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ON THE UNIFORM CONVEXITY OF THE
BESICOVITCH–ORLICZ SPACE

OF ALMOST PERIODIC FUNCTIONS WITH ORLICZ NORM

BY

MOHAMED MORSLI and FAZIA BEDOUHENE (Tizi-Ouzou)

Abstract. In [5], we characterized the uniform convexity with respect to the Lux-
emburg norm of the Besicovitch–Orlicz space of almost periodic functions. Here we give
an analogous result when this space is endowed with the Orlicz norm.

1. Introduction. The Besicovitch–Orlicz space Bφ-a.p. of almost pe-
riodic functions was introduced and studied in [4]. That paper contains an
extensive investigation of the structural and topological properties of this
space endowed with the Luxemburg norm.

In [5]–[7], using this norm, we characterized the uniform and strict con-
vexity of this space.

In this paper, we introduce the Orlicz norm in this space and state its
different useful reformulations. Finally, we give a characterization of the
uniform convexity of Bφ-a.p. with the Orlicz norm.

Our main result is similar to that obtained in the classical Orlicz space
(see [3]), but the method of proof is different.

2. Preliminaries

2.1. Orlicz functions. The notation φ will be used for an Orlicz function,
i.e., a function φ : R → R+ which is even, convex and satisfies φ(0) = 0,
φ(u) > 0 iff u 6= 0, and limu→0 φ(u)/u = 0, limu→∞ φ(u)/u =∞.

An Orlicz function φ is said to be of ∆2-type if there exist K > 2 and
u0 ≥ 0 such that φ(2u) ≤ Kφ(u) for all u ≥ u0. It is uniformly convex when,
for each a ∈ ]0, 1[, there exist δ(a) ∈ ]0, 1[ and u0 ≥ 0 such that

φ

(
u+ au

2

)
≤ (1− δ(a))

φ(u) + φ(au)

2
, ∀u ≥ u0.
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In [3], it is shown that if φ is uniformly convex for some u0 ≥ 0, then, for
any ε > 0 and each interval [a, b] ⊂ ]0, 1[, there exists p(ε) > 0 for which

(2.1) φ(λu+ (1− λ)v)

≤ (1− p(ε)) φ(u) + φ(v)

2
, ∀λ ∈ [a, b], ∀(u, v) ∈ E,

where E = {(u, v) ∈ R2 : |u− v| ≥ εmax(|u|, |v|) ≥ εu0}.
The function ψ(y) = sup{x|y| −φ(x) : x ≥ 0} is called conjugate to φ. It

is an Orlicz function when φ is. The pair (φ, ψ) satisfies the Young inequality

xy ≤ φ(x) + ψ(y), x ∈ R, y ∈ R,
with equality iff x = ψ′(y) or y = φ′(x).

Let us mention that if φ is uniformly convex, then its conjugate ψ is of
∆2-type. In this case we say that φ is of ∇2-type.

An Orlicz function admits a derivative φ′ except possibly on a denu-
merable set of points. Moreover, φ′(0) = 0, φ′(|u|) > 0 if u > 0, and
lim|u|→∞ φ′(|u|) = ∞, so that φ is strictly increasing from zero to infinity
(cf. [3], [8]).

The derivative φ′ satisfies the following useful inequality:

uφ′(u) ≤ φ(2u) ≤ 2uφ′(2u), ∀u ≥ 0.

2.2. The Besicovitch–Orlicz space of almost periodic functions. Let
M(R) be the set of all real Lebesgue measurable functions. The functional

%Bφ : M(R)→ [0,∞], %Bφ(f) = lim
T→∞

1

2T

T�

−T
φ(|f(t)|) dt,

is a pseudomodular (cf. [4], [5], [6]). The associated modular space

Bφ(R) = {f ∈M(R) : lim
α→0

%Bφ(αf) = 0}
= {f ∈M(R) : %Bφ(λf) <∞, for some λ > 0}

is called the Besicovitch–Orlicz space. It is endowed with the pseudonorm
(cf. [4]–[6])

‖f‖Bφ = inf{k > 0 : %Bφ(f/k) ≤ 1}, f ∈ Bφ(R),

called the Luxemburg norm.
Let now P be the linear set of generalized trigonometric polynomials,

i.e.

P =
{
P (t) =

n∑

j=1

αj exp(iλjt) : λj ∈ R, αj ∈ C, n ∈ N
}
.

