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Abstract. A concept of a slice of a semisimple derivation is introduced. Moreover, it
is shown that a semisimple derivation d of a finitely generated commutative algebra A over
an algebraically closed field of characteristic 0 is nothing other than an algebraic action
of a torus on Max(A), and, using this, that in some cases the derivation d is linearizable
or admits a maximal invariant ideal.

Introduction. Let A be a commutative algebra over an algebraically
closed field k. Recall that a derivation of the algebra A is a k-linear map
d: A — Asuchthat d(zy) = d(z)y+zd(y) for all z,y € A.If d is a derivation
of A and t € k, then we denote by A; the subspace {a € A; d(a) = ta} C A.
It is known that Ag = Kerd is a subalgebra of A called the algebra of
constants of d. A derivation d : A — A is said to be semisimple if it is
semisimple as a linear map, that is, if A = @,., A¢. Denote by kTt the
additive group of the field k. It is easily seen that for every semisimple
derivation d : A — A the decomposition A = €, 4; is a kt-grading of
the algebra A, i.e., 1 € Ay and A; Ay C App for all ¢,t" € k. Conversely, if
A=@,c, Arisa k*-grading of the algebra A, then one easily verifies that
themap d: A — A, d(x =), x:) = ), tay, is a semisimple derivation of
A with Ay = {a € A; d(a) = ta} for all t € k. So, a semisimple derivation
of the algebra A is nothing other than a kT-grading of A. This observation
implies (see Lemma 1) that if A is finitely generated and char(k) = 0, then
the semisimple derivations of A are in one-to-one correspondence with the
rational actions of a torus on the algebraic variety Max(A) of all maximal
ideals in A. The same observation permits introducing a concept of a slice
for semisimple derivations which is an analog of the well known concept of
a slice for locally nilpotent derivations. This is done in Section 1, where also
a corresponding structure theorem is proved. In Section 2 the linearization
problem and existence of maximal invariant ideals for semisimple deriva-
tions is considered in some special cases. The main theorems of this section
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are basically translations (into the language of derivations) of some results
concerning actions of the algebraic tori on the affine spaces A™ or actions of
Hopf algebras on algebras.

1. Slices and a structure theorem. In what follows, k& denotes a fixed
algebraically closed field, and A denotes a fixed commutative k-algebra with
unity.

Given a derivation d : A — A, we denote by E(d) the set of eigenvalues
of d, and by G(d) the subgroup of k generated by F(d). Notice that if
char(k) = 0, then G(d) is a torsion free abelian group, and if char(k) =
p > 0, then G(d) is a vector space over the simple field F,, C k. The rank
of d (we write rk(d)) is meant to be the rank of the abelian group G(d)
provided char(k) = 0, and dimp, G(d) provided char(k) = p > 0. It is clear
that the group G(d) is important for semisimple derivations, because then
A = @cgay At- Observe that if A is a domain, then E(d) is a submonoid
of G(d).

ExampLes. 1. If A = k[X4,...,X,] and tq,...,t, € k, then the deriva-
tion d : A — A given by d(X;) = t;X;, i = 1,...,n, is semisimple and
G(d) =7t + -+ Zt, CkT.

2. Let A = k[X,Y]/(X? —Y3), and let d be the derivation of A de-
termined by d(X) = 3X, d(Y) = 2Y. Then d is semisimple and G(d) =

LEMMA 1. Assume that the algebra A is finitely generated and d is a
semisimple derivation of A. Then the group G(d) is finitely generated, and
rk(d) < n(d), where n(d) is the minimal number of eigenvectors of d which
generate the algebra A. In particular, if n = rk(d), then G(d) ~ Z™ when
char(k) =0, and G(d) ~ F); when char(k) = p > 0.

Proof. Let E = E(d). As A = @, As and A is finitely generated,
there exist t1,...,t, € E and eigenvectors a; € Ay, @ = 1,...,n, such
that A = k[as,...,ay]. It is sufficient to show that F C Nty + --- + Nt,,.
Let J be the subset of N™ such that {a®; o € J} is a basis of A as a
vector space over k, where a® = af'---a%" for @« = (a1,...,a,) € N™.
Now let ¢ € E. This means that d(a) = ta for some nonzero a € A. But
a=73 ,c;laa® for some I, € k. It follows that ) _;tloa® = ta = d(a) =
Yoacslaats + -+ anty)laa®, whence tl, = (a1t + -+ + auty)la for all
a € J. Consequently, t = a1ty + -+ - + apty for some a = (aq, ..., ) € J,
because a # 0. The lemma is proved.

