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MULTIPARAMETER ADMISSIBLE SUPERADDITIVE PROCESSES

BY

DOĞAN ÇÖMEZ (Fargo, ND)

Abstract. In this article some properties of Markovian mean ergodic operators are
studied. As an application of the tools developed, and using the admissibility feature,
a “reduction of order” technique for multiparameter admissible superadditive processes
is obtained. This technique is later utilized to obtain a.e. convergence of averages
n−2∑n−1

i,j=0 f(i,j) as well as their weighted version.

1. Introduction. If T and S are positive Markovian Dunford–Schwartz
operators, then the “averages” n−2F(n,n) converge almost everywhere for
any bounded strongly (T, S)-superadditive process F = {F(m,n)} [Ç, Sm].
The same convergence result is obtained in [AK] assuming only superadditiv-
ity of the process for operators induced by measure preserving transforma-
tions. Furthermore, the definition of superadditivity in [AK] is more general
than in [Ç] and [Sm]. Since the pointwise ergodic theorem need not hold for
superadditive processes relative to general Markovian L1-contractions, the
results mentioned above are not valid if T and S are only L1-contractions (or
only L∞-contractions). In [ÇL1] ergodic theorems for one-parameter super-
additive processes with respect to mean ergodic Markovian operators (which
need not be L∞-contractions) were obtained. Recently, some of these results
have been extended to the setting of multiparameter strongly superadditive
processes relative to mean ergodic operators [ÇL2].

In proving all the theorems on the a.e. convergence of multiparameter
superadditive processes mentioned above, the standard technique has been
to dominate the given process by an additive process and then obtain the
desired convergence result. In this article we will show (in Section 3) that one
can dominate a two-parameter admissible superadditive process by a one-
parameter admissible process with the same time constant. Consequently,
one can utilize tools developed for one-parameter superadditive processes
in their study. Since admissible processes define superadditive processes in
the sense of [AK], the results obtained in Section 4 (Theorems 4.2 and 4.4)
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generalize some of the almost everywhere convergence results in [AK] and
in [DeK] to the setting of mean ergodic Markovian operators. It should be
noted here that many of the results in [DeK] deal with norm convergence
of multiparameter superadditive processes in the sense of [AK], which in-
clude admissible processes. Almost everywhere convergence results in [DeK]
assume that either the operators are Dunford–Schwartz or there exists a pos-
itive invariant function, neither of which is assumed in Theorems 4.2 and
4.4 below. Also, some of the tools developed in Section 3 will be utilized to
obtain a.e. convergence of weighted averages of admissible processes relative
to commuting Markovian Dunford–Schwartz operators, which generalizes
Theorem 1.4 in [JO].

2. Preliminaries. Throughout this paper, we will view a process
F = {F(m,n)} as a family of functions {f(i,j)} with partial sums F(m,n) =∑m−1,n−1
i,j=0 f(i,j). Let (X,Σ, µ) be a σ-finite measure space and T be a pos-

itive linear operator on L1(X). A process F = {fi} ⊂ L1(X) is called
T-admissible if Tfi ≤ fi+1 for all i ≥ 0. Clearly, a T -admissible process
defines a T -superadditive process, that is, Fm+n ≥ Fm + TmFn for all
m,n ≥ 0. Hence, any additive process {∑n−1

i=0 T
if} is T -admissible. Sim-

ilarly, for commuting positive operators T and S on L1, a process F =
{f(i,j)}{i≥0,j≥0} ⊂ L1(X) is called (T, S)-admissible if Tf(i,j) ≤ f(i+1,j) and
Sf(i,j) ≤ f(i,j+1) for all i, j ≥ 0. Such a (T, S)-admissible process also defines
a (T, S)-superadditive process in the sense of [AK] (i.e. if we define FI =
Tn1−m1Sn2−m2F(n1−m1,n2−m2) for every rectangle I = [m1, n1] × [m2, n2],
where m1 < n1 and m2 < n2 are positive integers, then FI1∪I2 ≥ FI1 + FI2
for disjoint rectangles I1 and I2.) Naturally, a (T, S)-admissible process is a
(T, S)-superadditive process in the sense of [Ç, Sm]: for all k, l,m, n ≥ 0,

F(m+k,n) ≥ F(m,n) + TmF(k,n) and F(m,n+l) ≥ F(m,n) + SnF(m,l).

A superadditive process F is called positive if F(m,n) ≥ 0 for all n ≥ 1, and
bounded (with time constant γF ) if

γF := sup
(m,n)>(0,0)

1
mn
‖F(m,n)‖ <∞.

