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Abstract. We extend Champernowne’s construction of normal numbers to base b
to the Zd case and obtain an explicit construction of a generic point of the Zd shift

transformation of the set {0, 1, . . . , b− 1}Zd .

1. Introduction. A number α ∈ (0, 1) is said to be normal to base b if
in a b-ary expansion of α, α = .d1d2 . . . (di ∈ {0, 1, . . . , b− 1}, i = 1, 2, . . .),
each fixed finite block of digits of length k appears with an asymptotic fre-
quency of b−k along the sequence (di)i≥1. Normal numbers were introduced

by Borel (1909). Champernowne (1933) gave an explicit construction of such
a number, namely,

θ = .1 2 3 4 5 6 7 8 9 10 11 12 . . . ,

obtained by successively concatenating all the natural numbers.
We shall call the sequence of digits obtained from a normal number a

normal sequence.
Champernowne’s construction is associated with the i.i.d. process of

variables having uniform distribution over b states. In [AKS], [Po], and
[SW], constructions of normal sequences for various stationary stochastic
processes, similar to Champernowne’s, were introduced.

Our goal is to extend such constructions to Zd-arrays (d > 1) of random
variables, which we shall call Zd-processes. We shall deal with stationary Zd-
processes, that is, processes with distribution invariant under the Zd-action.
We shall call a specific realization of a Zd-process a configuration (lattice
configuration). To begin with, the very definition of a normal configuration
is subject to various generalizations from the 1-dimensional case.

We begin with a very simple generalization (see also [Ci], [KT], and
[LeSm1]).
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1.1. Rectangular normality. We denote by N the set of non-negative
integers. Let d, b ≥ 2 be two integers, Nd = {(n1, . . . , nd) | ni ∈ N,
i = 1, . . . , d}, ∆b = {0, 1, . . . , b− 1}, and Ω = ∆N

d

b .
We shall call ω ∈ Ω a configuration (lattice configuration). A configura-

tion is a function ω : Nd → ∆b.
Given a subset F of Nd, ωF will be the restriction of the function ω to F .

Let N ∈ Nd, N = (N1, . . . , Nd). We denote a rectangular block by

FN = {(f1, . . . , fd) ∈ Nd | 0 ≤ fi < Ni, i = 1, . . . , d},
h = [0, h1) × . . . × [0, hd), hi ≥ 1, i = 1, . . . , d; G = Gh is a fixed block of
digits G = (gi)i∈Fh

, gi ∈ ∆b; χω,G(f) is the characteristic function of the
block G shifted by the vector f in the configuration ω:

(1) χω,G(f) =

{
1 if ω(f + i) = gi, ∀i ∈ Fh,

0 otherwise.

Definition 1. ω ∈ Ω is said to be rectangular normal if for any h ⊂ Nd
and block Gh,

(2) #{f ∈ FN | χω,Gh
(f) = 1} − b−h1···hdN1 · · ·Nd = o(N1 · · ·Nd)

as max(N1, . . . , Nd)→∞.
We shall say that ω is square normal if we consider only square blocks,

i.e., N1 = · · · = Nd. For clarity, we shall carry out the proof only for the
case d = 2. The generalization to general d > 2 is easy and straightforward.

Construction. The formula

(3) L(f1, f2) =

{
f2

1 + f2 if f2 < f1,

f2
2 + 2f2 − f1 if f2 ≥ f1,

defines a bijection between N2 and N, inducing a total order on N2 from
the usual one on N. We define the configuration ωn on F

(2nb2n
2
,2nb2n

2
)

as

the concatenation of b4n2
2n× 2n blocks of digits with the lower left corner

(2nx, 2ny), 0 ≤ x, y < b2n2
. To each of these blocks we assign the number

L(x, y). Next we use the b-expansion of the number L(x, y) according to the
order L to obtain the digits of the relevant 2n×2n block. It is easy to obtain
the analytic expression for the digits of the configuration ωn:

(4) ωn(2nx+ s, 2ny + t) =

{
as2+t(u) if t < s,

at2+2t−s(u) if t ≥ s,
where

(5) u = u(x, y) =

{
x2 + y if y < x,

y2 + 2y − x if y ≥ x,
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s, t, x, y are integers, 0 ≤ x, y < b2n2
, 0 ≤ s, t < 2n, and

