VOL. 102 2005 NO. 1

ON UNIVERSALITY OF FINITE POWERS OF LOCALLY PATH-CONNECTED MEAGER SPACES

вч

TARAS BANAKH (Lviv and Kielce) and ROBERT CAUTY (Paris)

Abstract. It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is $\mathcal{A}_1[n]$ -universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ -compact space. Also a one-dimensional σ -compact absolute retract X is found such that the power X^{n+1} is $\mathcal{A}_1[n]$ -universal for every n.

A topological space X is called C-universal, where C is a class of spaces, if X contains a closed topological copy of each space $C \in C$. We denote by \mathcal{M}_0 , \mathcal{M}_1 , and \mathcal{A}_1 the classes of metrizable compacta, Polish spaces, and metrizable σ -compact spaces, respectively. For a class C of spaces we denote by C[n] the subclass of C consisting of all spaces $C \in C$ with dim $C \leq n$.

In terms of universality, the classical Menger-Nöbeling-Pontryagin-Lefschetz Theorem states that the cube $[0,1]^{2n+1}$ is $\mathcal{M}_0[n]$ -universal for every $n \geq 0$. It is well known that the exponent 2n+1 in this theorem is the best possible: the Menger universal compactum μ_n cannot be embedded into $[0,1]^{2n}$. Nonetheless, P. Bowers [Bo] has proved that the (n+1)th power D^{n+1} of any dendrite D with dense set of end-points is $\mathcal{M}_0[n]$ -universal for every non-negative integer n. Moreover, every such dendrite D contains a connected G_δ -subset G whose (n+1)th power G^{n+1} is $\mathcal{M}_1[n]$ -universal for every n (see [Bo]). Actually, these results of Bowers' are particular cases of a more general fact proved in [BCTZ]: for any locally connected Polish space X without free arcs the power X^{n+1} is $\mathcal{M}_0[n]$ -universal; moreover, if the space X is nowhere locally compact, then the power X^{n+1} is $\mathcal{M}_1[n]$ -universal.

Taking into account that \mathcal{M}_0 and \mathcal{M}_1 are the first classes in the Borel hierarchy it is natural to ask the following

QUESTION. Suppose C is a Borel class. Is there a one-dimensional absolute retract $X \in C$ whose (n+1)th power X^{n+1} is C[n]-universal for every integer $n \geq 0$?

²⁰⁰⁰ Mathematics Subject Classification: 54F45, 54B10, 54F50, 54H05, 54C55, 54D45, 57N20

Key words and phrases: locally path-connected, σ -compact, universal, meager.

According to the above-mentioned results of [Bo] or [BCTZ] the answer to this question is affirmative for the multiplicative Borel classes \mathcal{M}_0 and \mathcal{M}_1 . In this paper we show that the same is true for the additive Borel class \mathcal{A}_1 .

THEOREM 1. If X is a metrizable locally path-connected space of first Baire category, then the space X^{2n+1} is $A_1[n]$ -universal for every integer $n \geq 0$.

THEOREM 2. There exists a one-dimensional σ -compact absolute retract A whose power A^{n+1} is $A_1[n]$ -universal for every integer $n \geq 0$. Moreover, such a space A can be found in every dendrite with dense set of end-points.

The exponents 2n+1 and n+1 in Theorems 1 and 2 are the best possible: the Menger universal compactum μ_n admits no embedding into X^{2n} if X is a countable union of arcs, while the n-sphere S^n admits no embedding into the n-th power of a one-dimensional space.

Observe also a difference between our results and Bowers'. While Bowers' results have infinite-dimensional counterparts (there exists a Polish (resp. compact) one-dimensional absolute retract whose countable power is \mathcal{M}_1 -universal (resp. \mathcal{M}_0 -universal)), that is not true for Theorems 1 and 2: no finite-dimensional space has \mathcal{A}_1 -universal countable power [BC].