The Besicovitch–Orlicz spaceBφ-a.p. (resp. B̃φ-a.p.) of almost periodic func-
tions is the closure of P in Bφ(R) with respect to the pseudonorm ‖ · ‖Bφ
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(resp. to the modular convergence), more exactly:

Bφ-a.p. = {f ∈ Bφ(R) : ∃(pn)∞n=1 in P such that lim
n→∞

‖f − pn‖Bφ = 0}

= {f ∈ Bφ(R) : ∃(pn)∞n=1 in P such that

∀k > 0, lim
n→∞

%Bφ(k(f − pn)) = 0},

B̃φ-a.p. = {f ∈ Bφ(R) : ∃(pn)∞n=1 in P such that

∃k > 0, lim
n→∞

%Bφ(k(f − pn)) = 0}.

Clearly Bφ-a.p. ⊂ B̃φ-a.p. and equality holds whenever φ ∈ ∆2 (cf. [4]).
Some structural and topological properties of these spaces are considered

in [4]–[6].
From [4], [5], we know that φ(|f |) ∈ B1-a.p. when f ∈ Bφ-a.p. Hence,

by a classical result (cf. [2]), the upper limit in the expression of %Bφ(f) is
a limit, i.e.

%Bφ(f) = lim
T→∞

1

2T

T�

−T
φ(|f(t)|) dt, f ∈ Bφ-a.p.

This fact is very useful in our computations.
Let us denote by {u.a.p.} the classical algebra of Bohr almost periodic

functions, or what is the same, the uniform closure of the linear set P. It is
known that φ(|f |) ∈ {u.a.p.} when f ∈ {u.a.p.} (cf. [2]).

Also, from [2], we know that if f ∈ {u.a.p.} and f 6= 0, then M(|f |) > 0,
where

M(f) = lim
T→∞

1

2T

T�

−T
f(t) dt.

From now on, Bφ-a.p. will denote the quotient space obtained by iden-
tifying functions whose difference belongs to the subspace {f ∈ Bφ-a.p. :
‖f‖Bφ = 0}.

To every f ∈ Bφ-a.p., we may associate a formal Fourier series. More pre-
cisely, define the Bohr transform of f ∈ Bφ-a.p. by a(λ, f) = M(f exp(iλt))
for λ ∈ R. There is at most a denumerable set {λ1, λ2, . . . } of scalars for
which a(λ, f) 6= 0 (these are called the Fourier–Bohr exponents). The asso-
ciated coefficients {a(λi, f)}i≥1 are the Fourier–Bohr coefficients.

Questions concerning the convergence of the formal Fourier series

S(f)(x) =
∑

n≥1

a(λn, f) exp(iλnx)

are nontrivial and only partial results are available. The Bochner approxi-
mation result will be of importance here:
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If f ∈ Bφ-a.p. and

Sn(f)(x) =
n∑

k=1

a(λk, f) exp(iλkx)

are the partial sums of its Fourier series, then there exists a sequence of
Bochner–Fejér polynomials

σm(f)(x) =

m∑

k=1

µmka(λk, f) exp(iλkx),

with the convergence factors µmk depending only on the sequence {λk},
satisfying 0 < µmk ≤ 1, such that (cf. [4]):

(1) ‖σm(f)‖Bφ ≤ ‖f‖Bφ , m = 1, 2, . . . (and %Bφ(σm(f)) ≤ %Bφ(f)).
(2) ‖σm(f) − f‖Bφ → 0 as m → ∞ (∀α > 0, %Bφ(α(σm(f)− f))→ 0

as m→∞).

To end this section, we define the Orlicz pseudonorm in the Bφ-a.p.
space by setting, as usual,

|||f |||Bφ = sup{M(|fg|) : g ∈ Bψ-a.p.,%Bψ(g) ≤ 1},
where ψ denotes the conjugate function to φ.

3. Convergence results in the Bφ-a.p. space. A sequence {fk}k≥1

in Bφ(R) is said to be modular convergent to some f ∈ Bφ(R) if
limk→∞ %Bφ(fk − f) = 0.

Let P(R) be the family of subsets of R and Σ(R) the Σ-algebra of
Lebesgue measurable sets. We define the set function

µ(A) = lim
T→∞

1

2T

T�

−T
χA(t) dt = lim

T→∞
1

2T
µ(A ∩ [−T, T ]).

Clearly, µ is null on sets with µ-finite measure and µ is not σ-additive.
As usual, a sequence of Σ-measurable functions {fk}k≥1 will be called µ-
convergent to f if, for all ε > 0,

lim
k→∞

µ{t ∈ R : |fk(t)− f(t)| ≥ ε} = 0.