(6) n =
∑

i≥0

ai(n)bi (ai(n) ∈ {0, 1, . . . , b− 1})

is the b-expansion of the integer n.
Next we define inductively a sequence of increasing configurations ω′n on

F
(2nb2n

2
,2nb2n

2
)
. Put ω′1 = ω1, ω′n+1(f) = ω′n(f) for f ∈ F

(2nb2n
2
,2nb2n

2
)

and

ω′n+1(f) = ωn+1(f) otherwise. Put

(7) ω∞ = limω′n, (ω∞)F
(2nb2n

2
,2nb2n

2
)

= ω′n, n = 1, 2, . . . .

Theorem. ω∞ is rectangular normal, and for all h = (h1, h2), N =
(N1, N2) and all blocks of digits Gh we have

(8) #{f ∈ FN | χω,Gh
(f) = 1} = b−h1h2N1N2 +O(N1N2/

√
logN1N2).

Remark. A more general (and more complicated) construction is given
in [LeSm1] but without an estimate of the error term as in (8). The proof of
the Theorem is similar to that of [LeSm1]. The essential difference is using
Gauss’s estimate of exponential sums instead of Weil’s.

The proof of the Theorem is given in Section 3.

1.2. Related questions

1.2.1. Linear and polynomial normality. Let the tiling of the plane by
unit squares be given. We label the squares of the tiles of the positive quad-
rant of the plane by ωij , where (i, j) are the coordinates of the lower left
vertex of the tile. Consider a curve y = φ(x). It is partitioned into successive
intervals of the intersections with tiles. Therefore, to each curve corresponds
a sequence of digits (uφ(n))n≥0.

Definition 2. ω is said to be polynomial normal if for all polynomial
curves φ the sequence (uφ(n))n≥0 is normal to base b.

We shall say that ω is linear normal if we consider only first degree
polynomial curves, i.e. lines.

In [LeSm3] we proved that the configuration ω∞ (see (7)) is polynomial
normal.

Now we note that the notions of linear, polynomial, square, and rect-
angular normal configurations define different sets in Ω. The differences
are null measure subsets, but are not empty. In [LeSm2] we gave exam-
ples of: linear normal configuration which is not square normal; rectangle
normal configuration which is not linear normal; rectangle and linear nor-
mal configuration which is not polynomial normal; square and linear normal
configuration which is not rectangular normal.



36 M. B. LEVIN AND M. SMORODINSKY

Problem 1. Is the intersection of ω∞ with all increasing convex curves
also normal?

1.2.2. s-dimensional surfaces in Rd. Consider a function ψ : Rs → Rd.
Let Gψ = {ψ(x) ∈ Rd | x ∈ Rs}, s ≤ d, and

G′ψ = {n ∈ Zd | n + [0, 1)d ∩Gψ 6= ∅}, Hψ : G′ψ → Zs,

and Ψ = {ψ} is a set of functions ψ (a set of s-dimensional surfaces) such
that Hψ is a bijection.

Definition 3. The configuration ω ∈ {0, 1, . . . , b − 1}Zd is said to be
Ψ -normal if Hψ(G′ψ(ω)) is rectangular normal in Zs for all ψ ∈ Ψ .

Problem 2. Let ω be a d-dimensional configuration, constructed simi-
larly to (3)–(7), and Ψp be the set of all s-dimensional polynomial surfaces
in Rd. Is ω a Ψp-normal configuration?

1.2.3. Connection with uniform distribution. Let (xn)n≥1 be an infinite
sequence of points in an s-dimensional unit cube [0, 1)s; v = [0, γ1)× · · · ×
[0, γs) be a box in [0, 1)s; and Av(N) be the number of indices n ∈ [1, N ]
such that xn lies in v. The quantity

(9) D(N) = D((xn)Nn=1) = sup
v∈(0,1]s

∣∣∣∣
1

N
Av(N)− γ1 · · · γs

∣∣∣∣

is called the discrepancy of (xn)Nn=1. The sequence (xn)n≥1 is said to be
uniformly distributed in [0, 1)s if D(N)→ 0 as N →∞.