When F is admissible, it is called strongly bounded if sup(i,j)≥(0,0) ‖f(i,j)‖
< ∞, and dominated if there exists g ∈ L1 (called a dominant) such that,
for all m,n > 0,

1
mn

F(m,n) ≤
1
mn

m−1,n−1∑

i,j=0

T iSjg.

A dominated process is necessarily bounded, with
�
|g| dµ ≥ γF for every

dominant g. A dominant g is called an exact dominant if
�
|g| dµ = γF .
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Remarks. 1. A superadditive process is positive (F(m,n) ≥ 0 ∀m,n > 0)
whenever F(1,1) ≥ 0.

2. If F is a superadditive process, then it is the sum of an additive process
and the positive superadditive process defined by

F ′(m,n) = F(m,n) −
m−1∑

i=0

n−1∑

j=0

T iSjF(1,1) for all m,n > 0.

Furthermore, F ′ = {F ′(m,n)} is bounded (dominated) if F is bounded (dom-
inated).

A positive L1(X)-contraction T is called a Markovian operator if
�
Tf dµ

=
�
f dµ for all f ∈ L1. A linear operator T on L1(X) is called mean ergodic

if limn−1∑n−1
i=0 T

if exists in L1-norm for all f ∈ L1.
All the results in this article can be stated in an arbitrary n-parameter

setting. However, for simplicity, they are stated and proved in the two-
parameter setting only. The set Z2

+ will be considered with partial order
(i, j) ≤ (u, v) if i ≤ u and j ≤ v; (i, j) < (u, v) if (i, j) ≤ (u, v) and
(i, j) 6= (u, v).

In obtaining a.e. convergence of superadditive processes boundedness is
an essential property. The following statement shows that, if T and S are
Markovian, bounded (T, S)-admissible processes F = {f(i,j)} ⊂ L1 can be
characterized to be those which are strongly bounded.

Proposition 2.1. Let T and S be commuting Markovian operators
on L1. A positive (T, S)-admissible process F is bounded if and only if it
is strongly bounded.

Proof. Obviously, if sup(i,j)>(0,0) ‖f(i,j)‖ <∞, then F is bounded. Con-
versely, if F is bounded, then

‖f(i,j)‖ =
1
mn

m−1,n−1∑

k,l=0

�
T kSlf(i,j) (by Markovian property)

≤ 1
mn

m+k−1,n+l−1∑

i=k,j=l

�
f(i,j) (by admissibility)

≤ 1
mn

�
[F(m+k,n+l) − F(k,n+l) − T kF(m,l)] (by superadditivity)

=
1
mn

�
[F(m+k,n+l) − F(k,n+l) − F(m,l)] (by Markovian property)

≤ 1
mn

�
F(m+k,n+l)

=
(m+ k)(n+ l)

mn

[
1

(m+ k)(n+ l)

�
F(m+k,n+l)

]
.
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Letting m → ∞, n → ∞, and applying the fact that γF = lim 1
mn

�
F(m,n)

when F is bounded [Ç, Sm] yields the assertion.

In the one-parameter case, any bounded superadditive process (rela-
tive to a Markovian operator) admits an exact dominant [ASu]. On the
other hand, this is not the case for multiparameter processes. Indeed, it
is known that an arbitrary multiparameter superadditive process need not
have an exact dominant, even if it is relative to a pair of measure preserving
transformations [AK, Sm]. However, when admissible processes are consid-
ered, one can provide a general method of constructing examples of mul-
tiparameter superadditive processes relative to Markovian operators with
exact dominants. For, let {vij} ⊂ L+

1 and v ∈ L+
1 be such that vij ↑ v

a.e. as i, j → ∞. If T and S are Markovian operators on L1, then define
f(i,j) = T iSjvij . The resulting process F = {f(i,j)} is (T, S)-admissible with
γF = sup(i,j)>(0,0) ‖f(i,j)‖ = ‖v‖ < ∞. Furthermore, for any m,n ≥ 1, we
have

1
mn

m−1,n−1∑

i,j=0

f(i,j) ≤
1
mn

m−1,n−1∑

i,j=0

T iSjv.

Hence, v is an exact dominant for F .

