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A DISJOINTNESS TYPE PROPERTY OF
CONDITIONAL EXPECTATION OPERATORS

BY

BEATA RANDRIANANTOANINA (Oxford, OH)

Abstract. We give a characterization of conditional expectation operators through a
disjointness type property similar to band-preserving operators. We say that the operator
T : X → X on a Banach lattice X is semi-band-preserving if and only if for all f, g ∈ X,
f ⊥ Tg implies that Tf ⊥ Tg. We prove that when X is a purely atomic Banach lattice,
then an operator T on X is a weighted conditional expectation operator if and only if T
is semi-band-preserving.

1. Introduction. In this note we study two abstract disjointness type
conditions which are satisfied by all conditional expectation operators on
Banach lattices. There is an extensive literature devoted to finding condi-
tions which characterize conditional expectation operators and an extensive
literature studying disjointness-preserving and band-preserving operators.
However, as far as we know, to date there have been no attempts to char-
acterize conditional expectation operators through a property related to
disjointness.

Of course, conditional expectation operators are never disjointness-pre-
serving let alone band-preserving. However they do preserve some bands,
namely they satisfy the following disjointness type condition:

(SBP) f ⊥ Tg ⇒ Tf ⊥ Tg ∀f, g ∈ X

(here X is a Banach lattice and T is a linear operator on X).
Note that condition (SBP) is a weakening of the condition which defines

band-preserving operators. Recall that a linear operator T on a Banach
lattice X is called band-preserving if TB ⊂ B for every band B ⊂ X.
Thus T is band-preserving if and only if one of the following two equivalent
conditions is satisfied:
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f ⊥ g ⇒ Tf ⊥ g ∀f, g ∈ X,(BP1)

f C g ⇒ Tf C g ∀f, g ∈ X.(BP2)

(We use the notation f C g to mean that f belongs to a band generated
by {g}.)

Thus condition (SBP) is the same as (BP1) with the additional constraint
that g belongs to the range of T . Hence, clearly (BP1) implies (SBP), and
(BP1) and (SBP) are equivalent if T is surjective. Conditional expectation
operators are our principal examples of non-band-preserving operators which
do satisfy (SBP).

We will say that an operator T is semi-band-preserving if T satis-
fies (SBP). Our main result (Theorem 4.7 and Corollary 4.11) asserts that
when X is a purely atomic Banach lattice, then an operator T on X is a
weighted conditional expectation operator if and only if T is semi-s band-
preserving.

Further, we study a condition which arises from the weakening of (BP2)
by adding the constraint that g belongs to the range of T , similarly to the
definition of semi-band-preserving operators. Namely we consider

(SCP) f C Tg ⇒ Tf C Tg ∀f, g ∈ X.
We will say that an operator T is semi-containment-preserving if T satis-
fies (SCP). It is clear that all surjective semi-containment-preserving
operators are band-preserving. It is also easy to see that all conditional
expectation operators are semi-containment-preserving but not band-pre-
serving.

In contrast to the fact that (BP1) and (BP2) are equivalent, conditions
(SBP) and (SCP) are independent in general (see Examples 3.1 and 3.2).
However if the Banach lattice X is purely atomic then it follows from
our characterization of semi-band-preserving operators that all semi-band-
preserving operators are semi-containment-preserving (see Corollary 4.10).
It is easy to construct on almost all Banach lattices a semi-containment-
preserving operator T so that T is not semi-band-preserving; one can even
find projections with this property (see Example 3.2). However we prove
(Theorem 5.1 and Corollary 5.3) that if X is a strictly monotone purely
atomic Banach lattice and P is a projection of norm one on X then P
is a weighted conditional expectation operator if and only if P is semi-
containment-preserving. (Thus, in particular, semi-containment-preserving
projections of norm one on strictly monotone purely atomic Banach lattices
are semi-band-preserving.)