It is known (Wall, 1949) that a number α is normal to base b if and only
if the sequence {αbn}n≥1 is uniformly distributed in [0, 1) (see [KN, p. 70]).

Let ω = (ai,j)i,j≥1 (ai,j ∈ {0, 1, . . . , b− 1}) be a configuration,

αm =
∞∑

i=1

am,i/b
i, m = 1, 2, . . . ,

and s ≥ 1 be an integer. The following statement is proved in [L1]:
The lattice configuration ω is normal to base b if and only if for all s ≥ 1

the double sequence

({αmbn}, . . . , {αm+s−1b
n})m,n≥1

is uniformly distributed in [0, 1)s, i.e.,

D(({αmbn}, . . . , {αm+s−1b
n})1≤n≤N, 0≤m<M ) = o(1)

as max(M,N) → ∞. Hence we have another definition of normal config-
uration (of normal sequence α = (α1, α2, . . .) ∈ [0, 1)∞ to base b). It is
evident that almost all sequences α are normal to all bases b ≥ 2 (absolutely
normal).
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Different bases. Responding to a question of Steinhaus, J. Cassels and
W. Schmidt (1960) proved that for all integers q1, q2 ≥ 2 (with logq1 q2

irrational) there exist numbers β that are normal to base q1 and not normal
to base q2. G. Wagner (1989, see [KS]) found a constructive proof of this
result for some q1, q2 ≥ 2.

Problem 3. Find for some integers q1, q2 ≥ 2 an example of a se-
quence α normal to base q1 such that α is not normal to base q2.

Discrepancy estimate. In [L1] we proved explicitly that there exists a
normal sequence α = (αm)m≥1 such that for all s,N,M ≥ 1, we have

D(({αmbn}, . . . , {αm+s−1b
n})1≤n≤N, 0≤m<M ) = O((MN)−1(logMN)2s+5)

as max(M,N)→∞, and the constant implied by O only depends on s.
We note that according to Roth’s theorem (see [DrTi, p. 29]), this esti-

mate cannot be improved by more than a power of the logarithmic multi-
plier.

1.2.4. Connection with completely uniform distribution. Now let (un)n≥1

be an arbitrary sequence of real numbers. Starting with the sequence
(un)n≥1, we construct for every integer s ≥ 1 the s-dimensional sequence

(x
(s)
n ) = ({un+1}, . . . , {un+s}), where {x} is the fractional part of x. The se-

quence (un)n≥1 is said to be completely uniformly distributed (abbreviated

c.u.d.) if for any integer s ≥ 1 the sequence (x
(s)
n ) is u.d. in [0, 1)s (Korobov,

1949, see [Ko1, Ko2]).
A c.u.d. sequence is a universal sequence for computing multidimensional

integrals, modeling Markov chains, random numbers, and for other problems
[DrTi, KN, Ko2].

Let b ≥ 2 be an integer, (un) be a c.u.d. sequence, and an = [b{un}],
n = 1, 2, . . . . Then α = .a1a2 . . . is normal to base b (Korobov [Ko2]).

In [L2] we constructed a c.u.d. double sequence (un,m)n,m≥1 such that
for all integers s, t ≥ 1,

MND(((un+i,m+j)
s,t
i=1,j=1)N,Mn=1,m=1) = O((log(MN + 1))st+4)

for all M,N ≥ 1. Similarly to [Ko2], we get from this an estimate of the
error term in (8) asO((log(N1N2+1))st+4) for the configuration (an,m)n,m≥1,
where an,m = [b{un,m}], n,m ≥ 1. This estimate is evidently better than (8).
But the configuration ω∞ of (7) also has the polynomial normality property
[LeSm3].

2. Auxiliary notation and results. To estimate the discrepancy we
use the Erdős–Turán inequality (see, for example, [DrTi, p. 18])
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(10) ND((βn)N−1
n=0 ) ≤ 3

2

(
2N

H + 1
+

∑

0<|m|≤H

|∑N−1
n=0 e(mβn)|

m

)
,

where e(y) = e2πiy, m = max(1, |m|), and H ≥ 1 is arbitrary.
We shall use the following estimates (see, for example, [Ko2, pp. 1, 29]):

(11)