To prove Theorems 1 and 2 we shall apply some well known infinite-dimensional techniques adapted to our finite-dimensional needs. First we recall some definitions and notations. All spaces considered in this paper are metrizable and separable, all maps are continuous. By I we denote the closed interval [0,1]; the letters n,m,k,i,j denote non-negative integer numbers. For a space X let cov(X) denote the set of all open covers of X. We write $\mathcal{V} \prec \mathcal{U}$ for $\mathcal{V},\mathcal{U} \in cov(X)$ if for every $V \in \mathcal{V}$ there is $U \in \mathcal{U}$ with $V \subset U$. For a cover $\mathcal{U} \in cov(X)$ we set $\mathcal{S}t(\mathcal{U}) = \{\mathcal{S}t(\mathcal{U},\mathcal{U}) : \mathcal{U} \in \mathcal{U}\}$, where $\mathcal{S}t(A,\mathcal{U}) = \bigcup \{\mathcal{U} \in \mathcal{U} : \mathcal{U} \cap A \neq \emptyset\}$ for a subset $A \subset X$. Also $\mathcal{S}t^2(\mathcal{U}) = \mathcal{S}t(\mathcal{S}t(\mathcal{U}))$. We say that two maps $f,g:Y \to X$ are \mathcal{U} -near (denoted by $(f,g) \prec \mathcal{U}$) if for every $g \in Y$ there is $g \in \mathcal{U}$ with $g \in \mathcal{U}$ w

A subset A of a space X is called a Z_n -set in X, n being a non-negative integer, if A is closed in X and for every map $f:I^n\to X$ and every cover $\mathcal{U}\in\operatorname{cov}(X)$ there exists a map $g:I^n\to X$ such that $(g,f)\prec\mathcal{U}$ and $g(I^n)\cap A=\emptyset$. A subset $A\subset X$ is called a Z_∞ -set in X if A is a Z_n -set in X for every $n\in\mathbb{N}$. A space X is defined to be a σZ_n -space if X can be written as a countable union $X=\bigcup_{i=1}^\infty A_i$, where each A_i is a Z_n -set in X. Observe that a subset $A\subset X$ is a Z_0 -set in X if and only if X is closed and nowhere dense in X, and a space X is a σZ_0 -space if and only if X is of first Baire category. The property of Z_n -sets described in the subsequent lemma is well known for $n=\infty$ (see [Mi, §7.2]) and can be proved by analogy.

LEMMA 1. If A is a Z_n -set in an absolute retract X, then for any map $f: K \to X$ of a compactum K with dim $K \le n$, any closed subset $K_0 \subset K$, and any cover $\mathcal{U} \in \text{cov}(X)$ there exists a map $g: K \to X$ such that $g|K_0 = f|K_0, (g, f) \prec \mathcal{U}$, and $g(K \setminus K_0) \subset X \setminus A$.

The following lemma was proved in [BT].

LEMMA 2. If X is an absolute retract of first Baire category, then X^{n+1} is a σZ_n -space for every integer $n \geq 0$.

We recall that a space X has the disjoint n-cells property if for every cover $\mathcal{U} \in \text{cov}(X)$ and every map $f: I^n \times \{0,1\} \to X$ there exists a map $g: I^n \times \{0,1\} \to X$ such that $(g,f) \prec \mathcal{U}$ and $g(I^n \times \{0\}) \cap g(I^n \times \{1\}) = \emptyset$. The following lemmas are proved in [BT] and [Bo], respectively.

LEMMA 3. If X is a non-degenerate absolute retract, then X^{2n+1} has the disjoint n-cells property for every $n \ge 0$.

LEMMA 4. If X is a dendrite with dense set of end-points, then X^{n+1} satisfies the disjoint n-cells property for every $n \ge 0$.

Our next lemma is well known and can be proven by standard methods (see [Mi, §7.3]).

Lemma 5. If a Polish ANR X has the disjoint n-cells property for some integer $n \geq 0$, then it has the following stronger property:

(SU_n) for any open set $U \subset X$, any open cover $\mathcal{U} \in \text{cov}(U)$, and any perfect map $f: K \to U$ from an at most n-dimensional locally compact space K there exists a closed embedding $g: K \to U$ such that $(f,g) \prec \mathcal{U}$.

Recall that a map $f: X \to Y$ is called *perfect* if f is closed and $f^{-1}(y)$ is compact for every $y \in Y$.