Let now {Ai}i≥1 withAi ∈ Σ for all i ∈ N be such that Ai∩Aj = ∅ if i 6= j
and

⋃
i≥1Ai ⊂ [0, α], α < 1. Put f =

∑
i≥1 aiχAi with

∑
i≥1 φ(ai)µ(Ai)

<∞ and let f̃ be the periodic extension of f to the whole R (with period 1).
Then there exist Pm ∈ P, m ≥ 1, such that

(3.1) %Bφ

(
f̃ − Pm

4

)
→ 0 as m→∞ (cf. [5]).
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We now state some fundamental convergence results that will be used
below (cf. [5]–[7]).

Lemma 3.1. Let {fk}k≥1 ⊂ Bφ(R).

(1) If there exists f ∈ Bφ(R) such that limk→∞ %Bφ(fk−f) = 0 and there
exists g ∈ Bφ-a.p. satisfying max(|fk|, |f |) ≤ g, then limk→∞ %Bφ(fk)
= %Bφ(f).

(2) If f ∈ Bφ-a.p. and {Pn} is the sequence of Bochner–Fejér polyno-
mials associated to f , then limn→∞ %Bφ(Pn) = %Bφ(f).

(3) If f ∈ Bφ-a.p. and limn→∞ %Bφ(fn − f) = 0, then

(a) limk→∞%Bφ(fk) ≥ %(f).
(b) {fk}k≥1 is µ-convergent to f.

4. Auxiliary results

Lemma 4.1. Let f ∈ Bφ-a.p. f 6= 0 and let {fn}n≥1 be modular conver-
gent to f . Then there exist constants α1, β1, θ1 with θ1 ∈ ]0, 1[, 0 < α1 < β1,
and n0 ∈ N such that µ(Gn) ≥ θ1 for all n ≥ n0, where Gn = {t ∈ R : α1 ≤
|fn(t)| ≤ β1}.

Proof. It is known from [5] that there exist α, β, θ with θ ∈ ]0, 1[ and
0 < α < β such that µ(G) ≥ θ, where G = {t ∈ R : α ≤ |f(t)| ≤ β}. Take
α1 = α/2, β1 = α/2 + β and θ1 = θ/2. Then, since {fn}n≥1 is modular
convergent to f, it is also µ-convergent to f (cf. Lemma 3.1(3)(b)) and so

µ{t ∈ R : |fn(t)− f(t)| ≥ α/2} < θ/2 for n ≥ n0.

Putting G′n = {t ∈ R : |fn(t) − f(t)| ≥ α/2}, we have G \ G′n ⊂ Gn for all
n ≥ n0. Indeed, if t ∈ G \G′n then α ≤ |f(t)| ≤ β and |fn(t)− f(t)| ≤ α/2,
from which it follows that α1 ≤ |fn(t)| ≤ β1 for all n ≥ n0, and so t ∈ Gn
for all n ≥ n0.

Finally, µ(Gn) ≥ µ(G\G′n) ≥ µ(G) − µ(G′n) ≥ θ − θ/2 = θ1 for all
n ≥ n0.

Lemma 4.2. Let f ∈ Bφ-a.p. and E ∈ Σ. Then the function

F : ]0,∞[→ R, F (λ) = %φ(fχE/λ),

is continuous on ]0,∞[.

Proof. Let λ0 > 0 and let λn → λ0 as n→∞. We have

%Bφ

[(
1

λn
− 1

λ0

)
fχE

]
≤
∣∣∣∣

1

λn
− 1

λ0

∣∣∣∣%Bφ(fχE)→ 0 as n→∞.

It follows that {(1/λn)fχE} is modular convergent to (1/λ0)fχE. Moreover,

max

(
1

|λn|
|f |χE,

1

|λ0|
|f |χE

)
≤ A|f | ∈ Bφ-a.p.
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for some constant A > 0. From Lemma 3.1, it follows directly that

lim
n→∞

%Bφ

(
fχE
λn

)
= %Bφ

(
fχE
λ0

)
,

which means that F is continuous at λ0.

Lemma 4.3. If f ∈ Bφ-a.p., then:

(1) |||f |||Bφ = inf
{

1
k (1 + %Bφ(kf)) : k > 0

}
and the set

K(f) =

{
k > 0 : |||f |||Bφ =

1

k
(1 + %Bφ(kf))

}

is not empty.
(2) %Bφ(f/|||f |||Bφ) ≤ 1 if |||f |||Bφ 6= 0.
(3) ‖f‖Bφ ≤ |||f |||Bφ ≤ 2‖f‖Bφ for any f ∈ Bφ-a.p.