∣∣∣
A+P−1∑

x=A

e(θx)
∣∣∣ ≤ min

(
P,

1

2‖θ‖

)
,

∣∣∣
A+P−1∑

x=A

e((ax2 + bx+ c)/q)
∣∣∣

≤ max
1≤d≤q

∣∣∣
A+q−1∑

x=A

e((ax2 + (b+ d)x+ c)/q)
∣∣∣ · (1 + ln q),

where ‖x‖ = min({x}, 1− {x}), 1 ≤ P ≤ q, and a, b, c, q are integers.
Let (a, q) be the greatest common divisor of a and q. Similarly to [Ko2,

pp. 12, 13], we obtain the following form of Gauss’s estimate of exponential
sums:

∣∣∣
A+q−1∑

x=A

e((ax2 + bx+ c)/q)
∣∣∣ ≤

√
2q if (a, q) = 1.

Let a1 = a/(a, q)) and q1 = q/(a, q). Then

∣∣∣
A+P−1∑

x=A

e(ax2/q)
∣∣∣ =

∣∣∣
A+P−1∑

x=A

e(a1x
2/q1)

∣∣∣

=
∣∣∣
A+q1[P/q1]−1∑

x=A

e(a1x
2/q1) +

A+P−1∑

x=A+q1[P/q1]−1

e(ax2/q)
∣∣∣

≤ [p/q1]
∣∣∣
q1−1∑

x=0

e(a1x
2/q1)

∣∣∣+
∣∣∣

A+P−1∑

x=A+q1[P/q1]−1

e(a1x
2/q1)

∣∣∣

≤ ([P/q1] + 1)(2q1)1/2(1 + ln q1) ≤ 2(P + q1)q
−1/2
1 (1 + ln q1).

Hence, for all P ≥ 1 and a 6= 0 with |a| < q we have

(12)
∣∣∣
A+P−1∑

x=A

e(ax2/q)
∣∣∣ ≤ 2(P + q)|a|q−1/2(1 + ln q).

3. Proof of the Theorem. Consider the configuration ωn, where n
satisfies the following inequality:

2(n− 1)2b2(n−1)2 ≤ max(N1, N2) < 2nb2n
2
.
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Let h1, h2 ≥ 1 be integers, and

gi1,i2 ∈ {0, 1, . . . , b− 1}, 0 ≤ i1 < h1, 0 ≤ i2 < h2.

We consider the block of digits G = (gi1,i2)0≤i1<h1, 0≤i2<h2 , the configu-

ration ωn, and the block of digits α = (ωn(i, j)) (0 ≤ i < N1 + h1,
0 ≤ j < N2 + h2).

To compute the number of appearances of the block G in the configura-
tion α, we introduce the following notations (see (1), (2)):

(13) Vn,G(L1,M1;L2,M2)

=
⋃

(i,j)∈[L1,L1+M1)×[L2,L2+M2)

{(i, j) | χωn,G(i, j) = 1}

and

(14) Vn,G(N1, N2) = Vn,G(0, N1; 0, N2).

Let

(15) N1 = 2nN11 +N12, N2 = 2nN21 +N22 with N12, N22 ∈ [0, 2n).

Observe that

(16) Vn,G(N1, N2) = Vn,G(2nN11, 2nN21)

∪ Vn,G(0, 2nN1; 2nN21, N22) ∪ Vn,G(2nN11, N12; 0, N2).

Next, we fix s, t ∈ [0, 2n), and compute the number of appearances
of G in the configuration α1 = (ωn(i, j))0≤i<M1+h1, 0≤j<M2+h2 such that
the shift of the block G by the vector (i, j) satisfies i ≡ s (mod 2n) and
j ≡ t (mod 2n). Set

(17) As,t,G(M1,M2) =
⋃

(i,j)∈[0,2nM1)×[0,2nM2)

{(i, j) | χωn,G(i, j) = 1, and

i ≡ s, j ≡ t (mod 2n)}.
It is easy to see that

(18) Vn,G(2nN11, 2nN21) =
⋃

0≤s<2n

⋃

0≤t<2n

As,t,G(N11, N21),

and

(19) Vn,G(0, 2nN11; 2nN21, N22)

=
⋃

0≤s<2n

⋃

0≤t<N22

(As,t,G(N11, N21 + 1) \ As,t,G(N11, N21)).