We finish these general remarks about semi-band-preserving and semi-
containment-preserving operators by recalling a pair of conditions which are
very similar to (SBP) and (SCP). Let X denote a vector lattice and T be a
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linear operator on X. Consider:

f ⊥ g ⇒ Tf ⊥ Tg ∀f, g ∈ X,(DP)

f C g ⇒ Tf C Tg ∀f, g ∈ X.(β)

Condition (DP) is the well known condition defining disjointness-preserving
operators, and condition (β) has recently been identified by Abramovich and
Kitover [2] as being equivalent to the fact that T−1 is disjointness-preserving
(provided that T is bijective and X has sufficiently many components).
Abramovich and Kitover [2] showed that in general conditions (DP) and (β)
are independent, but if T is a continuous (or just regular) linear operator
between normed vector lattices then (DP) implies (β), and if X is a Banach
lattice and T is bijective then (DP) is equivalent to (β).

Acknowledgments. I wish to express my thanks to Professors Y. Abra-
movich and A. Schep for their valuable remarks on preliminary versions of
this paper.

2. Preliminaries. We use standard lattice and Banach space notations
as may be found e.g. in [5, 6, 7]. Below we recall basic definitions that we use.

A closed subspace Y of a Banach lattice X is called a band in X if

(1) |y| ≤ |x| for some x ∈ Y implies that y ∈ Y ,
(2) supA ∈ Y for every subset of A ⊆ Y which has a supremum in X.

An element u in a Banach lattice X is called an atom if it follows from
0 6= v ≤ u that v = u. X is called a purely atomic Banach lattice if it
coincides with the band generated by its atoms. Examples of purely atomic
Banach lattices include c0, c, `p (1 ≤ p ≤ ∞) and Banach spaces with
1-unconditional bases. A Banach lattice X is called nonatomic if it contains
no atoms.

For an element u in a Banach lattice X, an element v ∈ X is said to be
a component of u if |v| ∧ |u − v| = 0. A lattice X is called essentially one-
dimensional if for any two nondisjoint elements x1, x2 ∈ X there exist non-
zero components u1 of x1 and u2 of x2 such that u1 and u2 are proportional.
This class of lattices is strictly larger than purely atomic lattices and does
include some nonatomic lattices (see [3, Chapter 11]).

A Banach lattice X is called strictly monotone if for all elements x, y
in X with x, y > 0 we have ‖x+ y‖ > ‖x‖.

In this note we mainly consider Banach lattices of (equivalence classes
of) functions on a σ-finite measure space (Ω,Σ, µ) which are subspaces of
L1(Ω,Σ, µ) + L∞(Ω,Σ, µ).

By the Radon–Nikodym Theorem for each f ∈ L1(Ω,Σ, µ)+L∞(Ω,Σ, µ)
and for every σ-subalgebra A of Σ so that µ restricted to A is σ-finite (i.e.
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so that A does not have atoms of infinite measure) there exists a unique, up
to equality a.e., A-measurable locally integrable function h so that

�

Ω

gh dµ =
�

Ω

gf dµ

for every bounded, integrable and A-measurable function g on Ω. The func-
tion h is called the conditional expectation of f with respect to A and it is
usually denoted by E(f | A). The operator E(· | A) is called the conditional
expectation operator generated by A. Sometimes, particularly when (Ω,Σ, µ)
is purely atomic, E(· | A) is also called an averaging operator. When X is a
purely atomic Banach lattice with a basis {ei}i∈N then averaging operators
on X have the following form:

The σ-finite σ-subalgebra A is generated by a family {Aj}∞j=1 of mutu-

ally disjoint finite subsets of N, and for all x =
∑∞

i=1 xiei the conditional
expectation E(x | A) is defined by

E(x | A) =
∞∑

j=1

(
1

card(Aj)

∑

n∈Aj
xn

)( ∑

n∈Aj
en

)
.

Conditional expectation operators have been extensively studied by
many authors since 1930s; for one of the most recent presentations of the sub-
ject see [1]. One of the main directions in the research concerning conditional
expectation operators is to identify a property or properties of an operator
T that guarantee that T is a conditional expectation operator (see [4]).