In ergodic theory, one often encounters examples of Markovian opera-
tors induced by (nonsingular) point transformations. However, one can also
construct examples of interesting Markovian operators in terms of integral
operators. If K : X × X → R is a stochastic kernel , i.e. a measurable
function satisfying K(x, y) ≥ 0 and

�
X
K(x, y)µ(dx) = 1, then the op-

erator TK : L1(X) → L1(X) defined by TKf(x) =
�
X
K(x, y)f(y)µ(dy),

f ∈ L1(X), is Markovian. For example, let X = [0, 1) with Lebesgue mea-
sure, and define stochastic kernels K(x, y) and L(x, y) on X ×X by letting
K(x, y) = L(x, y) = 3/4 on A × C and B × C; K(x, y) = L(x, y) = 3/2 on
C × C; and

K(x, y) =

{
0 on A×B, B × A, C ×A, C ×B,
3 on A× A, B ×B,

L(x, y) =

{
0 on A× A, B ×B, C ×A, C ×B,
3 on A×B, B × A,

where A = [0, 1/3), B = [1/3, 2/3), and C = [2/3, 1). Then, for f ∈ L1[0, 1),

TKf(x) = 3
[
χA(x)

�

A

f dy + χB(x)
�

B

f dy

+
(

1
4
χA(x) +

1
4
χB(x) +

1
2
χC(x)

) �

C

f dy

]
,
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TLf(x) = 3
[
χB(x)

�

A

f dy + χA(x)
�

B

f dy

+
(

1
4
χA(x) +

1
4
χB(x) +

1
2
χC(x)

) �

C

f dy

]
,

and hence, TK and TL are commuting Markovian operators. Furthermore,
both TK and TL are mean ergodic operators with TK1 6= 1, and TL1 6= 1. As
observed in the preceding paragraph, if {vij} ⊂ L+

1 is a sequence with vij ↑
v ∈ L+

1 a.e. as i, j →∞, then the family {f(i,j)}i,j , where f(i,j) = T iKT
j
Lvij ,

is a (TK , TL)-admissible process. In general, if K(x, y) and L(x, y) are two
stochastic kernels satisfying

�

X

K(x, z)L(z, y)µ(dz) =
�

X

L(x, z)K(z, y)µ(dz),

then TK and TL are commuting Markovian operators.

3. Reduction of dimension for admissible processes. In this sec-
tion we will utilize the construction of the Brunel operator [B] to obtain
a one-parameter admissible process dominating a given two-parameter one.
Since the Brunel operator is quite well known in the literature, we will just
outline its construction and refer the reader to [K] for details.

Let φ(x) = 1 −
√

1− x and let
∑∞
i=0 α

(1)
i xi be its series expansion. If

∑∞
i=0 α

(k)
i xi is the series expansion of [φ(x)]k, then the coefficients α(k)

i are
given by

α
(k)
i =





0 if i < k,

k

2i
2k+1−2i

(
2i− k − 1
i− 1

)
if i ≥ k.

Let Φ(x) = (1/x)φ(x), and let T and S be two linear operators on L1. Then
the Brunel operator U associated with T and S is defined to be the operator

U = Φ(T )Φ(S) =
∞∑

i,j=0

α
(1)
i+1α

(1)
j+1T

iSj .

It is a linear operator on L1. Note that
∑∞
i,j=0 α

(1)
i+1α

(1)
j+1 = 1. Also,

Uk = [Φ(T )]k[Φ(S)]k =
∞∑

i,j=0

α
(k)
i+kα

(k)
j+kT

iSj for any k ≥ 1.

Proposition 3.1. Let T and S be bounded , commuting linear operators
on L1, and let U be the associated Brunel operator. Then:
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(a) If T and S are Markovian operators, then U is also Markovian.
(b) If T and S are mean ergodic L1-contractions, then U is also mean

ergodic.

Proof. (a) Since T and S are Markovian, for any m,n ≥ 0, and for any
f ∈ L1, we have

� m,n∑

i,j=0

α
(1)
i+1α

(1)
j+1T

iSjf =
m,n∑

i,j=0

α
(1)
i+1α

(1)
j+1

�
T iSjf =

m,n∑

i,j=0

α
(1)
i+1α

(1)
j+1

�
f.

The term on the right hand side is dominated by
�
f . Therefore, by the

monotone convergence theorem, the term on the left hand side converges to�
Uf while the term on the right converges to

�
f . Hence, U is Markovian.

(b) First observe that U is a convex combination of the (discrete) semi-
group of operators {T iSj}i,j≥0. By hypothesis, the operators T, S are posi-
tive L1-contractions, and T ∗, S∗ are positive L∞-contractions. Since T and
S commute, by the Brunel–Falkowitz Lemma [K],

F (T ) ∩ F (S) = {f ∈ L1 : f = Tf = Sf} = {f ∈ L1 : f = Uf} = F (U),

F∗(T ) ∩ F∗(S) = {φ ∈ L∞ : φ = T ∗φ = S∗φ} = {φ ∈ L∞ : φ = U∗φ}
= F∗(U).

Mean ergodicity of T and S implies, by Sine’s criterion of mean ergodic-
ity [K], that F (T ) ∩ F (S) separates F∗(T ) ∩ F∗(S). Consequently, F (U)
separates F∗(U) as well. Again, Sine’s criterion implies that U is mean er-
godic.