We will show that to complete the proof of the theorem it is sufficient

to prove that for all s, t ∈ [0, 2n), M1,M2 ∈ [1, 2nb2n2
], n = 1, 2, . . . ,

#As,t,G(M1,M2) = b−h1h2M1M2 +O(M1M2b
−s−t).
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Now we find an analytic expression for #As,t,G(M1,M2). First from (1),
(2), and (17) we have

(20) As,t,G(M1,M2) = {(2nx+ s, 2ny + t) | (x, y) ∈ [0,M1)× [0,M2),

ωn(2nx+ s+ i1, 2ny + t+ i2) = gi1,i2 ∀(i1, i2) ∈ [0, h1)× [0, h2)}.
Next we introduce some integer sequences:

v = v(i1, i2) = v(s, t, i1, i2)(21)

=

{
(s+ i1)2 + t+ i2 if t+ i2 < s+ i1,

(t+ i2)2 + 2(t+ i2)− s− i1 otherwise,

and k1, . . . , kh (h = h1h2) is an increasing sequence of integers from the set

(22) v(s, t, i1, i2) + 1, i1 = 0, 1, . . . , h1 − 1, i2 = 0, 1, . . . , h2 − 1.

We enumerate the set (v(s, t, i1, i2))h1−1, h2−1
i1=0, i2=0 in increasing order with the

integer sequence µ(i1, i2) ∈ [1, h1h2]:

(23) µ(i1, i2) > µ(j1, j2) ⇔ v(s, t, i1, i2) > v(s, t, j1, j2),

where iν , jν ∈ [0, hν), ν = 1, 2, and we obtain

(24) kµ(i1,i2) = v(s, t, i1, i2) + 1, iν = 0, 1, . . . , hν − 1, ν = 1, 2.

Put

(25) dµ(i1,i2) = gi1,i2 iν = 0, 1, . . . , hν − 1, ν = 1, 2.

Using (4)–(6), and (23)–(25), we find that the condition

(26) ωn(2nx+ s+ i1, 2ny + t+ i2) = gi1,i2 ∀(i1, i2) ∈ [0, h1)× [0, h2)

is equivalent to

av(s,t,i1,i2)(u(x, y)) = gi1,i2 ∀(i1, i2) ∈ [0, h1)× [0, h2),

or by (24) and (25) to

(27) aki−1(u(x, y)) = di ∀i ∈ [0, h1h2),

where

(28) u(x, y) =

{
x2 + y for x ≥ y,

y2 + 2y − x otherwise.

In other words, (26) is equivalent to

(29) aki−1(u(x, y)) = di ∀i ∈ [0, h1h2).

Now from (20), (26), and (29) we deduce that
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(30) As,t,G(M1,M2) = {(2nx+ s, 2ny + t) | (x, y) ∈ [0,M1)× [0,M2),

aki−1(u(x, y)) = di ∀i ∈ [1, h1h2]}.
Lemma 1. Let M1,M2 ∈ [0, b2n

2
), s, t ∈ [0, 2n − 15h], and h = h1h2.

Then

(31) #As,t,G(M1,M2)

=
bk2−k1−1−1∑

x2=0

. . .
bkh−kh−1−1−1∑

xh=0

Bst(M1,M2, d(x2, . . . , xh)),

where

(32) Bst(M1,M2, d) = #

{
(x, y) ∈ [0,M1)× [0,M2)

∣∣∣∣

{u(x, y)b−kh} ∈
[
d(x2, . . . , xh)

bkh−k1+1
,
d(x2, . . . , xh) + 1

bkh−k1+1

)}
,

and

(33) d(x2, . . . , xh) = d1 + x2b+ d2b
k2−k1 + . . .+ xhb

kh−1−k1+1 + dhb
kh−k1 .