We shall need the following easy modification of Lemma 5.4 of [DMM].

LEMMA 6. An absolute retract X is $A_1[n]$ -universal for some integer $n \geq 0$ provided X is a σZ_n -space with property (\mathcal{SU}_n) .

Next, we consider the question of when a countable union of spaces with (SU_n) satisfies that property. We say that a tower $X_1 \subset X_2 \subset \cdots$ of subsets of a space X has the mapping absorption property for n-dimensional compacta if for any cover $\mathcal{U} \in \text{cov}(X)$, any closed subset K_0 of a compactum K with $\dim(K) \leq n$, and any map $f: K \to X$ with $f(K_0) \subset X_i$ for some i, there exists a map $g: K \to X_j$ for some $j \geq i$ such that $(g, f) \prec \mathcal{U}$ and $g|_{K_0} = f|_{K_0}$.

Lemma 7. A tower $X_1 \subset X_2 \subset \cdots$ of subsets of a space X has the mapping absorption property for n-dimensional compacta, n being a non-

negative integer, provided there exists a sequence of retractions $r_i: X \to X_i$, $i \in \mathbb{N}$, converging to the identity map of X uniformly on compacta.

The proof of this lemma is easy and left to the reader.

LEMMA 8. Suppose $X_1 \subset X_2 \subset \cdots$ is a tower of subsets of an absolute retract X. If for some integer $n \geq 0$ this tower has the mapping absorption property for n-dimensional compacta and each space X_i has property (\mathcal{SU}_n), then the space X has this property as well.

Proof. To show that the space X has (\mathcal{SU}_n) , fix an open set $U \subset X$, a cover $\mathcal{U} \in \text{cov}(U)$, and a perfect map $f: K \to U$ of an at most n-dimensional locally compact space K. Observe that the tower $(X_i \cap U)_{i=1}^{\infty}$ in U has the mapping absorption property for n-dimensional compacta and each space $X_i \cap U$ has property (\mathcal{SU}_n) . So, without loss of generality, we may assume that U = X.

We may also assume \mathcal{U} to be so fine that every map $g: K \to U$ that is \mathcal{U} -near to f is perfect (see [Ch, 4.1]). Thus to prove Lemma 8, it suffices to construct an injective map $g: K \to X$ with $(g, f) \prec \mathcal{U}$. By the paracompactness of X, there is a cover $\mathcal{V} \in \text{cov}(X)$ such that $\mathcal{S}t^2(\mathcal{V}) \prec \mathcal{U}$.

Write $K = \bigcup_{i=1}^{\infty} K_i$, where each K_i is a compactum lying in the interior K_{n+1}° of K_{n+1} in K. Using the mapping absorption property of the tower (X_i) , by the standard approximation procedure (see, e.g., [BP, IV.§2]), construct a map $f_0: K \to X$ such that $(f_0, f) \prec \mathcal{V}$ and for every $i \in \mathbb{N}$ there is $j \in \mathbb{N}$ with $f_0(K_i) \subset X_j$. Since $(f_0, f) \prec \mathcal{V} \prec \mathcal{U}$, the map f_0 is perfect and thus $f_0(K)$ is a closed locally compact subset in X (see [En, 3.7.21]). Observe that the subset $f_0(K) \subset X$ has the following property: every point $x \in f_0(K)$ has a neighborhood $W \subset f_0(K)$ such that $W \subset X_j$ for some j. Indeed, since f_0 is a perfect map, the preimage $f_0^{-1}(x) \subset K$ is compact and as such, lies in some K_i . Since the map f_0 is closed, $W = f_0(K) \setminus f_0(K \setminus K_{i+1}^{\circ})$ is an open neighborhood of x in $f_0(K)$. Clearly, $W \subset f_0(K_{i+1}) \subset X_j$ for some j.