Remarks. 1. If, furthermore, the operators in Proposition 2.1 are L∞-
contractions, then U is an L∞-contraction as well [Ç, DuSc].

2. Another proof of mean ergodicity of U , shorter but requiring more
technical tools, is given in [ÇL2].

In the same fashion as the construction of U above, one can construct
a one-parameter family of U -admissible processes dominating a given two-
parameter (T, S)-admissible process. For a given positive (T, S)-admissible
process, F = {f(i,j)} ⊂ L1, define a one-parameter family of functions
G = {gk} as g0 = 0, and for k ≥ 1,

gk =
∞∑

i,j=0

α
(k)
i+kα

(k)
j+kf(i,j).

By the monotone convergence theorem, gk ∈ L1 for all k ≥ 0.

Proposition 3.2. Let T and S be linear , positive, bounded , commuting
operators on L1, and let F = {f(i,j)} be a strongly bounded (T, S)-admissible
process. Then the family G = {gk}k≥0 is a strongly bounded U -admissible
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process, where U is the associated Brunel operator. Furthermore, if T and
S are Markovian, then G has the same time constant as F .

Proof. By strong boundedness of F ,

‖gk‖ =
� ∣∣∣
∞∑

i,j=0

α
(k)
i+kα

(k)
j+kf(i,j)

∣∣∣ dµ ≤ γF
∞∑

i,j=0

α
(k)
i+kα

(k)
j+k ≤ γF .

Hence, G is also strongly bounded. This also shows, by Proposition 2.1, that
if T and S are Markovian, then γG = γF . Now, for any k > 0,

Ugk =
∞∑

i,j=0

α
(1)
i+1α

(1)
j+1T

iSjgk =
∞∑

i,j=0

α
(1)
i+1α

(1)
j+1

[ ∞∑

u,v=0

α
(k)
u+kα

(k)
v+kT

iSjf(u,v)

]

≤
∞∑

i,j=0

α
(1)
i+1α

(1)
j+1

[ ∞∑

u,v=0

α
(k)
u+kα

(k)
v+kf(u+i,v+j)

]
(by admissibility of F )

=
∞∑

i,j=0

α
(k+1)
i+k+1α

(k+1)
j+k+1f(i,j) = gk+1,

which shows that {gk} is U -admissible.

In obtaining the main result of this article, we will use an adaptation
of the reduction of dimension procedure (see [K] or [B]), and then use the
resulting one-parameter superadditive process. This procedure, although its
main ingredients are well known in the literature, is new in the setting of
admissible processes.

The following well known lemma is the key ingredient of the reduction
of dimension method (see [K, Lemma 3.3, p. 213] for details):

Lemma 3.3. There exists a constant C > 0 such that

1
[
√
n+ 1]

[
√
n+1]−1∑

k=0

α
(k)
k+uα

(k)
k+v >

C

n2

for 0 ≤ u, v < n, where [
√
n+ 1] is the integer part of

√
n+ 1.

Theorem 3.4. Let T and S be commuting positive L1-contractions and
F = {f(i,j)} ⊂ L1 be a positive strongly bounded (T, S)-admissible process.
Then there exists a constant C, independent of the operators and the process,
a positive L1-contraction U and a strongly bounded U -admissible process
G = {gk}, with the same time constant as F , such that

1
n2 F(n,n) ≤

C

k

k−1∑

i=0

gi (k = k(n, F )).
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Proof. By Lemma 3.3, with k = k(n, F ) = [
√
n+ 1],

1
[
√
n+ 1]

[
√
n+1]−1∑

k=0

∞∑

i,j=0

α
(k)
k+iα

(k)
k+jf(i,j)

≥ 1
[
√
n+ 1]

n−1∑

i,j=0

[
√
n+1]−1∑

k=0

α
(k)
k+iα

(k)
k+jf(i,j) ≥

C

n2 F(n,n),

where the constant C is independent of the operators T and S and F . The
other assertions follow from Proposition 2.2.

Remark. It follows from Propositions 3.1 and 3.2 that, if T and S are
commuting mean ergodic Markovian operators on L1 and F is a bounded
(T, S)-admissible process, then G is also a bounded U -admissible process,
where U is a mean ergodic Markovian operator on L1. Furthermore, if T
and S are L∞-contractions, so is U .

4. Admissible processes relative to Markovian mean ergodic
operators. In this section, the results of the previous section, in particular
Theorem 3.4, will be utilized to obtain a.e. convergence of the averages of
the (ordinary and weighted) multiparameter admissible processes.