Proof. Note that by arguments similar to those used in the Orlicz space
case, we may show that

(4.1) |||f |||Bφ ≤ 2‖f‖Bφ .
(1) From the Young inequality we have

M(|fg|) =
1

k
M(|kfg|) ≤ 1

k
[%Bφ(kf) + %Bψ(g)] for all k > 0,

and therefore

(4.2) |||f |||Bφ ≤ inf
k>0

{
1

k
(1 + %Bφ(kf))

}
.

For the opposite inequality, we proceed in several steps:
(a) We suppose first that the derivative φ′ is continuous, and prove that

if P ∈ P then there exists k0 ∈ ]0,∞[ such that

|||P |||Bφ =
1

k0
(1 + %Bφ(k0P )).

Define

F : [0,∞[→ [0,∞[, F (k) = %Bψ [φ′(k|P |)].
Then limk→∞ F (k) = ∞. Indeed, if P 6= 0, then from Lemma 4.1, there
exist α, β, θ with β > α > 0 and θ ∈ (0, 1) such that µ(G) ≥ θ, where
G = {t ∈ R : α ≤ |P (t)| ≤ β}. It follows that

%Bψ [φ′(k|P |)] ≥ lim
T→∞

1

2T

�

[−T,T ]∩G
ψ(φ′(k|P (x)|)) dx ≥ θψ[φ′(kα)].

Now, since an Orlicz function increases to infinity with its derivative (cf. [2],
[7]), we get limk→∞ F (k) =∞.

Let us show that F is continuous. Let kn → k0 ∈ ]0,∞[. Trigonometric
polynomials being uniformly bounded, we put ‖P‖∞ = M . Let ε > 0 be
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arbitrary. Since φ′ is uniformly continuous on [k0M/2, 3k0M/2], there exists
n0 such that

n ≥ n0 ⇒ |φ′(kn|P |)− φ′(k0|P |)| ≤ ψ−1(ε).

Hence

(4.3) %Bψ [φ′(kn|P |)− φ′(k0|P |)] ≤ ε.

Set fn = φ′(kn|P |) and f = φ′(k0|P |). Then fn, f ∈ {u.a.p.}. Since φ′ is
increasing, we have moreover fn ≤ φ′(2k0|P |). Now, (4.3) implies
limn→∞ %Bψ(fn − f) = 0. Finally, in view of Lemma 3.1(1),

lim
n→∞

%Bψ(fn) = %Bψ(f)

and thus F is continuous at k0.
Consequently, since F (0) = 0 and limk→∞ F (k) = ∞, there exists k0 ∈

]0,∞[ for which %Bψ [φ′(k0|P |)] = 1. Considering the case of equality in the
Young inequality, we get

|||P |||Bφ ≥
1

k0
M(|k0P | · φ′(k0|P |))

≥ 1

k0
(%Bφ(k0P ) + %Bψ [φ′(k0|P |)])

≥ 1

k0
(%Bφ(k0P ) + 1)

and finally, combining this with (4.2), it follows that

|||P |||Bφ = inf
k>0

{
1

k
(%Bφ(kP ) + 1)

}
=

1

k0
(%Bφ(k0P ) + 1).

We now show that this result remains true for f ∈ Bφ-a.p. For, let {Pn}
be the sequence of Bochner–Fejér polynomials that converge to f. We have
seen that for each n ≥ 1 there exists kn ∈ ]0,∞[ such that

(4.4) |||Pn|||Bφ =

{
1

kn
(1 + %Bφ(knPn))

}
.

From (4.1) and the Bochner–Fejér approximation property (see (1) of 2.2),
we get

1/kn ≤ |||Pn|||Bφ ≤ 2‖Pn‖Bφ ≤ 2‖f‖Bφ

and thus kn ≥ 1/2‖f‖Bφ = c1 > 0. Let us show that kn ≤ c2 for all n ≥ 1, for
some constant c2. Indeed, if this is not the case, there exists a subsequence,
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denoted again by {kn}, increasing to infinity and such that

1 = %Bψ [φ′(kn|Pn|)] ≥ lim
T→∞

1

2T

T�

−T
ψ(φ′(kn|Pn(x)|)) dx

≥ lim
T→∞

1

2T

�

Gn

ψ(φ′(kn|Pn(x)|)) dx

≥ lim
T→∞

1

2T

�

Gn

ψ(φ′(knα1)) dt ≥ θ1ψ[φ′(knα1)]→∞ as n→∞,

where Gn, θ1, α1 are defined in Lemma 4.1. A contradiction.
Now, the sequence {kn} being bounded, there exists a subsequence de-

noted again by {kn} that converges to some k0 with 0 < k0 < ∞. Let us
show that

lim
n→∞

%Bφ(knPn) = %Bφ(k0f).