Consequently, $f_0(K) = \bigcup_{i=0}^{\infty} W_i$, where

$$W_i = \{x \in f_0(K) : X_i \cap f_0(K) \text{ is a neighborhood of } x \text{ in } f_0(K)\}.$$

Evidently, each set W_i is open in the locally compact space $f_0(K)$. Hence, we may select a tower $\emptyset = L_0 \subset L_1 \subset L_2 \subset \cdots$ of compact subsets of $f_0(K)$ such that $f_0(K) = \bigcup_{i=1}^{\infty} L_i$ and for every $i \in \mathbb{N}$ the set L_i lies in W_i as well as in the interior L_{i+1}° of L_{i+1} in $f_0(K)$. Let $M_i = f_0^{-1}(L_i^{\circ})$ and $\widetilde{M}_i = f_0^{-1}(L_i)$ for every i. Clearly, M_i are open and \widetilde{M}_i are compact sets in K. To produce the required injective map $g: K \to X$, we shall inductively construct maps $f_i: K \to X$, $i \in \mathbb{N}$, satisfying the following conditions:

$$(1) f_i|\widetilde{M}_{i-1} \cup (K \setminus M_{i+1}) = f_{i-1}|\widetilde{M}_{i-1} \cup (K \setminus M_{i+1});$$

- (2) $f_i(\widetilde{M}_{i+1}) \subset X_{i+1};$
- (3) f_i is injective on \widetilde{M}_i ;
- $(4) f_i(M_{i+1}) \cap f_i(K \setminus M_{i+1}) = \emptyset;$
- (5) $(f_i, f_{i-1}) \prec \mathcal{V}$.

Assume that for some $k \geq 1$ the maps f_i , i < k, have been constructed. By (1), $f_{k-1}|K\setminus M_k = f_0|K\setminus M_k$ and thus $f_{k-1}(M_{k+1}\setminus M_k) = f_0(M_{k+1}\setminus M_k)\subset L_{k+1}^\circ\subset X_{k+1}$. Together with (2) this yields $f_{k-1}(M_{k+1})\subset X_{k+1}$. Let $F=f_{k-1}(\widetilde{M}_{k-1}\cup (K\setminus M_{k+1}))$. By (1), $F=f_{k-1}(\widetilde{M}_{k-1})\cup f_0(K\setminus M_{k+1})=f_{k-1}(\widetilde{M}_{k-1})\cup (f_0(K)\setminus L_{k+1}^\circ)$, i.e., F is a closed set in X. Consequently, $X_{k+1}\setminus F$ is an open set in X_{k+1} . It follows from (2)–(4) that $f_{k-1}(M_{k+1}\setminus \widetilde{M}_{k-1})\subset X_{k+1}\setminus F$. Clearly, the map $f_{k-1}|M_{k+1}\setminus \widetilde{M}_{k-1}:M_{k+1}\setminus \widetilde{M}_{k-1}\to X_{k+1}\setminus F$ is perfect. Since the space X_{k+1} has property (\mathcal{SU}_n) , we may select a closed embedding $e:M_{k+1}\setminus \widetilde{M}_{k-1}\to X_{k+1}\setminus F$ so near to $f_{k-1}|M_{k+1}\setminus \widetilde{M}_{k-1}$ that the map $f_k:K\to X$ defined by

$$f_k(x) = \begin{cases} e(x) & \text{if } x \in M_{k+1} \setminus \widetilde{M}_{k-1}, \\ f_{k-1}(x) & \text{if } x \in \widetilde{M}_{k-1} \cup (K \setminus M_{k+1}), \end{cases}$$

is continuous and \mathcal{V} -near to f_{k-1} . It is easy to verify that the map f_k so defined satisfies conditions (1)–(5).

Letting $g = \lim_{i \to \infty} f_i : K \to X$ we see that g is an injective continuous map with $(g, f_0) \prec \mathcal{S}t(\mathcal{V})$. Since $(f_0, f) \prec \mathcal{V}$, we get $(g, f) \prec \mathcal{S}t^2(\mathcal{V}) \prec \mathcal{U}$.

Lemmas 5, 6, and 8 immediately imply

LEMMA 9. An absolute retract X is $A_1[n]$ -universal for some integer $n \geq 0$ provided X is a σZ_n -space containing a tower $X_1 \subset X_2 \subset \cdots$ having the mapping absorption property for n-dimensional compacta and consisting of Polish ANR's X_i with the disjoint n-cells property.