Let X be a Banach lattice of functions on a measure space (Ω,Σ, µ) and
let k ∈ L1(Ω,Σ, µ) + L∞(Ω,Σ, µ), w ∈ X ′. Then E(wf | A) is well defined
for all f ∈ X. Assume in addition that kE(wf | A) ∈ X for all f ∈ X and
put

Tf = kE(wf | A).

The operator T thus defined is called a weighted conditional expectation
operator. Note that when X is a purely atomic Banach lattice or when A
is a σ-subalgebra of Σ generated by a family {Aj}∞j=1 of mutually disjoint
sets of finite measure on Σ then weighted conditional expectation operators
on X have the following form:

(1) Tf =
∞∑

j=1

〈ψj , f〉uj,

where {ψj}∞j=1 ⊂ X ′ and {uj}∞j=1 ⊂ X are so that for all j, suppψj ⊂ Aj
and suppuj ⊂ Aj .

Recall that when X is a space of (equivalence classes of) functions on
(Ω,Σ, µ) then supp f is the minimal closed subset of Ω so that f(t) = 0 for
a.e. t ∈ Ω \ supp f .
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Note that a weighted conditional expectation operator is a projection if
and only if E(kw | A) is the function constantly equal to 1 in the case when
µ is a finite measure, or if and only if 〈ψj , uj〉 = 1 for all j in the case when
A is a σ-subalgebra of Σ generated by a family of mutually disjoint sets
{Aj}∞j=1 (i.e. when T has the form (1)).

3. Definitions of semi-band-preserving and semi-containment-
preserving operators. Let X be a Banach lattice and T be a linear opera-
tor on X. As discussed in the Introduction we are interested in the following
two conditions:

(SBP) f ⊥ Tg ⇒ Tf ⊥ Tg ∀f, g ∈ X,
(SCP) f C Tg ⇒ Tf C Tg ∀f, g ∈ X.
We will say that an operator T is semi-band-preserving if T satisfies (SBP),
and that T is semi-containment-preserving if T satisfies (SCP).

It is easy to see that all conditional expectation operators and weighted
conditional expectation operators are both semi-band-preserving and semi-
containment-preserving.

Conditions (SBP) and (SCP) are weakenings of conditions (BP1) and
(BP2) (respectively) which define band-preserving operators, but in contrast
to the fact that conditions (BP1) and (BP2) are always equivalent, in general
conditions (SBP) and (SCP) are independent of each other, as the following
two simple examples demonstrate.

Example 3.1. Let X be a Banach lattice of functions on [0, 1] such
that the constant function ϕ1 = 1 = χ[0,1], and the function ϕ2 defined by
ϕ2(t) = t if t ∈ [0, 1/2] and ϕ2(t) = 0 if t ∈ (1/2, 1], belong to X and
there exist functionals ψ1, ψ2 ∈ X ′ with suppψ1 ∪ suppψ2 ⊆ [0, 1/2]. Then
there exists a linear operator T on X which is semi-band-preserving but not
semi-containment-preserving.

Construction. Define, for all f ∈ X,

Tf = 〈ψ1, f〉ϕ1 + 〈ψ2, f〉ϕ2.

Then the operator T is semi-band-preserving. Indeed, f ⊥ Tg implies that
either f = 0 or suppTg ⊂ [0, 1/2] and supp f ⊂ [1/2, 1]. But then Tf = 0
so Tf ⊥ Tg.

However T is not semi-containment-preserving. Indeed, let f, g ∈ X
be such that 〈ψ1, f〉 = 0, 〈ψ1, g〉 6= 0 and supp g ⊂ [0, 1/2]. Then Tf =
〈ψ2, f〉ϕ2 and so suppTf = [0, 1/2]. On the other hand, suppTg = [0, 1]
since 〈ψ1, g〉 6= 0. Thus g C Tf but Tg 6C Tf .

Example 3.2. Let X be any Banach lattice with dimX ≥ 2. Then
there exists a semi-containment-preserving operator Q on X which is not



14 B. RANDRIANANTOANINA

semi-band-preserving. Moreover Q can be chosen to be a projection, and if
X is not strictly monotone then Q can be chosen to be a projection of norm
arbitrarily close to one.

