v1, . . . , vt} can be extended to an orthonormal
basis {v1, . . . , vt} ∪ {vα : α ∈ Λ} of H. We now pick an arbitrary pair
{β, γ} ⊂ {1, . . . , t} ∪ Λ. Let us choose a countable set

{vm : m ∈ N} ⊂ {v1, . . . , vt} ∪ {vα : α ∈ Λ}
so that {vβ, vγ} ⊂ {vm : m ∈ N}. Let Pm be the orthogonal projection onto
span{v1, . . . , vm} (m ∈ N).

By Mm we mean the algebra of m × m matrices. Define a mapping
Φm : Mm → B(H) by



Φm((aij))

( ∞∑

k=1

tkvk

)
=

m∑

i=1

( m∑

k=1

aiktk

)
vi,

Φm((aij))|V = 0
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for all (aij) ∈ Mm, where V is the orthogonal complement of the subspace
spanned by {vm : m ∈ N}. It is not hard to verify that Jm : Mm → Mm

given by

Jm((aij)) = Φ−1
m (PmJ(Φm((aij)))Pm)(6)

is an n-Jordan ∗-mapping. Since Mm is a unital ∗-algebra, by Proposition
2.1 and Theorem in [4] (also refer to the beginning of the proof), one can
find matrices (cmij ) ∈Mm such that

Jm((aij)) = (cmij )(aij)
∗ − (aij)(c

m
ij )(7)

for all (aij) ∈ Mm. Moreover, the above matrices (cmij ) can be uniquely
chosen so that

cmij = ckij when max{i, j} ≤ min{m,k}.(8)

Indeed, for any (aij) ∈Mm, let us pick (bij) ∈Mm+1 as follows:

(bij) =

(
(aij) 0

0 0

)
.

For convenience, let

(cm+1
ij )m :=




cm+1
11 · · · cm+1

1m

· · · · · · · · ·
cm+1
m1 · · · cm+1

mm


 .

Comparing Jm+1((bij)) and Jm((aij)) we get

(cm+1
ij )m(aij)

∗ − (aij)(c
m+1
ij )m = (cmij )(aij)

∗ − (aij)(c
m
ij ).

Thus we can let (cm+1
ij )m = (cmij ). To get (8) it is enough to apply the above

procedure successively.
In view of (6)–(8), we get Pm(J(A2)− J(A)A∗ − AJ(A))Pm = 0 for all

m ≥ t. Thus

Pβ(J(A2)− J(A)A∗ − AJ(A))Pγ = 0.

Therefore J(A2) = J(A)A∗+AJ(A) according to the arbitrary choice of β, γ.
Invoking Theorem in [4], we can find T ∈ B(H) such that J(A) = TA∗−AT .

It remains to prove the case where A is an arbitrary standard operator
algebra. To this end, first notice that J(A) = TA∗−AT for some T ∈ B(H)
also defines an n-Jordan ∗-mapping from A to B(H). Applying the approach
in the proof of Corollary 2 in [2], it suffices to prove that any n-Jordan ∗-
derivation vanishing on F(H) is zero on A. Letting y = A ∈ A and x = P
in (5) where P ∈ F(H) is an arbitrary projection, one can easily get

0 = J(A)P + (n− 2)PJ(A)P + PJ(A).
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Multiplying the above equation by P from both the left and the right, we get
nPJ(A)P = 0. It follows that J(A) = 0 since P is an arbitrary finite-rank
projection. This completes the proof.

Remark 2.4. Applying Theorem 2.3 for n = 3, we have solved the
Problem when E = F .

3. Jordan ∗-derivation pairs. Let us first state one useful proposition
which, basically, says that under some conditions if Jordan ∗-derivations are
inner then so are Jordan ∗-derivation pairs (cf. Proposition 2.4 in [8]).