Proof. From (6), we infer that the condition aki−1(u(x, y)) = di for all
i ∈ [1, h] is equivalent to the following statement:

u(x, y) = x1 +d1b
k1−1 +x2b

k1 +d2b
k2−1 + · · ·+xhb

kh−1 +dhb
kh−1 +xh+1b

kh ,

with integers xi ∈ [0, bki−ki−1−1), k0 = 0, i = 1, . . . , h, and xh+1 ≥ 0. Using
(30) and (33), we get

(34) As,t,G(M1,M2) = {(2nx+ s, 2ny + t) | (x, y) ∈ [0,M1)× [0,M2),

u(x, y) = x1 + d(x2, . . . , xh)bk1−1 + xh+1b
kh ,

xi ∈ [0, bki−ki−1−1), k0 = 0, i = 1, . . . , h, xh+1 ≥ 0}

=

bk2−k1−1−1⋃

x2=0

. . .

bkh−kh−1−1−1⋃

xh=0

{(2nx+ s, 2ny + t) | (x, y) ∈ [0,M1)× [0,M2),

u(x, y) = x1 + d(x2, . . . , xh)bk1−1 + xh+1b
kh},

for arbitrary integers x1 ∈ [0, bk1−1), xh+1 ≥ 0. Bearing in mind that the
condition

u(x, y) = x1 + d(x2, . . . , xh)bk1−1 + xh+1b
kh

is equivalent to

{u(x, y)b−kh} ∈
[
d(x2, . . . , xh)

bkh−k1+1
,
d(x2, . . . , xh) + 1

bkh−k1+1

)
,

we deduce from (34) that
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As,t,G(M1,M2) =
bk2−k1−1−1⋃

x2=0

. . .
bkh−kh−1−1−1⋃

xh=0

{
(2nx+ s, 2ny + t) |

(x, y) ∈ [0,M1)××[0,M2),

{u(x, y)b−kh} ∈
[
d(x2, . . . , xh)

bkh−k1+1
,
d(x2, . . . , xh) + 1

bkh−k1+1

)}
.

Now by (32) and (33) we obtain the assertion of the lemma.

Lemma 2. Let 1 ≤ M2 ≤ M1 ∈ [b2n
2−5n, b2n

2
), s, t ∈ [0, 2n − 15h],

h = h1h2, n ≥ h, and 0 < |m| ≤ H = bkh−k1+s+t. Then

(35) S(m) =

M2−1∑

y=0

M1−1∑

x=0

e(mu(x, y)b−kh) = O(M1M2H
−1/(s+ t+ 1)).

Proof. Let

σ1 =

M2
2−1∑

x=0

e(mxb−kh),(36)

σ2 =

M2−1∑

y=0

M1−1∑

x=0

e(m(x2 + y)b−kh),(37)

σ3 =

M2−1∑

x,y=0

e(m(x2 + y)b−kh).(38)

From (5) and (36)–(38), we obtain

S(m) =

M2−1∑

y,x=0

e(mu(x, y)b−kh) +

M2−1∑

y=0

M1−1∑

x=M2

e(mu(x, y)b−kh)(39)

=

M2
2−1∑

x=0

e(mxb−kh) +

M2−1∑

y=0

M1−1∑

x=M2

e(m(x2 + y)b−kh)

= σ1 +

M2−1∑

y=0

M1−1∑

x=0

e(m(x2 + y)b−kh)

−
M2−1∑

x,y=0

e(m(x2 + y)b−kh) = σ1 + σ2 − σ3.

First we estimate |σ2|+ |σ3|. Let

σ(y,M) =
∣∣∣
M−1∑

x=0

e(m(x2 + y)b−kh)
∣∣∣.
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Using (12) we obtain

(40) σ(y,M) ≤ 2(M + bkh)|m|b−kh/2(1 + kh ln b).

By (37) and (38) we have

(41) |σ2|+ |σ3| ≤ 4M2(M1 + bkh)|m|b−kh/2(1 + kh ln b).

Bearing in mind (22), (21) and the assumptions of the lemma, we get

0 ≤ kh − k1 ≤ 2sh1 + 2th2 + 2h2
1 + 2h2

2 ≤ 8nh+ 4h2,(42)

(s2 + t2)/2 ≤ k1 < kh ≤ (2n− 14h)2 + 2n(43)

≤ 4n2 − 10n− 44nh+ 200h2.

Hence there exist constants c1(h1, h2), c2(h1, h2) such that

(44) 2 logb kh + kh − k1 + s+ t < kh/4 + c1(h1, h2),

(45) |m|(1 + kh ln b)b−kh/2 < c2(h1, h2)H−1/(s+ t+ 1),

where |m| ≤ H = bkh−k1+s+t. Therefore,

(46) M1M2|m|b−kh/2(1 + kh ln b) = O(M1M2H
−1/(s+ t+ 1)).