Indeed, by (1) of 2.2 we have

%Bφ(knPn − k0f) ≤ 1
2%Bφ(2(kn − k0)Pn) + 1

2%Bφ(2k0(Pn − f))

≤ |kn − k0|%Bφ(f) + 1
2%Bφ(2k0(Pn − f))

and so limn→∞ %Bφ(knPn − k0f) = 0. Now, in view of Lemma 3.1(3)(a),

lim
n→∞

%Bφ(knPn) ≥ %Bφ(k0f).

On the other hand, from the inequality %Bφ(knPn) ≤ %Bφ(knf), we have

lim
n→∞

%Bφ(knPn) ≤ lim
n→∞

%Bφ(knf) = lim
n→∞

%Bφ(knf) = %Bφ(k0f)

and thus

lim
n→∞

%Bφ(knPn) ≤ %Bφ(k0f) ≤ lim
n→∞

%Bφ(knPn),

i.e. limn→∞ %Bφ(knPn) = %Bφ(k0f).
Finally, letting n→∞ in (4.4) we get

(4.5) |||f |||Bφ =
1

k0
(%Bφ(k0f) + 1).

(b) Consider now the case of φ′ discontinuous. From [3], we know that
for each ε > 0 there exists an equivalent Orlicz function φε with continuous
derivative, more precisely

(4.6) (1− ε)φ(x) ≤ φε(x) ≤ φ(x), x ≥ 0.

We also have Bφ-a.p. = Bφε-a.p. as sets and one sees easily that

(4.7) (1− ε)%Bφ(f) ≤ %Bφε (f) ≤ %Bφ(f), f ∈ Bφ-a.p.

The same inequality holds for the corresponding norms.
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Now, since (4.5) is true for φε, using (4.7) we get

inf
k>0

{
1

k
(%Bφ(kf) + 1)

}
≤ inf

k>0

{
1

k

(
1

1− ε %Bφε (kf) + 1

)}
(4.8)

≤ 1

1− ε inf
k>0

{
1

k
(%Bφε (kf) + (1− ε))

}

≤ 1

1− ε |||f |||Bφε ≤
1

1− ε |||f |||Bφ.

Finally, ε > 0 being arbitrary and recalling (4.2), this proves that |||f |||Bφ =
inf
{

1
k (%Bφ(kf) + 1) : k > 0

}
.

(c) It remains to show that if f ∈ Bφ-a.p. then

|||f |||Bφ =
1

k0
(%Bφ(k0f) + 1) for some k0 > 0.

For ε > 0, let φε be the associated smooth function satisfying (4.6). We have

inf
k>0

{
1

k
(%Bφ(kf) + 1)

}
≤ 1

1− ε inf
k>0

{
1

k
(%Bφε (kf) + (1− ε))

}

≤ 1

1− ε inf
k>0

{
1

k
(%Bφε (kf) + 1)

}

≤ 1

1− ε
1

kε
(%Bφε (kεf) + 1)

≤ 1

1− ε
1

kε
(%Bφ(kεf) + 1).

On the other hand,

inf
k>0

{
1

k
(%Bφ(kf) + 1)

}
≥ inf

k>0

{
1

k
(%Bφε (kf) + 1)

}

≥ 1

kε
(%Bφε (kεf) + 1)

≥ 1− ε
kε

(%Bφ(kεf) + 1).

Consequently,

(1− ε) 1

kε
(%Bφ(kεf) + 1) ≤ inf

k>0

{
1

k
(%Bφ(kf) + 1)

}
(4.9)

≤ 1

1− ε
1

kε
(%Bφ(kεf) + 1).
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We claim that the sequence {kε} is bounded. Indeed, otherwise a subse-
quence, denoted also by {kε}, increases to infinity, and then

1 = %Bψ [ϕε(kε|f |)] ≥ lim
T→∞

1

2T

�

G

ψ(ϕε(kε|f(x)|)) dx

≥ θ1ψ[ϕε(kεα1)]→∞ as kε →∞,
where G, θ1, α1 are defined in Lemma 4.1. A contradiction.