We shall apply this lemma to establish the $\mathcal{A}_1[n]$ -universality of finite powers of certain subsets of dendrites. Let D be a dendrite, i.e., a non-degenerate uniquely arcwise connected Peano continuum (equivalently, a compact one-dimensional absolute retract). By the order of a point $x \in D$ we understand the number of connected components of $D \setminus \{x\}$. Points of order 1 in D are called end-points of D. For points $x, y \in D$ we denote by [x, y] the unique arc in D with end-points x, y. Also we set $(x, y) = [x, y] \setminus \{x, y\}$. We remark that each subcontinuum A of D is a retract of D; moreover, there is a canonical retraction r_A of D onto A such that for every $x \in D$, $[x, r_A(x)]$ is an irreducible arc between x and A. If $A_1 \subset A_2 \subset \cdots$ is a tower of subcontinua in D such that $\bigcup_{i=1}^{\infty} A_i$ is dense in D, then the function sequence $(r_{A_i})_{i=1}^{\infty}$ converges uniformly to the identity map of D.

LEMMA 10. If D is a dendrite with dense set E of end-points, then the space $(D \setminus E)^{2n+1}$ is $A_1[n]$ -universal for every integer $n \ge 0$.

Proof. Fix any integer $n \geq 0$. It is easy to see that the space $X = D \setminus E$ is a σ -compact absolute retract of first Baire category. By Lemma 2, the power X^{2n+1} is a σZ_n -space. Let $(A_i)_{i=1}^{\infty} \subset X$ be an increasing sequence of non-degenerate subcontinua in D such that $\bigcup_{i=1}^{\infty} A_i$ is dense in D. Each A_i , being a retract of D, is an absolute retract. As we said, the sequence $(r_{A_i})_{i=1}^{\infty}$ of retractions converges uniformly to the identity map of D. This implies that the sequence $\{r_{A_i}^{2n+1}: D^{2n+1} \to A_i^{2n+1}\}_{i=1}^{\infty}$ of retractions converges uniformly to the identity map of D^{2n+1} . By Lemma 7, the tower $(A_i^{2n+1})_{i=1}^{\infty}$ in X^{2n+1} has the mapping absorption property for n-dimensional compacta. By Lemma 3, each A_i^{2n+1} is a compact absolute retract with the disjoint n-cells property. Applying Lemma 9, we deduce that the space $X^{2n+1} = (D \setminus E)^{2n+1}$ is $A_1[n]$ -universal. \blacksquare

Proof of Theorem 1. Let D be a dendrite such that the set E of endpoints of D is dense in D and each point $x \in D$ has order ≤ 3 . Let $X = D \setminus E$. Theorem 1 trivially follows from Lemma 10 and

LEMMA 11. Every locally path-connected space Y of first Baire category contains a closed topological copy of the space $X = D \setminus E$.

Proof. Let d be any metric on Y and let Z be the completion of Y with respect to this metric. It suffices to construct a continuous function $\varphi: D \to Z$ such that $\varphi^{-1}(Y) = X$ and $\varphi|X$ is injective.

Write $Y = \bigcup_{n=1}^{\infty} Y_n$, where $(Y_n)_{n=1}^{\infty}$ is an increasing sequence of closed nowhere dense subsets of Y. Fix any point $p \in X$ of order 2 in D and choose a sequence $(x_n)_{n=1}^{\infty}$ of points of X such that $X = \bigcup_{n=1}^{\infty} [p, x_n]$. Inductively, we shall construct two sequences $(X_n)_{n=1}^{\infty}$ and $(X'_n)_{n=1}^{\infty}$ of trees in X as follows. Let $X_1 = [p_0, p_1]$, $X'_1 = [p'_0, p'_1]$, where the points p_0, p_1, p'_0, p'_1 are chosen so that $[p, x_1] \subset (p'_0, p'_1) \subset [p'_0, p'_1] \subset (p_0, p_1)$. Assuming that X_n and X'_n have been constructed, choose points p_{n+1}, p'_{n+1} in $X \setminus X_n$ so that $[p, x_{n+1}] \subset [p, p'_{n+1}] \subset [p, p'_{n+1}]$. Let $X'_{n+1} = X'_n \cup [p, p'_{n+1}]$ and $X_{n+1} = X_n \cup [p, p_{n+1}]$. Because the dendrite D contains at most countably many points of order > 2, we may suppose that all points p'_n have order 2 in D.