We also deduce from (42) and (43) that

H(1 + kh ln b)bkh/2 ≤ H(1 + kh ln b)b2n
2−5n−22nh+100h2

(47)

≤M1b
kh−k1+s+t−22nh+100h2

(1 + kh ln b)

≤ c2(h1, h2)M1b
−kh+k1−s−t/(s+ t+ 1)

= c2(h1, h2)M1H
−1/(s+ t+ 1).

Hence

(48) M2|m|bkh/2(1 + kh ln b) = O(M1M2H
−1/(s+ t+ 1)).

From (41), (46), and (48), we get

(49) |σ2|+ |σ3| = O(M1M2H
−1/(s+ t+ 1)).

Now we consider the sum σ1 (see (36)). If M2 ≤M1H
−1/(s+ t+ 1) then

we get a trivial estimate:

(50) |σ1| = O(M1M2H
−1/(s+ t+ 1)).

Now let M2 > M1H
−1/(s + t + 1). From the assumptions of the lemma

and (42), we have

logb(M1M2H
−1/(s+ t+ 1)) ≥ logb(M

2
1H
−2/(s+ t+ 1)2)

≥ 4n2 − 10n− 2(kh − k1 + s+ t+ 1)− 2 logb(s+ t+ 1)

≥ 4n2 − 10n− 2(8nh+ 4h2 + 4n)− 2 logb(4n+ 1).
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By (43) and (44), there exists an integer n0 > 0 such that

kh ≤ 4n2−10n−44nh+ 200h2

≤ 4n2−10n−24nh−8h2−2 logb(4n+1) ≤ logb(M2M1H
−1/(s+ t+1))

for n ≥ n0, and

H = bkh−k1+s+t < bkh/2 for n ≥ n0.

Hence,

0 < |m|b−kh ≤ Hb−kh < 1/2 and bkh ≤M1M2H
−1/(s+ t+ 1)

for n ≥ n0. We apply (11) to estimate the sum σ1:

|σ1| ≤ bkh ≤M1M2H
−1/(s+ t+ 1) for n ≥ n0.

Now by (39), (35), (49), and (50), the assertion of the lemma follows.

Lemma 3. Under the assumptions of Lemma 2,

(51) D = D(({u(x, y)b−kh})M1−1,M2−1
x=0, y=0 ) = O(bk1−kh−s−t).

Proof. We apply Lemma 2, (42) and the Erdős–Turán inequality, with
N = M1M2, H = bkh−k1+s+t and βx+M1y = u(x, y)b−kh (0 ≤ x < M1,
0 ≤ y < M2):

D = O

(
H−1 + (M1M2)−1

∑

0<|m|≤H

|S(m)|
m

)

= O

(
H−1

(
1 +

1

s+ t+ 1

∑

0<|m|≤H

1

m

))

= O(H−1(1 + (s+ t+ 1)−1 logH))

= O(H−1(1 + (s+ t+ 1)−1(kh − k1 + s+ t))) = O(H−1).

Using the definition of discrepancy (9), from (32) we get:

Corollary 1. Under the assumptions of Lemma 2,

(52) Bst(M1,M2, d(x2, . . . , xh)) = M1M2b
k1−kh−1(1 +O(b−s−t))

for all integers xi ∈ [0, bki−ki−1−1), i = 1, . . . , h.

From Lemma 1, (32), (33), Corollary 1, and (22), we get

Corollary 2. Under the assumptions of Lemma 2,

(53) #As,t,G(M1,M2) = b−hM1M2 +O(M1M2b
−s−t).

Lemma 4. Let 0 ≤ N2 ≤ N1 ∈ [b2n
2−5n, b2n

2
). Then

#Vn,G(N1, N2) = b−hN1N2 +O(N1N2/n).
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Proof. We use (18):

(54) Vn,G(2nN11, 2nN21)

=
⋃

0≤s,t<2n−15h

⋃

2n−15h≤max(s,t)<2n

As,t,G(N11, N21).