We can show easily that kε ≥ c1 > 0 for some c1 > 0.
Now, the sequence {kε} being bounded, there exists a subsequence de-

noted again by {kε} that converges to some 0 < k0 < ∞. Finally, letting
ε→ 0 in (4.9) and using Lemma 4.2, we get

|||f |||Bφ = inf
k>0

{
1

k
(%Bφ(kf) + 1)

}
=

1

k0
(%Bφ(k0f) + 1).

(2) Suppose first that φ′ is continuous. Let f ∈ {u.a.p.}, f 6= 0 and
g ∈ Bψ-a.p. Then

(a) if %Bψ(g) ≤ 1, we have M(|fg|) ≤ |||f |||Bφ,
(b) if %Bψ(g) > 1, we have

%Bψ

(
g

%Bψ(g)

)
≤ 1

%Bψ(g)
%Bψ(g) = 1

and so M(|fg/%Bψ(g)|) ≤ |||f |||Bφ.
It follows that in all cases we have,

M(|fg|) ≤ max(1, %Bψ(g)) · |||f |||Bφ.
Defining now g = φ′(f/|||f |||Bφ), we have g ∈ {u.a.p.} and using the case
of equality in the Young inequality and the fact that in this case the limit
exists, we have

M

(∣∣∣∣
f

|||f |||Bφ
g

∣∣∣∣
)

= %Bφ

(
f

|||f |||Bφ

)
+ %Bψ(g) ≤ max(1, %Bψ(g))

so that %Bφ(f/|||f |||Bφ) ≤ 1.
To consider the general case of f ∈ Bφ-a.p., let {Pn}∞n=1 be the sequence

of Bochner–Fejér polynomials approximating f . Then

%Bφ

(
Pn

|||Pn|||Bφ

)
≤ 1, ∀n ≥ 1.

But, using Lemma 4.3(1) and (1) of 2.2, we can write

|||Pn|||Bφ = inf
k>0

{
1

k
(1 + %Bφ(kPn))

}
≤ inf

k>0

{
1

k
(1 + %Bφ(kf))

}
= |||f |||Bφ,
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so that

%Bφ

(
Pn
|||f |||Bφ

)
≤ %Bφ

(
Pn

|||Pn|||Bφ

)
≤ 1,

and thus %Bφ(f/|||f |||Bφ) ≤ 1 by Lemma 3.1(2).
In the general case of a discontinuous φ′, we use the inequalities (4.6) to

obtain

%Bφ

(
f

|||f |||Bφ

)
≤ %Bφ

(
f

|||f |||Bφε

)
≤ 1

1− ε%Bφε
(

f

|||f |||Bφε

)
≤ 1

1− ε,

and since ε is arbitrary, we get %Bφ(f/|||f |||Bφ) ≤ 1, which is the desired
result.

(3) We have %Bφ(f/|||f |||Bφ) ≤ 1 and so ‖f‖Bφ ≤ |||f |||Bφ. Finally, in view
of (4.1), we get ‖f‖Bφ ≤ |||f |||Bφ ≤ 2‖f‖Bφ .

Lemma 4.4. Let f ∈ Eφ([0, 1]), where Eφ([0, 1]) is the Orlicz class of
functions, i.e.

Eφ([0, 1]) = {f measurable : %φ(λf) <∞, ∀λ > 0},
%φ being the usual Orlicz modular. Then:

(i) If f̃ is the periodic extension of f to the whole R (with period 1),

then f̃ ∈ Bφ-a.p.

(ii) The injection i : Eφ([0, 1])→ Bφ-a.p., i(f) = f̃ , is an isometry with
respect to the modulars and also for the respective Orlicz norms.

Proof. Let f =
∑n

i=1 aiχAi , Ai ∩ Aj = ∅ if i 6= j and
⋃n
i=1Ai ⊂ [0, α],

0 < α < 1 and let m ∈ N∗. Then
∑n

i=1 φ(mai)µ(Ai) < ∞ and using (3.1)
we assert that there exists Pm ∈ P (the set of generalized trigonometric
polynomials) for which

%Bφ

(
m

4
(f̃ − Pm)

)
≤ 1

m
,

where f̃ is the 1-periodic extension of f to the whole R.
Let λ > 0 be arbitrary. If m0 ∈ N∗ is such that λ ≤ m0/4 then

%Bφ(λ(f̃ − Pm)) ≤ %Bφ
(
m

4
(f̃ − Pm)

)
≤ 1

m
, ∀m ≥ m0.