Let M_n denote the set of points $y \in D$ such that $p_n \in [p, y)$. Clearly, M_n is open in D and $\overline{M}_n = M_n \cup \{p_n\}$.

Let T_n be the (finite) set of all points of X'_n of order 3 in X_n . We have $T_n \subset T_{n+1}$ for every n. For every n fix a subset $S_n \subset X'_n$ consisting of points of order 2 in D such that $S_n \supset \{p'_0, \ldots, p'_n\} \cup S_{n-1}$ and the following condition is satisfied for the set $R_n = T_n \cup S_n$:

(1) $\operatorname{diam}(L) < 1/n$ for every connected component L of $X'_n \setminus R_n$.

We are going to inductively construct continuous functions $\varphi_n : D \to Y$ and real numbers $c_n > 0$ so that the following conditions are satisfied for every $n \in \mathbb{N}$:

- $(2) d(\varphi_n, \varphi_{n+1}) < 2^{-n};$
- (3) $\varphi_n|X_n$ is an embedding;
- $(4) \varphi_n = \varphi_n \circ r_{X_n};$
- (5) $\varphi_{n+1}(\bar{L}) = \varphi_n(\bar{L})$ for every $k \leq n$ and every component L of $X'_k \setminus R_{n+1}$;
- (6) $d(\varphi_n(\overline{M}_k), \overline{Y}_k) \ge (1 + 1/n)c_k \text{ for every } k \le n.$

Since Y_1 is nowhere dense in Y and Y is locally path-connected, Y contains an arc J_1 with an end-point $y_1 \notin Y_1$. Let $\varphi_1|X_1$ be any homeomorphism of X_1 onto J_1 such that $\varphi_1(p_1) = y_1$. Define φ_1 by letting $\varphi_1 = (\varphi_1|X_1) \circ r_{X_1}$ and put $c_1 = \frac{1}{2}d(y_1, \overline{Y}_1) > 0$. Evidently, conditions (3), (4) and (6) are satisfied.

Suppose we have constructed $\varphi_k, c_k, 1 \leq k \leq n$, for some $n \geq 1$. Consider the point $q_{n+1} \in X_n$ such that $[q_{n+1}, p_{n+1}]$ is the irreducible arc between X_n and p_{n+1} . Since $p'_{n+1} \notin X_n$, we have $q_{n+1} \in [p, p'_{n+1})$. We claim that $q_{n+1} \notin R_n = T_n \cup S_n$. Indeed, notice first that q_{n+1} is not of order 3 in X_n (otherwise it would be of order ≥ 4 in D). Consequently, $q_{n+1} \notin T_n$. If q_{n+1} is of order 2 in X_n , then it is of order 3 in D and thus $q_{n+1} \notin S_n$. Finally, if q_{n+1} is of order 1 in X_n , then $q_{n+1} = p_i$ for some $i \leq n$. We claim that $q_{n+1} = p_i \notin X'_n$. Otherwise, by the construction of X'_n , we would have i < n and $[p, p_i] \subset [p, p'_j) \subset X_n$ for some $j \in \{i+1, \ldots, n\}$, which would imply that $p_i = q_{n+1}$ is not of order 1 in X_n . Since $S_n \subset X'_n$, we have $q_{n+1} \notin S_n$.

If $q_{n+1} \in X'_n$, denote by L_0 the component of $X'_n \setminus R_n$ containing q_{n+1} ; if $q_{n+1} \notin X'_n$ let L_0 be the component of $X_n \setminus X'_n$ containing q_{n+1} . We distinguish between two cases:

- (a) q_{n+1} is of order two in X_n . Then L_0 contains an arc A = [u, r] such that $A^{\circ} = (u, r)$ is an open neighborhood of q_{n+1} in X_n .
- (b) There exists $i \in \{0, ..., n\}$ such that $q_{n+1} = p_i$ is of order one in X_n . Then L_0 contains an arc $A = [u, q_{n+1}]$ such that $A^{\circ} = (u, q_{n+1}]$ is an open neighborhood of q_{n+1} in X_n .