We apply (53) for the first union and the trivial estimates for the second
union:

(55) #Vn,G(2nN11, 2nN21)

=
∑

0≤s,t<2n−15h

(b−hN11N21 +O(N11N21b
−s−t)) +O(N11N21n)

= b−h4n2N11N21 +O(N11N21n), N21 ≥ 1.

Similarly, from (19) we obtain

#Vn,G(0, 2nN11; 2nN21, N22)

=
∑

0≤s<2n−15h

∑

0≤t<min(N22,2n−15h)

#(As,t,G(N11, N21 + 1) \ As,t,G(N11, N21))

+ ε1

∑

s∈[2n−15h,2n), t∈[0,N22)

N11 + ε2

∑

0≤s<2n, t∈[2n−15h,N22)

N11,

where 0 ≤ ε1, ε2 ≤ 1. It is easy to see that the first sum is not empty only
for N22 ≥ 2n− 15h. Hence by (53) we have

(56) #Vn,G(0, 2nN11; 2nN21, N22)

=
∑

0≤s<2n−15h

∑

0≤t<min(N22,2n−15h)

(b−hN11 +O(N11b
−s−t)) +O(N11N22)

=
∑

0≤s<2n

∑

0≤t<N22

b−hN11 +O(N11N22) = b−h2nN11N22 +O(N11N22).

We get a trivial estimate from (13)–(15):

#Vn,G(2nN11, N12; 0, N2) ≤ N2N12 ≤ 2nN2 < N1N2/n.

Now the assertion of the lemma follows from (15), (16), and (55)–(56).

We introduce similar notation for the configuration ω∞ (instead of ωn):

(57) VG(P1, P2) = {(v1, v2) ∈ [0, P1)× [0, P2) |
ω∞(v1 + i1, v2 + i2) = gi1,i2 ∀(i1, i2) ∈ [0, h1)× [0, h2)}.

We prove the Theorem for the case N1 ≥ N2. The other case is similar.

Completion of the proof of the Theorem. Let 1 ≤ N2 ≤ N1 and N1 ≥ 4b8.
There exists n ≥ 3 so that

(58) N1 ∈ [2(n− 1)2b2(n−1)2 − h, 2nb2n2 − h).
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Now let

(59) N ′1 = 2(n− 1)2b2(n−1)2 − h, N ′2 = min(N2, N
′
1).

From (57) and the definition of the configurations ω∞, ωn we get

#VG(N1;N2) = #Vn,G(N1, N2)−#Vn,G(N ′1, N
′
2) + #VG(N ′1, N

′
2)(60)

+ 2ε1hN
′
2 + 2ε2N1 min(h,N2 −N ′2),

with |εi| ≤ 1, i = 1, 2. It is easy to see that if N2 ≤ n, then N2 = N ′2,
otherwise h ≤ hN2/n and

#VG(N1, N2)−#Vn,G(N1, N2) = #VG(N ′1, N
′
2)−#Vn,G(N ′1, N

′
2)(61)

+ 4ε3hN1N2/n with |ε3| ≤ 1.

Analogously,

#VG(N ′1, N
′
2)−#Vn,G(N ′1, N

′
2) = #VG(N ′′1 , N

′′
2 )−#Vn−1,G(N ′′1 , N

′′
2 )(62)

+ 4ε4hN1N2/n with |ε4| ≤ 1,

and

(63) N ′′1 = 2(n− 2)2b2(n−2)2 − h, N ′′2 = min(N2, N
′′
1 ).

It is evident that

(64) #VG(N ′′1 , N
′′
2 ) + #Vn,G(N ′′1 , N

′′
2 ) ≤ 2N ′′1N

′′
2 < 2N1N2/n.

From (58)–(64), we obtain

#VG(N1, N2) = #Vn,G(N1, N2)−#Vn,G(N ′1, N
′
2) + #Vn−1,G(N ′1, N

′
2)

+O(N1N2/n).

Using Lemma 4, we have

#VG(N1, N2) = b−hN1N2 − b−hN ′1N ′2 +O(N1N2/n) + b−hN ′1N
′
2

= b−hN1N2 +O(N1N2/n) = b−hN1N2 +O(N1N2/
√

logN1N2).

From (57), (1) and (2) we obtain the assertion of the Theorem.

Acknowledgments. We are grateful to the referee for his corrections
and suggestions.
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