Proposition 3.1. Let R be a ∗-ring with identity 1 and elements 1/2,
1/3. Suppose that every Jordan ∗-derivation from R to a unitary R-bimodule
M is inner. If (E,F ), where E,F : R→M, is a Jordan ∗-derivation pair ,
then (E,F ) is also inner.

Proof. As before, let G := E + F and H := E − F . So G and H satisfy
equations (2) and (3), respectively. Since 1/2 ∈ R, to obtain E and F it
suffices to solve (2) and (3) for G and H, respectively. Using the same
procedure as in Proposition 2.1, we deduce that G is a Jordan ∗-derivation.
By our assumption, there is a constant c ∈ M such that

G(x) = cx∗ − xc.(9)

Similarly to getting (5), one can show that

H(x2y + xyx+ yx2) = H(x)x∗y∗ − xH(x)y∗ + x2H(y)(10)

+H(x)y∗x∗ − xH(y)x∗ + xyH(x)

+H(y)x∗2 − yH(x)x∗ + yxH(x).

Setting x = 1 in (10) results in

2H(y) = H(1)y∗ + yH(1).(11)

Combining (9) and (11) yields
{
E(x) = (c+ E(1))x∗/2− x(c− E(1))/2,

F (x) = (c− E(1))x∗/2− x(c+ E(1))/2.
(12)

Thus the pair (E,F ) is inner, which completes our proof.

We are now ready to give some applications of Proposition 3.1. First of
all, an affirmative answer to Problem 2 of [2] will be given when A is unital.
This is done in the following

Corollary 3.2. Let H be a real Hilbert space of dimension greater
than 1 and suppose that A ⊆ B(H) is a unital standard operator algebra.
Then every Jordan ∗-derivation pair from A to B(H) is inner.
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Proof. This follows from Proposition 3.1 and Theorem in [4] directly.

By Corollary 3.2, to solve Problem 2 of [2], it remains to study the case
where A is not unital. As we have seen, it is sufficient to find G and H
in (2) and (3). It follows from Theorem 2.3 that we have obtained G. From
the proof of Theorem 2.3, we see that we have eventually converted the
study of n-Jordan ∗-mappings (in particular n = 3) to that of well studied
Jordan ∗-derivations. But it seems that this approach cannot be applicable
to studying those mappings satisfying equation (3). Hence, to solve (3) in
the non-unital case is still open. However, the next theorem says that Jordan
∗-derivation pairs are automatically real-linear in the general case.

Theorem 3.3. Let H be a real Hilbert space with dimH > 1 and A ⊆
B(H) be a standard operator algebra. Then, for every Jordan ∗-derivation
pair (E,F ) : A → B(H), E and F are both real-linear.

Proof. If dimH <∞, then clearly A = B(H) as before. By Corollary 3.2
every Jordan ∗-derivation pair on A is inner. Thus the assertion follows
naturally. Below we can assume dimH =∞.

Suppose first that A = F(H). Following the notation in the proof of
Theorem 2.3, it is routine to verify that (Em, Fm) defined by

Em((aij)) = Φ−1
m (PmE(Φm((aij)))Pm),(13)

Fm((aij)) = Φ−1
m (PmF (Φm((aij)))Pm)(14)

is a Jordan ∗-derivation pair fromMm toMm. It follows from Proposition 3.1
that

Em((aij)) = (cmij )(aij)
∗ − (aij)(d

m
ij ),(15)

Fm((aij)) = (dmij )(aij)
∗ − (aij)(c

m
ij )(16)

for some (cmij ) and (dmij ) inMm. Using an argument completely similar to that

in the proof of Theorem 2.3, we can choose unique matrices (cmij ) and (dmij )
such that

cmij = ckij , dmij = dkij when max{i, j} ≤ min{m,k}.(17)

According to (13)–(17), we obtain

Pβ(E(λA)− λE(A))Pγ = 0, Pβ(F (λA)− λF (A))Pγ = 0

for all λ ∈ R. Therefore E and F are both real-linear:

E(λA) = λE(A), F (λA) = λF (A) (λ ∈ R, A ∈ F(H)).(18)