We start with the maximal ergodic theorem for multiparameter admis-
sible processes.

Theorem 4.1. Let T and S be commuting mean ergodic Markovian op-
erators on L1 and F = {f(i,j)} ⊂ L1 be a positive bounded (T, S)-admissible
process. Then, for any λ > 0,

µ

{
x ∈ X : lim sup

n

1
n2 F(n,n) > λ

}
≤ C

λ
γF ,

for some constant C that does not depend on F and the operators.

Proof. By Proposition 2.1, Proposition 3.1 and Theorem 3.4 there ex-
ists a constant C, independent of the operators, a mean ergodic Markovian
operator U on L1, and a bounded U -admissible process G = {gk}, with the
same time constant as F , such that

1
n2 F(n,n) ≤

C

k

k−1∑

i=0

gi.

Since G has an exact dominant δ (with
�
δ = γF [ASu]), it follows that

1
n2

n−1∑

i,j=0

f(i,j) ≤
C

k

k−1∑

i=0

Ukδ.

It is known that limn k
−1∑k−1

i=0 U
kf exists a.e. for all f ∈ L1 [ÇL1, The-

orem 1.5]. Hence, we have a maximal ergodic inequality for one-parameter
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additive processes relative to mean ergodic Markovian operators. Now, it
follows easily from this maximal inequality that, for any λ > 0,

µ

{
x ∈ X : lim sup

n

1
n2 F(n,n) > λ

}
≤ C

λ
γF .

Almost everywhere convergence of the averages of the (ordinary and
weighted) multiparameter admissible processes is a consequence of this max-
imal ergodic theorem. First, we will show the convergence of ordinary aver-
ages.

Theorem 4.2. Let T and S be commuting mean ergodic Markovian op-
erators on L1 and F = {f(i,j)} ⊂ L1 be a bounded (T, S)-admissible process.
Then

lim
n→∞

1
n2 F(n,n) exists a.e. and in L1.

Proof. Since the assertion of the theorem is true for additive processes
([ÇL1, Theorems 2.8 and 2.2(i)]), we can assume that F is positive. By
Theorem 2.2 in [Ç], for a given ε > 0, we can find a positive integer n0 such
that

1
n2

0

�
F(n0,n0) dµ > γF − ε.

Clearly the operators Tn0 and Sn0 are mean ergodic and Markovian (see
also [ÇL1]). Hence, the process H = {H(m,n)}, where

H(m,n) =
m−1∑

i=0

n−1∑

j=0

Tn0iSn0jF(n0,n0),

is a (Tn0 , Sn0)-additive process, so n−2H(n,n) converges a.e. and in norm.
For m and n large enough, let m = kn0 +r and n = ln0 +s, where k, l, r and
s are positive integers with r, s < n0. Then, since T and S are Markovian,
we obtain

1
mn

�
H(m,n) dµ ≥

1
mn

� k−1,l−1∑

i,j=0

Tn0iSn0jF(n0,n0) dµ

=
kl

mn

�
F(n0,n0) dµ > γF − ε.

Therefore, the superadditive process F ′ = F − H has time constant
γF ′ = γF − γH < ε. First, we will obtain a.e. convergence. Indeed, if
f∗ = lim infn n−2F(n,n) and f∗ = lim supn n

−2F(n,n), then we see that, since
n−2H(n,n) converges a.e. as n→∞,

f∗ − f∗ ≤ 2 lim sup
n

1
n2 (F(n,n) −H(n,n)) ≤ 2 lim sup

n

1
n2 F

′
(n,n).
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Therefore, by Theorem 4.1, for any λ > 0, if E = {x : f ∗ − f∗ > λ}, then

µ(E) ≤ µ
{
x : lim sup

n

1
n2 F

′
(n,n)(x) > λ

}
≤ C

λ
γF ′ <

C

λ
ε.

Since ε is arbitrary, we have µ(E) = 0, proving a.e. convergence.
For the norm convergence we will adopt the method of proof used

in [ÇL2]. By Theorem 3.4, n−2F(n,n) ≤ Ck−1∑k−1
i=0 gk for some strongly

bounded U -admissible process G = {gk}, where U is a mean ergodic
Markovian operator. Any strongly bounded admissible process has an ex-
act dominant; hence, by Theorem 2.2(i) in [ÇL1] (one-parameter version),
k−1∑k−1

i=0 gk converges in L1-norm to a U -invariant function g∗ ∈ L1. By
Propositions 2.1 and 2.3, g∗ ∈ F (T ) ∩ F (S) as well. If C = {g∗ > 0} and
D = X −C, then ‖1Dn−2F(n,n)‖1 → 0. Therefore, it is enough to prove the
norm convergence on C. Since g∗ ∈ F (T ) ∩ F (S), L1(C) is both T - and S-
invariant. Let T̂ = T |L1(C) and Ŝ = S|L1(C), and define F̂(m,n) = 1CF(m,n).