COROLLARY (of the proof). In the situation of the lemma, if the algebra
A is a domain and the eigenvectors a; € Ay, ..., a, € Ay, generate A, then
the monoid E(d) is generated by tq, ..., ty.
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In view of the above, the lemma implies that if the algebra A is finitely
generated, then a semisimple derivation of A is simply a G-grading of A,
where G is a finitely generated subgroup of k.

Below, U(A) stands for the group of units of the algebra A.

DEFINITION. Let d : A — A be a semisimple derivation. A slice of d is
a homomorphism of groups o : G(d) — U(A) such that o(t) € A; for all
t e G(d).

It is easy to see that if d admits a slice, then G(d) = E(d).

EXAMPLES. 3. Let A = k[Xy,...,X,,,X;',..., X ']. Then for any
t1,...,t, € k the derivation d : A — A determined by d(X;) = t;X;,1 =
1,...,n, is semisimple and G(d) = Zty; + --- + Zt,. If char(k) = 0 and
t1,...,t, are linearly independent over Z, then o : G(d) — U(A), o(t;) =
X;,i=1,...,n,is a slice of d.

4. If A = k[X] and d(X) = X, then G(d) = Z1y, but d does not admit
any slice: if o : G(d) — U(A) were a slice, then (1) € U(A) N A; = 0,
because U(A) = k* (= k —{0}) and 4; = kX.

Given an algebra B and a group GG, BG denotes the group algebra of G
over B.

THEOREM 1. Let d: A — A be a semisimple derivation with G = G(d).
If d admits a slice 0 : G — U(A), then f : Ay @ kG — A, fla®t) =
ao(t), a € Ag, t € G, is an Ag-linear isomorphism of algebras. The inverse
isomorphism g : A — Ao ® kG is given by

g(a = Z at) = Zata(—t) ®t.

teG teG
In particular, A is isomorphic to the group algebra AgG.

Proof. The proof is an easy exercise and we omit it.

From now on, we assume that char(k) = 0. By Dim A we denote the
Krull dimension of A. If A is a finitely generated domain, then it is known
that Dim A = tr.deg;, Q(A), where Q(A) is the quotient field of A. Given a
multiplicative system S in A, Ag denotes the localization of A with respect
to S.

THEOREM 2. Assume that A is a domain and d is a semisimple deriva-
tion of A with G = G(d). Let S = |J, Ay — {0}. Then S is a multiplica-
tive_system in A, the induced derivation d : As — Ag is semisimple with

G(d) = G, and K = (Ag)o (= Kerd) is a field containing Ag. More-
over, if A is finitely generated, then the derivation d admits a slice and
As ~ K[X1,..., Xpn, X710, XY, where n = 1k(d). In particular,

tr.deg;, K + rk(d) = Dim A.
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Proof. The first part of the theorem is a simple calculation. Notice only
that Ker(d — t1d) = {a/b € Ag; Jicg a € Asiy, b € A} If A is finitely
generated, then G is a free group of finite rank, by Lemma 1. Let g1,...,9n
be free generators of G. As G is generated by the set E(d) of eigenvalues
of d and E(d) is a submonoid of G, g; = t; — t, for some t;,t; € E(d),
i=1,...,n. Now for each i choose a nonzero a; € A,, a nonzero s; € Ay,

and set y; = a;/s;. Then d(y;) = g¢;y;, which implies that the mapping
o :G(d) = G — U(Ag) determined by o(g;) = yi, i = 1,...,n, is a slice
of the derivation d : Ags — Ag. Hence, by Theorem 1, Ag is isomorphic
to the group algebra KG, where K = (Ag)g. The conclusion is that Ag ~
K[Xy,... ,Xn,Xl_l, ..., X 1], because G ~ Z". This completes the proof
of the theorem.

REMARK. Theorems 1 and 2 were motivated by [7, Sections I, III]. Be-
sides, they can be deduced from [7, Section I].

2. Linearization and existence of maximal invariant ideals. As
above, the field k is assumed to be of characteristic 0. If the algebra A
is finitely generated, we denote by p(A) the minimal number of genera-
tors of A. A derivation d : A — A is called linearizable if there exist
eigenvectors az,...,a,4) of d which generate the algebra A. Notice that
if A=Fk[X1,...,X,], then a derivation d : A — A is linearizable if there is
a change of variables {X;} — {Y;} such that d(Y;) = «;Y; for some «; € k,
1=1,...,n.

If (A,m) is a local (noetherian) algebra, then a derivation d of A is
called linearizable if there are eigenvectors xi,...,x, of d which form a
minimal system of generators of the maximal ideal m. Recall that for a given
derivation d : A — A an ideal J C A is said to be invariant if d(J) C J.