Construction. Let f1, f2 be nonzero elements in X with f1 ⊥ f2, and let
ψ be a functional on X so that 〈ψ, f1〉 6= 0 and 〈ψ, f2〉 6= 0. Define, for all
f ∈ X,

Qf = 〈ψ, f〉f1.

Then Q is trivially semi-containment-preserving since the range of Q is one-
dimensional. However Q is not semi-band-preserving since f2 ⊥ Qf1, but
Qf2 6⊥ Qf1.

Moreover if 〈ψ, f1〉 = 1 then Q is a projection. Further if X is not strictly
monotone, then for any ε > 0, it is possible to choose f1 ⊥ f2, f2 6= 0, with
‖f1 + f2‖ = ‖f1‖ = 1 and ψ ∈ X ′ so that 〈ψ, f1〉 = 1, 〈ψ, f2〉 6= 0 and
‖ψ‖ < 1 + ε, which will result in Q being a projection of norm smaller than
1 + ε.

4. Semi-band-preserving operators. Our next goal is to character-
ize weighted conditional expectation operators on purely atomic lattices as
semi-band-preserving operators.

In the following X will be a Banach lattice of (equivalence classes of)
real-valued functions on a measure space (Ω,Σ, µ). For any linear operator
T : X → X define

ΣT = {A ⊂ Ω : ∃f ∈ X with supp(Tf) = A}.
Here and in the following, all set relations are considered modulo sets of
measure zero.

We start with a simple lemma, which we formulate here for easy refer-
ence.

Lemma 4.1. (1) If A,B ∈ ΣT , then A ∪B ∈ ΣT .
(2) If {Aj}j∈N ⊂ ΣT is a family of mutually disjoint sets, then

⋃∞
j=1Aj

∈ ΣT .

Proof. These facts are immediate. For (1), let f, g be concrete repre-
sentations of functions in X so that supp(Tf) = A and supp(Tg) = B.
Define

h(t) =





Tf(t)

Tg(t)
if Tg(t) 6= 0,

0 if Tg(t) = 0,

and

V (h) = {a ∈ R : µ(h−1{a}) > 0}.
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Clearly card(V (h)) ≤ ℵ0 and thus there exists α ∈ R so that −α /∈ V (h). It
is easy to see that this implies that supp(T (f + αg)) = A ∪ B (recall that
all set relations are considered modulo sets of measure zero).

Part (2) is even quicker. Indeed let {fj}j∈N be a sequence of elements
of X such that ‖fj‖ = 1 and supp(Tfj) = Aj for all j ∈ N. Then

∑∞
j=1 2−jfj

belongs to X and, since the sets {Aj}j∈N are mutually disjoint,

supp
(
T
( ∞∑

j=1

2−jfj
))

=
∞⋃

j=1

Aj ,

as desired.

Define ST =
⋃
A∈ΣT A ⊂ Ω. Then, for each f ∈ X,

(2) supp(Tf) ⊆ ST .
Now we immediately obtain:

Proposition 4.2. If T is a semi-band-preserving operator on X then
for every f ∈ X with supp f ⊆ Ω \ ST we have Tf = 0.

Proof. Indeed, by (2), supp(Tf) ⊆ ST so f ⊥ Tf . By (SBP) we get
Tf ⊥ Tf . Thus Tf = 0.

When the space X is essentially one-dimensional we can deduce a further
important property of semi-band-preserving operators. We have:

Proposition 4.3. Suppose that X is essentially one-dimensional and
T is a semi-band-preserving operator on X. If A,B ∈ ΣT and A ⊂ B, then
B \ A ∈ ΣT .