Then F̂ = {F̂(m,n)} is bounded and (T̂ , Ŝ)-superadditive. Then n−2F̂(n,n)
converges in norm by Theorem 5.2 in [DeK], since the equivalent finite mea-
sure g∗ dµ is invariant for T̂ and Ŝ.

Remark. Both Theorem 4.1 and Theorem 4.2 are proved in [ÇL2] for
bounded strongly superadditive processes (in the sense of [Sm]). However,
the novelty here is that: (i) the maximal inequality needed for the proof is
obtained via the dominating one-parameter superadditive process (which is
constructed in Section 2) with the same time constant, (ii) the notion of
superadditivity used here is less restrictive than the one in [ÇL2].

Another feature of (T, S)-admissible processes is that, when T and S
are invertible and power bounded (i.e., supn∈Z ‖Tn‖ <∞ and supn∈Z ‖Sn‖
<∞), then the process is always dominated.

Lemma 4.3. Let T and S be positive commuting invertible power bound-
ed operators on L1, and let F ⊂ L1 be a bounded (T, S)-admissible process.
Then F has an exact dominant.

Proof. We will use the idea of [Sa]. For any A ∈ Σ with µ(A) < ∞, we
have {

�
T kχA dµ}k≥0 ∈ l∞. Hence the Banach limit Lim(

�
T kχA dµ) exists.

Define
m(A) = Lim

( �
T kχA dµ

)
.

For A ∈ Σ with µ(A) = ∞, define m(A) = limkm(Ak), where {Ak} ⊂ Σ
are such that Ak ⊂ Ak+1 for all k ≥ 1 with Ak ↑ A and µ(Ak) < ∞ for all
k ≥ 1. Then m defines a σ-finite measure on Σ satisfying m ∼ µ. The shift
invariance of the Banach limit implies that T is a Markovian operator on
L1(m) (see [Sa] for details). In the same manner, this time using the sequence
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{
�
SkχAdm}k≥0 ∈ l∞ and the Banach limit, we construct a σ-finite measure

ν on Σ satisfying ν ∼ m such that S is a Markovian operator on L1(ν).
Now, since T is Markovian on L1(m), for any A ∈ Σ with µ(A) <∞,

�
TχA dν = ν(TχA) = Lim

[ �
Sn(TχA) dm

]
= Lim

[ �
T (SnχA) dm

]

= Lim
[ �
SnχA dm

]
= ν(A) =

�
χA dν.

Hence, by an approximation argument, it follows that T is also Markovian
on L1(ν). Since µ ∼ ν, there exists a strictly positive measurable function p
such that ν(A) =

�
χAp dµ. Also, f ′ ∈ L1(ν) if and only if pf ′ ∈ L1(µ), and

the operators T̂ and Ŝ in L1(ν) corresponding to T and S in L1(µ) are given
by T̂ f ′ = p−1T (pf ′) and Ŝf ′ = p−1S(pf ′). Furthermore,

�
T̂ f ′ dν =

�
f ′ dν

and
�
Ŝf ′ dν =

�
f ′ dν. If F ′ = {f ′i,j}, where f ′i,j = p−1fi,j , then F ′ is a

(T̂ , Ŝ)-admissible process. Let the sequence {v(i,j)}i,j≥0 ⊂ L1 be defined by
v(i,j) = T̂−iŜ−jf ′(i,j). Then it follows that v(i+1,j) ≥ v(i,j) and v(i,j+1) ≥
v(i,j), and hence v(i,j) ↑ v for some function v ∈ L1. Furthermore, since
v(i,j) ≤ v for all i, j ≥ 0, we have f ′(i,j) ≤ T̂ iŜjv for all i, j ≥ 0. This also

implies that ‖f ′(i,j)‖L1(ν) ≤ ‖T̂ iŜjv‖L1(ν) ↑ ‖v‖L1(ν). Therefore, v is an exact
dominant for F ′. Now, ‖f(i,j)‖L1(µ) = ‖f ′(i,j)‖L1(ν) implies that

sup
i,j
‖f(i,j)‖L1(µ) = sup

i,j
‖f ′(i,j)‖L1(ν) = ‖v‖L1(ν) = ‖pv‖L1(µ) <∞.

Also,

f ′(i,j) ≤ T̂ iŜjv =
1
p

[T i(Ŝjv)p] =
1
p

[
T i
(

1
p

(Sj(pv)
)
p

]
=

1
p
T iSj(pv).