Let d be a derivation of the algebra A. If A is finitely generated or local,
then obviously the following two problems are of interest.

The linearization problem: When is d linearizable?

Existence of maximal invariant ideals: When does d admit a maximal
invariant ideal m (i.e., m is maximal in A and invariant)?

In general, a given derivation d : A — A is neither linearizable nor admits
a maximal invariant ideal. For example, this is the case for A = k[X] and
d = 0/0X. Observe that this d is not semisimple. So, some positive results
can be expected for semisimple derivations. Let us start with the local case.

THEOREM 3. Let d be a derivation of the algebra A, and let m be a
mazimal invariant ideal in A.
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(1) If (A,m) is a complete local ring, k = A/m, and for each s > 2
the induced derivation ds : A/m® — A/m? is semisimple, then the
derivation d is linearizable.

(2) If the derivation d is semisimple and the algebra A is finitely gen-
erated, then the induced derivation d : A,, — A,, is linearizable,
where A,, is the localization of A at the maximal ideal m.

Proof. (1) Let n = dimg(m/m?). Since the induced derivation dy :
A/m? — A/m? is semisimple and k = A/m, we can find a minimal sys-

tem acgl), o of generators of the ideal m with d(x (1)) =t x( ) mod m?
for some tl, .ooytn € kand i = 1,...,n. Now, proceeding by 1nduction on
j > 1, we construct sequences 1:(]) ng), j > 1, such that d(z (])) =t x(])

(G+1) _ (J)

components x( ) .. (l) have already been constructed fori=1,...,7 — 1.
Denote by p the hnear map A/m? — A/mi7Y a+m! — a + mi—L,
As dj_1p = pd;, and the induced derivations d;_y : A/m/~t — A/mi~!
and d; : A/m? — A/m’ are semisimple, it is easy to see that there exist
xgj), ..., 2 € m such that p(z (J)—f—mJ) §j71)+m3‘*1 and d(xl(j)) = tixgj)
mod mJ for ¢t =1,...,n. This means that the inductive procedure gives us

sequences xgj ), .. xﬁf ), 7 > 1, with the required properties. Now, since the

local ring (A, m) is complete, we can consider the limits z1,...,z, of the
respective sequences. It is obvious that d(z;) = t;z; for each i. Moreover,
1,...,T, form a minimal system of generators of the maximal ideal m,
because so do 1:(1) . xg) and z; = m( )
of the theorem is proved.

(2) Assume that the derivation d is semisimple and A is finitely gener-
ated. As d(m) C m, we have m = @, m¢, where m; = {a € m; d(a) = ta}.
It follows that there exist eigenvectors x1,...,x, of d such that z; + m?,

., o, +m? is a basis of the k = A/m-vector space m/m?, because User mut
generates the vector space m. This in turn implies that z1/1,...,z,/1 € A,
is a minimal system of generators of the maximal ideal M = mA,, of
the local ring A,,, because M/M? = mA,,/m?A,, ~ m/m?. Obviously
x1/1,...,x,/1 are eigenvectors of the induced derivation d: A,, — A,
This proves part (2), and thus the proof of the theorem is complete.

mod m’ and x; mod m/ for all j. Suppose that j > 2, and that the

mod m? for all i. Thus, part (1)

REMARK. The above theorem can be deduced from [4, Theorem 4].

Below, the algebra A is supposed to be finitely generated. Moreover, we
assume that A is a domain.

THEOREM 4. Let d : A — A be a semisimple derivation, and let m =
Dis0 At If Ao =k and U(A) = k~, then the following conditions hold.

(1) m is the unique mazimal invariant ideal in A.
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(2) There are eigenvectors aq,...,a, of d such that each a; belongs to
m and A = k[ay,...,a,], where r = dimg(m/m?). In particular, d
is linearizable whenever dimy,(m/m?) = u(A).
(3) If A is regular (as a ring) of Krull dimension n, then A ~ k[X;,...
.., Xn], and d is linearizable.

Proof. Part (1) follows from [8, Theorem 4.1]. For completeness we give
the proof. Let, as above, E(d) be the set of eigenvalues of d. If m = @, .. A;
is an ideal, then clearly m is the unique maximal and invariant ideal in A,
because A/m ~ k = Ay and m = d(A). Therefore, we need only verify
that m is an ideal. To this end, it is enough to show that given a nonzero
t € E(d), we have t+t' # 0 for all ' € E(d). Suppose that, on the contrary,
t+t =0 for some t' € E(d). Then t’ # 0, whence there are nonzero a € A;
and b € Ay with ab € Ay = Ag. As A is a domain and Ay = k, it follows
that ab € k*, which implies that a € U(A) = k* C Ap. This is impossible,
because a € Ay with ¢ # 0. Thus, part (1) is proved.