Proof. Let h, g ∈ X be such that supp(Th) = B and supp(Tg) = A.
Since A ⊂ B and X is essentially one-dimensional there exists C ⊂ A so
that the components (Th)χC and (Tg)χC of Th and Tg, respectively, are
proportional. Let {Ai}i∈I denote the family of subsets of A maximal with
respect to the property that (Th)χAi and (Tg)χAi are proportional. Then
{Ai}i∈I are mutually disjoint and, by the essential one-dimensionality of X,

A =
⋃

i∈I
Ai.

Moreover, for each i ∈ I there exists a scalar ai 6= 0 so that

(3) (Th)χAi = ai(Tg)χAi.

Consider gi = h−aig for i ∈ I. Then supp(Tgi) = B \Ai by the maximality
of Ai’s. Thus B \ Ai ∈ ΣT for all i ∈ I. Moreover gχAi ⊥ Tgi. Hence, by
(SBP),

T (gχAi) ⊥ Tgi.
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That is, for all i ∈ I,

(4) supp(T (gχAi)) ⊂ Ai.
But, since {Ai}i∈I are mutually disjoint,

Tg =
∑

i∈I
T (gχAi),

and, by (4),

(5) (Tg)χAi = T (gχAi).

Thus, by (3) and (5), we get

(Th)χA =
∑

i∈I
(Th)χAi =

∑

i∈I
ai(Tg)χAi

=
∑

i∈I
aiT (gχAi) = T

(∑

i∈I
aigχAi

)
= T (hχA).

So (Th)χA ∈ T (X). Hence

(Th)χB\A = Th− (Th)χA ∈ T (X).

Thus B \A ∈ ΣT .

Remark 4.4. Note that the above proof also shows that if X is essen-
tially one-dimensional and T is a semi-band-preserving operator on X then
the subspace T (X) is essentially one-dimensional. We will prove a stronger
result in Theorem 4.7.

Remark 4.5. Proposition 4.3 fails in general nonatomic Banach lattices.
Indeed, let T be the semi-band-preserving operator defined in Example 3.1.
It is easy to see that [0, 1], [0, 1/2] ∈ ΣT and [1/2, 1] = [0, 1] \ [0, 1/2] does
not belong to ΣT .

Note that when ψ1 and ψ2 are positive then T is positive, and when
ψi(ϕj) = δij for i, j = 1, 2, then T is a projection. However it follows from
[4, Theorem 3.10] that when T is an order-continuous positive semi-band-
preserving projection on a Banach lattice of functions on [0, 1] then T sat-
isfies the assertion of Proposition 4.3.

By de Morgan Laws, as a corollary of Lemma 4.1 and Proposition 4.3
we immediately obtain:

Corollary 4.6. Suppose that X is an essentially one-dimensional Ba-
nach lattice and T is a semi-band-preserving operator on X. Then T satisfies
the following two properties:

(I1) A,B ∈ ΣT ⇒ A ∩B ∈ ΣT ,
(I2) {Aj}j∈N ⊂ ΣT and A1 ⊇ A2 ⊇ A3 ⊇ · · · ⇒

⋂

j∈N
Aj ∈ ΣT .
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These properties allow us to give the full characterization of semi-band-
preserving operators on essentially one-dimensional Banach lattices. Namely
we have:

Theorem 4.7. Let X be an essentially one-dimensional Banach lattice.
Then an operator T : X → X is semi-band-preserving if and only if the
range of T is the linear span of a collection {uj}j∈J of mutually disjoint
elements in T (X) and T is a weighted conditional expectation operator , i.e.
T has the following form for all f in X:

(6) Tf =
∑

j∈J
〈ψj , f〉uj,

where {ψj}j∈J are nonzero functionals on X so that for all j ∈ J if f ⊥ uj
then 〈ψj , f〉 = 0 (see (1)).

Proof. It is not difficult to see that all weighted conditional expectation
operators are semi-band-preserving.

For the other direction, let ω0 ∈ ST =
⋃
A∈ΣT A ⊂ Ω. Then, by (I2)

and Zorn’s Lemma, among all A ∈ ΣT such that ω0 ∈ A, there exists a set
A0 ∈ ΣT minimal with respect to inclusion.