Hence, f(i,j) = pf ′(i,j) ≤ T iSj(pv), which proves that pv is an exact dominant
for F .

Now we are ready to prove a.e. convergence for (T, S)-admissible pro-
cesses F , where T and S are positive commuting invertible operators:

Theorem 4.4. Let T and S be commuting positive invertible power
bounded mean ergodic operators on L1 and F = {f(i,j)} ⊂ L1 be a strongly
bounded (T, S)-admissible process. Then

lim
n→∞

1
n2 F(n,n) exists a.e. and in L1.

Proof. Since T and S are commuting positive invertible power bounded
mean ergodic operators on L1, they can be viewed as commuting posi-
tive invertible mean ergodic contractions (in an equivalent norm). Then,
by Theorem 2.8 in [ÇL1], the averages n−2∑n−1

i,j=0 T
iSjf converge a.e. for

all f ∈ L1. Therefore the assertion of the theorem is true for additive pro-



302 D. ÇÖMEZ

cesses, and hence, for the rest of the proof we can assume that F is positive.
By Lemma 4.3 there exists v ∈ L1 such that f(i,j) ≤ T iSjv for all i, j ≥ 0.
Hence

∑m−1,n−1
i,j=0 f(i,j) ≤

∑m−1,n−1
i,j=0 T iSjv. As observed in Lemma 4.3, we

can view T and S as commuting mean ergodic Markovian operators (in
an equivalent norm). Now, the process in Section 3 yields a positive mean
ergodic operator U on L1 and a U -additive process G = {Ukv} which dom-
inates F in the sense that

1
n2 F(n,n) ≤

1
n2

n−1,n−1∑

i,j=0

T iSjv ≤ C

k

[
√
n+1]−1∑

k=0

Ukv.

U is mean ergodic by Proposition 2.1. Hence Theorem 1.5 in [ÇL1] implies
that the averages k−1∑k−1

i=0 U
kv converge a.e. Therefore we have a maximal

inequality for G = {Ukv}. Now the assertion follows via the method of proof
of Theorem 4.2.

Remark. When T is a non-Markovian, not necessarily invertible mean
ergodic operator, a bounded T -superadditive process need not have an exact
dominant.

If T and S are commuting positive mean ergodic contractions (not nec-
essarily invertible) then a (T, S)-superadditive process may have a dominant
(see [AK]). In that case, following the same lines of proof as in Theorem 4.4
above and using Theorem 2.5 in [ÇL1] a.e. convergence is obtained. We will
state the theorem only.

Theorem 4.5. Let T and S be commuting positive mean ergodic oper-
ators on L1 and F = {f(i,j)} ⊂ L1 be a strongly bounded (T, S)-admissible
process. If the dominating one-parameter process G has a dominant , then

lim
n→∞

1
n2 F(n,n) exists a.e. and in L1.

Remark. A condition that implies the existence of an exact dominant
for a given U -superadditive process G, where U is a positive L1-contraction,
is that

lim
n

∥∥∥∥
1
n

n∑

k=1

(Gk − UGk−1)
∥∥∥∥ <∞ [BSu].

As observed by various authors (see [Sm]), however, this condition may not
be easy to check for a given multiparameter superadditive process.

Next, we turn to weighted averages of multiparameter admissible pro-
cesses and obtain the a.e. convergence of the averages

1
n2

n−1∑

i,j=0

aijf(i,j),



MULTIPARAMETER SUPERADDITIVE PROCESSES 303

where F = {f(i,j)} is an admissible process relative to commuting Marko-
vian operators T and S, which are also L∞-contractions, and a = {aij} is a
two-parameter bounded Besicovitch sequence. C. Ryll-Nardzewski initiated
the study of almost everywhere convergence of weighted averages along (sin-
gle parameter) bounded Besicovitch sequences [R-N]. The multiparameter
case was studied by Jones–Olsen [JO]. Two-parameter bounded Besicovitch
sequences are defined as {aij} ∈ l∞ for which there exists a sequence of
(two-parameter) trigonometric polynomials φε such that

lim sup
m,n→∞

1
mn

m−1,n−1∑

i,j=0

|aij − φε(i, j)| < ε.

It is known that if T and S are commuting Dunford–Schwartz operators
and a is a bounded Besicovitch sequence, then the weighted averages
n−2∑n−1

i,j=0 aijT
iSjf converge a.e. for all f ∈ L1 ([JO, Theorem 1.4]).

Theorem 4.6. Let T and S be commuting Markovian Dunford–Schwartz
operators on L1 and F = {f(i,j)} ⊂ L1 be a bounded (T, S)-admissible
process. If a is a bounded Besicovitch sequence, then

lim
n

1
n2

n−1∑

i,j=0

aijf(i,j) exists a.e.