This means that limm→∞ ‖f̃ − Pm‖Bφ = 0, i.e. f̃ ∈ Bφ-a.p.
Consider now the general case of f ∈ Eφ([0, 1]). It is known (see [3])

that the step functions are dense in Eφ([0, 1]) and hence, given ε > 0, there
is gε =

∑n
i=1 aiχAi for which ‖gε − f‖φ ≤ ε/4. Here ‖ · ‖φ is the usual

Luxemburg norm in Eφ([0, 1]).
Since f is absolutely continuous, choose δ > 0 such that

µ(A) ≤ δ ⇒ ‖fχA‖φ ≤ ε/4.
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Take α > 0 such that 1− α ≤ δ, put Aαi = Ai ∩ [0, α], i = 1, . . . , n, and let
gαε =

∑n
i=1 aiχAαi . Then gαε ∈ Eφ([0, 1]).

Let f̃ and g̃αε be the 1-periodic extensions of f and gαε respectively. We
have

‖f̃ − g̃αε ‖Bφ = ‖f − gαε ‖φ ≤ ‖(f − gαε )χ[0,α]‖φ + ‖(f − gαε )χ[α,1]‖φ
≤ ‖f − gε‖φ + ‖fχ[α,1]‖φ ≤ ε/4 + ε/4 = ε/2.

Now, since g̃αε ∈ Bφ-a.p., there exists Pε ∈ P for which ‖g̃αε − Pε‖Bφ ≤ ε/2.
Finally,

‖f̃ − Pε‖Bφ ≤ ‖f̃ − g̃αε ‖Bφ + ‖g̃αε − Pε‖Bφ ≤ ε/2 + ε/2 = ε,

i.e. f̃ ∈ Bφ-a.p.
It is clear that i : Eφ([0, 1]) → Bφ-a.p. is a modular isometry. It is also

immediate that it is an isometry for the Orlicz norms. Indeed,

|||f |||φ = inf
k>0

{
1

k
(1 + %φ(kf))

}
= inf

k>0

{
1

k
(1 + %Bφ(kf̃))

}
= |||f̃ |||Bφ.

Lemma 4.5. (1) Let φ be of ∆2-type. Then

inf{k ∈ K(f) : |||f |||Bφ = 1, f ∈ Bφ-a.p.} = d > 1.

(2) If ψ, the conjugate to φ, is of ∆2-type, then for each a, b > 0, the set

Q = {k ∈ K(f) : a ≤ |||f |||Bφ ≤ b, f ∈ Bφ-a.p.}
is bounded.

Proof. The arguments are exactly as those used in the Orlicz space case
(see [3], [9]) so we omit the proof.

5. Uniform convexity of Bφ-a.p. We now state the main result of
this paper.

Theorem 5.1. The space (Bφ-a.p., |||f |||Bφ) is uniformly convex if and
only if φ is uniformly convex and it is of ∆2-type.

Proof. Sufficiency. The proof of the sufficiency follows by the arguments
developed in the Orlicz space case. We sketch it here for completeness. Recall
that a Banach space (X, ‖ · ‖) is uniformly convex iff

∀{xn}, {yn} ⊂ B(X), lim
n→∞

‖xn + yn‖ = 2 ⇒ lim
n→∞

‖xn − yn‖ = 0

(see [3]), B(X) being the unit ball of X.
Let {fn}n≥1, {gn}n≥1 be two sequences in the unit sphere of

(Bφ-a.p., ||| · |||Bφ). Let {kn}n≥1, {hn}n≥1 be the sequences of scalars defined
by (see Lemma 4.3)

|||fn|||Bφ =
1

kn
(1 + %Bφ(knfn)), |||gn|||Bφ =

1

hn
(1 + %Bφ(hngn)), n ≥ 1.
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For given α > 0 and 0 < ε < 1/2, we define, for each n ≥ 1, the sets

Gn = {t ∈ R : max(|knfn(t)|, |hngn(t)|) < α},
En = {t ∈ R : |knfn(t)− hngn(t)| < εmax(|knfn(t)|, |hngn(t)|)},
Fn = {t ∈ R : |knfn(t)− hngn(t)| ≥ εmax(|knfn(t)|, |hngn(t)|) ≥ εα}.