Next, we claim that the subspace of T (X) consisting of those elements
in T (X) whose support is contained in A0 is one-dimensional.

Suppose for contradiction that there exist f, g ∈ X such that supp(Tf)
= A0, supp(Tg) ⊆ A0 and Tf, Tg are linearly independent. Since X is
essentially one-dimensional there exist nonzero components u1, u2 of Tf, Tg
respectively so that

u1 = ku2

for some scalar k. Clearly suppu1 = suppu2 and since Tf, Tg are linearly
independent,

suppu1 = B ( A0.

Consider h = f − kg. Then Th = Tf − kTg and C = supp(Th) belongs to
ΣT and

∅ 6= C ⊆ A0 \B ( A0.

By Proposition 4.3 we also see that A0 \ C belongs to ΣT .
Now ω0 belongs to one of the sets C, or A0 \ C, which contradicts the

minimality of the set A0.
It now follows immediately that there exist mutually disjoint elements

{uj}j∈J in T (X) with minimal supports in ΣT . Thus T (X) = span{uj}j∈J
and T has the form (6) since T is a linear operator. Condition (SBP) implies
that for all j ∈ J , if f ⊥ uj , then since uj ∈ T (X), also Tf ⊥ uj and thus
〈ψj , f〉 = 0, as required in (6).
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Remark 4.8. The above proof is very similar in spirit to that of the
characterization of the form of norm one projections in `p, 1 < p < ∞
([5, Theorem 2.a.4]).

Remark 4.9. Theorem 4.7 is not valid in general nonatomic lattices.
The counterexample is very similar to Example 3.1. Indeed, let X be any
Banach lattice of functions on [0, 1] such that the constant function 1 and
the function ψ : [0, 1] → [0, 1] defined by ψ(t) = t belong to X. Then
span{1, ψ} ⊂ X is 2-dimensional in X and therefore it is complemented
in X, i.e. there exists a projection T : X → X with T (X) = span{1, ψ}.
But for every g ∈ X we have supp(Tg) = [0, 1]. Thus f ⊥ Tg implies f = 0
and thus T is trivially semi-band-preserving. Clearly T is not a weighted
conditional expectation operator. Further, note that every function in the
range of T has full support and hence T is also trivially semi-containment-
preserving.

We finish this section with two immediate corollaries of Theorem 4.7.

Corollary 4.10. Let X be an essentially one-dimensional Banach lat-
tice. Then every semi-band-preserving operator T on X is semi-containment-
preserving.

Corollary 4.11. Let X be a purely atomic Banach lattice. Then an
operator T on X is a weighted conditional expectation operator if and only
if T is semi-band-preserving.

5. Semi-containment-preserving projections. In this section we
obtain an analogue of our main result, Theorem 4.7, for semi-containment-
preserving operators. However, as Example 3.2 demonstrates, on any Ba-
nach lattice which contains nonzero elements f1, f2 with f1 ⊥ f2 there ex-
ists a semi-containment-preserving projection Q which is not semi-band-
preserving and thus is not a weighted conditional expectation operator.
Moreover if X is not strictly monotone then such a Q can be chosen to
be a projection of norm one.

Also an example described in Remark 4.9 demonstrates that in general
nonatomic Banach lattices there may exist a semi-containment-preserving
projection which is not a weighted conditional expectation operator. Thus
our characterization below has natural restrictions. We prove:

Theorem 5.1. Let X be an essentially one-dimensional strictly mono-
tone Banach lattice and let P : X → X be a projection of norm one. Then
P is semi-containment-preserving if and only if the range of P is the linear
span of a collection {uj}j∈J of mutually disjoint elements of P (X) and P
is a weighted conditional expectation operator , i.e. P has the following form
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for all f in X:

(7) Pf =
∑

j∈J
〈ψj , f〉uj,

where {ψj}j∈J are nonzero functionals on X so that for all j ∈ J , suppψj ⊆
suppuj , 〈ψj , uj〉 = 1 = ‖ψj‖ = ‖uj‖ and 〈ψj , ui〉 = 0 if i 6= j (see (1)).