Let $\alpha = \min\{2^{-n}, (1/n - 1/(n+1)) \min_{1 \le k \le n} c_k\} > 0$. Without loss of generality, we may assume that

(7) diam $\varphi_n(A) < \frac{1}{2}\alpha$.

Since Y is of first Baire category, $\varphi_n(X_n)$ is nowhere dense in Y. Then the local path-connectedness of Y allows us to find an arc $B \subset Y$ with end-points $\varphi_n(q_{n+1})$ and $y_{n+1} \notin Y_{n+1} \cup \varphi_n(X_n)$ such that

(8) diam $B < \frac{1}{2} \min\{\alpha, d(\varphi_n(q_{n+1}), \varphi_n(X_n \setminus A^\circ))\}.$

Let $B' = [y_{n+1}, z_{n+1}]$ be an irreducible subarc of B between y_{n+1} and $\varphi_n(X_n)$. Define an embedding φ'_{n+1} of X_{n+1} into $\varphi_n(X_n) \cup B' \subset Y$ as follows. Let $\varphi'_{n+1}|X_n \setminus A^\circ = \varphi_n|X_n \setminus A^\circ$. In case (a), $A \cup [q_{n+1}, p_{n+1}]$ and $\varphi_n(A) \cup B'$ are triodes and we can extend φ'_{n+1} to an embedding of X_{n+1} so that $\varphi'_{n+1}(A) = \varphi_n(A)$ and $\varphi'_{n+1}([q_{n+1}, p_{n+1}]) = B'$. In case (b), let A' be the subarc of $\varphi_n(A)$ with end-points $\varphi_n(u)$ and z_{n+1} . We extend φ'_{n+1} onto X_{n+1} so that $\varphi'_{n+1}|(A \cup [q_{n+1}, p_{n+1}]) = A' \cup B'$.

Let $\varphi_{n+1} = \varphi'_{n+1} \circ r_{X_{n+1}}$. Since $X_n \subset X_{n+1}$, we have $r_{X_n} = r_{X_n} \circ r_{X_{n+1}}$ and if $\varphi_{n+1}(x) \neq \varphi_n(x)$, then $r_{X_{n+1}}(x) \in A \cup [q_{n+1}, p_{n+1}]$, and consequently, both points $\varphi_n(x)$ and $\varphi_{n+1}(x)$ belong to the set $\varphi_n(A) \cup B'$ which has diameter $< \alpha \le 2^{-n}$ according to (7) and (8). Thus (2) follows.

Let $c_{n+1} = \frac{1}{2}d(y_{n+1}, \overline{Y}_{n+1}) > 0$. If $x \in \overline{M}_{n+1}$, then $r_{X_{n+1}}(x) = p_{n+1}$ and hence $\varphi_{n+1}(x) = y_{n+1}$ satisfies $d(\varphi_{n+1}(x), \overline{Y}_{n+1}) > (1+1/(n+1))c_{n+1}$. Let $k \leq n$ and let $x \in \overline{M}_k$. If $\varphi_{n+1}(x) = \varphi_n(x)$, then $d(\varphi_{n+1}(x), \overline{Y}_k) \geq (1+1/n)c_k$ and if $\varphi_{n+1}(x) \neq \varphi_n(x)$, then

$$d(\varphi_{n+1}(x), \overline{Y}_k) \ge d(\varphi_n(x), \overline{Y}_k) - d(\varphi_n(x), \varphi_{n+1}(x))$$

$$\ge \left(1 + \frac{1}{n}\right) c_k - \left(\frac{1}{n} - \frac{1}{n+1}\right) c_k = \left(1 + \frac{1}{n+1}\right) c_k.$$

Let $k \leq n$ and L be a component of $X'_k \setminus R_k$. Using the fact that R_k contains the points p'_j , $0 \leq j \leq k$, and is contained in R_n , it is easy to show that either $L \cap L_0 = \emptyset$ or $L_0 \subset L$. In both cases, the construction of the map φ_{n+1} guarantees that $\varphi_{n+1}(\bar{L}) = \varphi_k(\bar{L})$.