Proof. As in Theorem 4.2, since the result is valid for additive processes,
we can assume that f(i,j) ≥ 0 for all i, j ≥ 0. Now, for a fixed integer m > 1,
define

gm(i,j)(x) =

{
T i−mSj−mf(m,m)(x) for i, j > m,

f(i,j)(x) for 0 ≤ i ≤ m or 0 ≤ j ≤ m.

Let hm(i,j)(x) = f(i,j)(x) − gm(i,j)(x), which is nonnegative by admissibil-
ity. Then, for each m, the processes Gm = {gm(i,j)} and Hm = {hm(i,j)}
are bounded (T, S)-admissible processes, where Gm is additive (ignoring
first m-terms, if necessary). Clearly, γGm = ‖f(m,m)‖ ≤ γF . Now, for
i, j > m,

hm(i,j) = f(i,j) − T i−mSj−mf(m,m)

=
i−m−1∑

u=0

Tu(f(i−u,j) − Tf(i−u−1,j))

+ T i−m−1
j−m−1∑

v=0

Sv(f(m,j−v) − Sf(m,j−v−1)).
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Therefore, ‖hm(i,j)‖ = ‖f(i,j)‖ − ‖f(m,m)‖, which implies that γHm ≤
γF − ‖f(m,m)‖. Observe that ‖f(m,m)‖ ↑ γF as m→∞. Since a ∈ l∞,

∣∣∣∣
1
n2

n−1∑

i,j=0

aijh
m
(i,j)

∣∣∣∣ ≤ ‖a‖∞
1
n2

n−1∑

i,j=0

hm(i,j).

By Theorem 3.4, there exists a constant C independent of the operators, a
Markovian operator U which is also an L∞-contraction, and a U -admissible
process {hu} with the same time constant as Hm, i.e. γF − ‖f(m,m)‖, such
that n−2∑n−1

i,j=0 h
m
(i,j) ≤ Ck−1∑k−1

u=0 hu. Hence, by Theorem 4.1, for any
λ > 0,

µ

{
x : lim sup

n

1
n2

n−1∑

i,j=0

hm(i,j)(x) > λ

}
≤ C

λ
γHm .

Now, if

f∗ = lim inf
n

1
n2

n−1∑

i,j=0

aijf(i,j), f∗ = lim sup
n

1
n2

n−1∑

i,j=0

aijf(i,j),

then, for any m > 1,

0 ≤ |f∗ − f∗| ≤ 2 lim sup
n

∣∣∣∣
1
n2

n−1∑

i,j=0

aij(f(i,j) − gm(i,j))
∣∣∣∣

≤ 2‖a‖∞ lim sup
n

1
n2

n−1∑

i,j=0

hm(i,j).

Therefore, for any λ > 0, if E = {x : |(f∗ − f∗)(x)| > λ}, then

µ(E) ≤ µ
{
x : lim sup

n

1
n2

n−1∑

i,j=0

hm(i,j)(x) >
λ

2‖a‖∞

}
≤ C‖a‖∞

λ
γHm .

Since γHm ↓ 0 as m→∞, we have µ(E) = 0, proving the assertion.

Remark. The assertion of Theorem 4.6 is also valid if a ∈ l∞ is any
sequence which is good a.e. for (multiparameter) additive processes.

Theorem 4.7. Let T and S be commuting L1-contractions whose mod-
uli |T |, |S| are mean ergodic and commute. If a is a bounded Besicovitch
sequence, then limn n

−2∑n−1
i,j=0 aijT

iSjf exists a.e. for every f ∈ L1.

Proof. It was proved in [ÇL1] that under the assumptions of the the-
orem the averages limn n

−2∑n−1
i,j=0 T

iSjf converge a.e. for every f ∈ L1.
We can assume, if necessary by a change of measure, that µ is finite. Since
|λT | = |T | and |λS| = |S| for any |λ| = 1, by Theorem 2.8 in [ÇL1] we see
that, if |λ1| = 1, and |λ2| = 1, then limn n

−2∑n−1
i,j=0 λ1λ2T

iSjf exists a.e.
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for every f ∈ L∞. Hence, by linearity, the same averages converge a.e. with
λi replaced by (two-parameter) trigonometric polynomials. It follows from
the definition of bounded Besicovitch sequences that the assertion is valid
if f ∈ L∞. Since the Brunel operator U is mean ergodic by Proposition 3.1,
limn n

−1∑n−1
k=0 U

kf converges a.e. for any f ∈ L1. Hence we have a maxi-
mal inequality as in Theorem 4.6, and the result follows from the Banach
Principle.
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