Now let A be an arbitrary standard operator algebra. In view of (18),
both G := E+F and H := E−F are real-linear on F(H). Now replacing x
by P ∈ F(H), an arbitrary projection, and y by λA with λ ∈ R and A ∈ A
in (10), we have

P (H(λA)− λH(A))− P (H(λA)− λH(A))P + (H(λA)− λH(A))P = 0.
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Multiplying the above equation by P from the left and then from the right,
we obtain P (H(λA) − λH(A))P = 0. Since P is an arbitrary finite-rank
operator, we get H(λA) = λH(A). Similarly, we have G(λA) = λG(A) for
all A ∈ A. Thus we see that E and F are both real-linear on A, which
completes the proof.

4. Further results. In this short section, we give two more applications
of Proposition 3.1. The first one describes a characterization of a non-normal
prime ∗-ring with identity 1 and elements 1/2, 1/3. This result is motivated
by the main result Theorem 3 in [1]. The second one is related to the rep-
resentation of quasi-quadratic functionals. Details on quasi-quadratic func-
tionals can be found in [4], [5], [8]. Recall that a ∗-ring R is called a normal
ring provided that every element x in R is normal (that is, xx∗ = x∗x), and
that a mapping f of any ring R into itself is said to be commuting provided
that [f(x), x] = 0 (x ∈ R). A Jordan ∗-derivation pair (E,F ) on a ∗-ring R
is commuting if both E and F are commuting.

Proposition 4.1. Let R be a non-commutative prime ∗-ring with iden-
tity 1 and elements 1/2 and 1/3. Then R is normal if and only if there
exists a non-zero commuting Jordan ∗-derivation pair.

Proof. If R is normal, let E(x) = x∗ − 2x and F (x) = 2x∗ − x for all
x ∈ R. Then clearly (E,F ) is a non-zero commuting Jordan ∗-derivation
pair on R.

Let R be a prime ∗-ring with identity 1 and elements 1/2 and 1/3. To
show the converse, it is equivalent to prove that if R is not normal, then
every commuting Jordan ∗-derivation pair must be zero. For this, suppose
that (E,F ) is a commuting Jordan ∗-derivation pair on R. As shown in
Proposition 3.1, the mapping G := E + F is a Jordan ∗-derivation on R.
Moreover, clearly it is commuting since both E and F are. By Theorem 3
in [1], we have

G(x) = 0 (x ∈ R).

According to (12), we get

E(x) = ax∗ + xa, F (x) = −(ax∗ + xa) (x ∈ R)(19)

where, in fact, a = E(1)/2. Since E is commuting, i.e., [E(x), x] = 0 (x ∈ R),
linearizing x we get [x,E(y)] = [E(x), y]. Hence it follows from (19) that

[x, ay∗ + ya] = [ax∗ + xa, y] (x, y ∈ R).(20)

Let y = 1 in (20) to get [x, 2a] = 0. This implies [x, a] = 0 for all x ∈ R as
1/2 ∈ R. Thus a is in the centre Z(R) of R. It follows that a[x, y∗] = a[x∗, y]
(x, y ∈ R). In particular, substituting y = x in the identity just got yields
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a[x, x∗] = a[x∗, x], i.e., 2a[x, x∗] = 0, which clearly implies that

a[x, x∗] = 0 (x ∈ R).

Hence Ra[x, x∗] = {0}. Thus aR[x, x∗] = {0} as a ∈ Z(R). Since R is prime
and not normal, we have a = 0. The proof is completed directly from (19).

From the proof of the representation theorem in Section 4 of [8], one can
easily get

Corollary 4.2. Let R be a ∗-ring with 1 and elements 1/2, 1/3. Sup-
pose that ax∗ = xa (x ∈ R) implies a = 0. If every Jordan ∗-derivation pair
on R is inner , then every quasi-quadratic functional on a unitary R-bimodule
M can be represented by some sesquilinear form.
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