Proof. As before, we note that all weighted conditional expectation op-
erators are semi-containment-preserving, so we just need to prove one im-
plication in Theorem 5.1.

Our method of proof depends on the following lemma:

Lemma 5.2. Suppose that X is a strictly monotone (not necessarily
essentially one-dimensional) Banach lattice and P : X → X is a semi-
containment-preserving projection of norm one. Let {Aj}j∈N ⊂ ΣP with
A1 ⊇ A2 ⊇ · · · . Then ⋂

j∈N
Aj ∈ ΣP .

Using this lemma the proof of Theorem 5.1 is the same as that of Theo-
rem 4.7. Indeed, Lemma 5.2 states that when X and P satisfy the assump-
tions of Theorem 5.1 then P has property (I2) from Corollary 4.6. Thus,
following the proof of Theorem 4.7 word for word, we deduce that there ex-
ist mutually disjoint elements {uj}j∈J in P (X) so that P (X) = span{uj}j∈J
and P has the form (7) since P is a linear operator. Condition (SCP) implies
that suppψj ⊆ suppuj for all j ∈ J , and since P is a projection of norm one
we have 〈ψj , uj〉 = 1 = ‖ψj‖ = ‖uj‖ and 〈ψj , ui〉 = 0 if i 6= j, as required
in (7).

Proof of Lemma 5.2. Since {Aj}j∈N ⊂ ΣP , there exist {fj}j∈N ⊂ X so
that supp(Pfj) = Aj . Define A =

⋂
j∈NAj and set g = (Pf1) · χA. Then

supp g = A ⊂ supp(Pfj) for all j ∈ N. Thus, by (SCP),

supp(Pg) ⊂ supp(Pfj)

for all j ∈ N. Hence
supp(Pg) ⊂ A.

Denote supp(Pg) by B. Then

(Pg) · χA1\B = 0.

Further

Pf1 = (Pf1) · χA1\A + (Pf1) · χA = (Pf1) · χA1\A + g,

Pf1 = P (Pf1) = P ((Pf1) · χA1\A) + Pg,

(Pf1) · χA1\B = P ((Pf1) · χA1\A) · χA1\B + (Pg) · χA1\B
= P ((Pf1) · χA1\A) · χA1\B.
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Since P has norm one we get

‖(Pf1) · χA1\B‖ = ‖P ((Pf1) · χA1\A) · χA1\B‖ ≤ ‖P ((Pf1) · χA1\A)‖
≤ ‖(Pf1) · χA1\A‖.

Since X is strictly monotone and supp(Pf1) = A1 we conclude that

A1 \B ⊆ A1 \A.
Since B ⊂ A, we get

A = B = supp(Pg).

Thus A ∈ ΣP , as desired.

We finish this section with an immediate corollary of Theorem 5.1 similar
to Corollary 4.11.

Corollary 5.3. Let X be a purely atomic strictly monotone Banach
lattice and let P : X → X be a projection of norm one. Then P is a weighted
conditional expectation operator if and only if P is semi-containment-pre-
serving.

REFERENCES

[1] Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory , Grad.
Stud. Math. 50, Amer. Math. Soc., Providence, RI, 2000.

[2] Y. A. Abramovich and A. K. Kitover, A characterization of operators preserving
disjointness in terms of their inverse, Positivity 4 (2000), 205–212.

[3] —, —, Inverses of disjointness preserving operators, Mem. Amer. Math. Soc. 143
(2000), no. 679.

[4] P. G. Dodds, C. B. Huijsmans, and B. de Pagter, Characterizations of conditional
expectation-type operators, Pacific J. Math. 141 (1990), 55–77.

[5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Vol. I, Sequence Spaces,
Springer, Berlin, 1977.

[6] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. II , North-Holland, Ams-
terdam, 1971.

[7] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin, 1991.

Department of Mathematics and Statistics
Miami University
Oxford, OH 45056, U.S.A.
E-mail: randrib@muohio.edu

Received 18 September 2002;
revised 17 February 2003 (4268)