We have the following estimates:

(5.1) %Bφ((knfn − hngn)χGn) ≤ %Bφ(2αχGn) ≤ φ(2α)

and

%Bφ((knfn − hngn)χEn) ≤ %Bφ(ε(|knfn|+ |hngn|)χEn)

≤ 2ε%Bφ

( |knfn|+ |hngn|
2

χEn

)

≤ ε(%Bφ(knfnχEn) + %Bφ(hngnχEn)).

Now, since

%Bφ(knfn) + %Bφ(hngn) = kn + hn − 2,

we get (see Lemma 4.5)

(5.2) %Bφ((knfn − hngn)χEn) ≤ ε(kn + hn − 2) ≤ ε(2d− 2) ≤ 2εd.

Put

a = inf

{
kn

kn + hn
,

hn
kn + hn

: n≥ 1

}
, b = sup

{
kn

kn + hn
,

hn
kn + hn

: n≥ 1

}
.

Then from Lemma 4.5, [a, b] ⊂ ]0, 1[.
Now, using condition (2.1), it is easily seen that for t ∈ Fn, we have

(5.3) φ

(
knhn
kn + hn

(fn(t) + gn(t))

)

≤ (1− δ)
[

hn
kn + hn

φ(knfn(t)) +
kn

kn + hn
φ(hngn(t))

]

and hence

2− |||fn + gn|||Bφ ≥
1

kn
(1 + %Bφ(knfn)) +

1

hn
(1 + %Bφ(hngn))

− kn + hn
knhn

(
1 + %Bφ

(
knhn
kn + hn

(fn + gn)

))
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=
kn + hn
knhn

%B1

(
hn

kn + hn
φ(knfn) +

kn
kn + hn

φ(hngn)

− φ
(

knhn
kn + hn

(fn + gn)

))

≥ kn + hn
knhn

%B1

([
hn

kn + hn
φ(knfn) +

kn
kn + hn

φ(hngn)

− φ
(

knhn
kn + hn

(fn + gn)

)]
χFn

)

≥ kn + hn
knhn

%B1

(
δ

(
hn

kn + hn
φ(knfn) +

kn
kn + hn

φ(hngn)

)
χFn

)

≥ δ%B1

((
1

kn
φ(knfn) +

1

hn
φ(hngn)

)
χFn

)

≥ δ%B1

(
1

d
(φ(knfn) + φ(hngn))χFn

)

≥ 2δ

d
%Bφ

(
knfn − hngn

2
χEn

)
≥ 2δk

2
%Bφ((knfn − hngn)χEn),

k being the constant from the ∆2-condition on φ.
On the other hand, using (5.1) and (5.2), we obtain

%Bφ(knfn − hngn) ≤ %Bφ((knfn − hngn)χGn) + %Bφ((knfn − hngn)χEn)

+ %Bφ((knfn − hngn)χFn)

≤ φ(2α) + 2εd+
d

2δk
(2− |||fn + gn|||Bφ).

Suppose now that |||fn + gn|||Bφ → 2 as n→∞. We have

lim
n→∞

%Bφ(knfn − hngn) ≤ φ(2α) + 2εd.

But, since α and ε are arbitrarily small, it follows that

lim
n→∞

|||knfn − hngn|||Bφ = 0.

We now show that in fact we have limn→∞ |||fn − gn|||Bφ = 0. Indeed, this
comes from the inequalities

|||fn − gn|||Bφ ≤ |||knfn − kngn|||Bφ ≤ |||knfn − hngn|||Bφ + |||hngn − kngn|||Bφ
≤ |||knfn − hngn|||Bφ + |hn − kn|
≤ |||knfn − hngn|||Bφ + | |||knfn|||Bφ − |||hngn|||Bφ|
≤ 2|||knfn − kngn|||Bφ.
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Necessity. Suppose the Banach space (Bφ-a.p., |||f |||Bφ) is uniformly con-
vex. Then by a classical result it is reflexive. But we know that the ∆2-
condition on φ is necessary for the reflexivity of Eφ([0, 1]) (cf. [1]); using
Lemma 4.4, we deduce that it is also necessary for the reflexivity of Bφ-a.p.

Now, since φ is of ∆2-type, the mapping

i : (Lφ([0, 1]), ||| · |||φ)→ (Bφ-a.p., ||| · |||Bφ)

is a modular isometry for the respective norms (see Lemma 4.4). Then from
the uniform convexity of Lφ([0, 1]) it follows that φ must be uniformly con-
vex.
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