According to (2) the sequence (φ_n) converges uniformly to a continuous map $\varphi: D \to Z$. Let x, x' be two distinct points of X. Since $X = \bigcup_{n=1}^{\infty} X'_n$, condition (1) allows us to find an integer m and components L and L' of $X'_m \setminus R_m$ such that $x \in \overline{L}$, $x' \in \overline{L'}$ and $\overline{L} \cap \overline{L'} = \emptyset$. It follows from (5) that $\varphi(x) \in \varphi_m(\overline{L})$ and $\varphi(x') \in \varphi_m(\overline{L'})$. By (3), the sets $\varphi_m(\overline{L})$ and $\varphi_m(\overline{L'})$ are disjoint and hence $\varphi(x) \neq \varphi(x')$ and $\varphi(X) = \varphi(x')$ and $\varphi(X) = \varphi(X) = \varphi(X)$. The preceding arguments also give $\varphi(X) \subset Y$.

Let $x \in E$. The equality $[p,x) = \bigcup_{n=1}^{\infty} (X_n \cap [p,x))$ implies the existence of infinitely many indices n_k such that $x \in M_{n_k}$. For every such n_k , (6) implies $d(\varphi(x), \overline{Y}_{n_k}) \geq c_{n_k} > 0$. Since the sequence (Y_n) is increasing, $\varphi(x) \notin \bigcup_{n=1} \overline{Y}_n \supset Y$. This yields $\varphi^{-1}(Y) = X$.

Proof of Theorem 2. Let D be a dendrite with dense set E of end-points. It is not difficult to construct an increasing sequence $(D_i)_{i=1}^{\infty}$ of nowhere dense subdendrites in D such that the union $A = \bigcup_{i=1}^{\infty} D_i$ is dense in D and each dendrite D_i has dense set of end-points. The space A, being a connected subspace of D, is an absolute retract. Since each D_i is nowhere dense in D, A is an absolute retract of first Baire category. We claim that the power A^{n+1} is $A_1[n]$ -universal for every integer $n \geq 0$.

Fix any integer $n \geq 0$. By Lemma 2, the power A^{n+1} is a σZ_n -space and by Lemma 4, each D_i^{n+1} is a compact absolute retract with the disjoint n-cells property. Similarly to the proof of Lemma 10, it can be verified that the tower $D_1^{n+1} \subset D_2^{n+1} \subset \ldots \subset A^{n+1}$ has the mapping absorption property for n-dimensional compacta. Therefore it is legitimate to apply Lemma 9 to conclude that the space A^{n+1} is $A_1[n]$ -universal.

REFERENCES

- [BC] T. Banakh and R. Cauty, On universality of countable and weak products of sigma hereditarily disconnected spaces, Fund. Math. 167 (2001), 97–109.
- [BCTZ] T. Banakh, R. Cauty, Kh. Trushchak and L. Zdomskyĭ, On universality of finite products of Polish spaces, Tsukuba J. Math. 28 (2004), 454–471.
- [BT] T. Banakh and Kh. Trushchak, Z_n-sets and the disjoint n-cells property in products of ANR's, Mat. Stud. 13 (2000), 74–78.
- [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.
- [Bo] P. Bowers, General position properties satisfied by finite products of dendrites, Trans. Amer. Math. Soc. 288 (1985), 739–753.
- [Ch] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf. Ser. Math. 28, Amer Math. Soc., Providence, RI, 1976.
- [DMM] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307–324.
- [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [Mi] J. van Mill, Infinite-Dimensional Topology. Prerequisites and Introduction, North-Holland, Amsterdam 1989.

Department of Mathematics Lviv National University Universytetska 1 Lviv 79000, Ukraine E-mail: tbanakh@franko.lviv.ua and Instytut Matematyki Akademia Świętokrzyska Kielce, Poland Université Paris VI UFR 920, Boîte courrier 172 4, Place, Jussieu 75252 Paris Cedex 05, France E-mail: cauty@math.jussieu.fr

Received 26 May 2003; revised 4 November 2004 (4350)