For (2), it is clear that there exist eigenvectors aq, ..., a, of d such that
a; +m?,...,a, +m? is a basis of the k = A/m-vector space m/m?. Now in
view of (1) and [5, Corollary 1.4 and statement 1.7], A = k[a1,...,a,].

It remains to prove (3). By regularity of A, the Krull dimension of A
equals dimy,(m/m?). Therefore, from (2) we infer that there are eigenvectors

ai,...,an, of dsuch that A = k[aq,...,a,], where n = Dim A. Let, as above,
Q(A) denote the quotient field of A. Then Dim A = tr.deg; Q(A), because A
is a finitely generated domain. This implies that the elements a1, ..., a, are

algebraically independent over k, which proves (3).

COROLLARY. Let A =k[X,Y]/(X*=Y7), where (i,j) =1, 4,7 > 2, and
let d be a semisimple derivation of A. Then d is linearizable (and admits
an invariant mazimal ideal).

Proof. Obviously one can assume that d # 0, whence rk(d) > 1. It is easy
to see that U(A) = k*, u(A) = 2, and dimy(m/m?) = 2 for any maximal
ideal in A. Furthermore, by Theorem 2, rk(d) + tr.deg;, K = Dim A = 1,
where K is a subfield of Q(A) containing Ay. Hence tr.deg;, K = 0, which
implies that Ag C K = k, because the field k is algebraically closed. The
conclusion now follows from part (2) of the theorem.

EXAMPLE 5. If A = k[X, X '] and d : A — A is the derivation defined
by d(X) = X, then d is semisimple, Ay = k, but d has no maximal invariant
ideals (in view of the above theorem, the reason is that U(A) # k). Notice
that d is linearizable.

We mentioned above that a semisimple derivation of the algebra A is
nothing other than a G-grading of A, where G is a finitely generated sub-
group of the group k. But we have assumed that char(k) = 0. Therefore,
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a semisimple derivation of A is simply a Z®-grading of A, where s = rk(d).
This means that a semisimple derivation of A of rank s induces an action
of the algebraic torus T° = k* x ... x k* (s times) on the algebraic variety
Max(A) of all maximal ideals in A. More precisely, if d : A — A is a semi-
simple derivation of rank s and t1,...,¢s are free generators of the group
G(d), then the corresponding action of T° on Max(A) is defined as follows.
For a = (o, ...,a,) € T® and m € Max(A),

a.m = Ker(pmda),

where ¢, : A — A is the homomorphism of algebras given by ¢,(a) =
D (urrug)eze Quyt - ag® With @y = Quyty 4 4u,e, in the decomposition
a =3 eqam € DA, and pp, + A — A/m = k is defined by py(y) =
y 4+ m. It is easy to see that each action of 7% on the variety Max(A) comes
from a semisimple derivation d : A — A in the above way. Also it is not
difficult to prove that, given a semisimple derivation d of A, the maximal
invariant ideals for d are precisely the fixed points of the corresponding
action of the torus T on the variety Max(A).

This translation of semisimple derivations into the language of algebraic
geometry gives us the following.

THEOREM 5. Let A = k[X1,...,X,] and let d be a semisimple deriva-
tion of A.

(1) The derivation d admits a mazximal invariant ideal.

(2) If tk(d) = n — 1 or n, then d is linearizable. In particular, d is
linearizable when n < 2.

(3) If I =D, A is an ideal in A and r = Dim Ay < 2, then there ex-
ists a change of variables {X;} — {Y;} such that Ag = k[Y1,...,Y.],
A= AplYrq1,...,Y,], and all Y;’s are eigenvectors of d. In particu-
lar, d is linearizable.

(4) If n =3, then d is linearizable.

Proof. Parts (1) and (2) are due to Bialynicki-Birula (see [2] and [3]).
Part (3) was proved by Kambayashi and Russell in [5, proof of Theorem 3.4],
and (4) is a joint result by Kaliman, Koras, Makar-Limanov, and Russell [6].

REMARK. If n = 4, then it is not known if every semisimple derivation of
A = k[X1,...,X,]is linearizable. By [1], for each n > 4 there is a semisimple
derivation of the R-algebra A = R[X3,...,X,] (i.e., d € Der(A) such that
A= cp+ At, where Ay = Ker(d — t1d)) which is not linearizable.

Acknowledgments. The author thanks the referee for valuable re-
marks which allowed him to improve the text of the paper.
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