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GROUPS SATISFYING THE MAXIMAL CONDITION

ON SUBNORMAL NON-NORMAL SUBGROUPS

BY

FAUSTO DE MARI and FRANCESCO DE GIOVANNI (Napoli)

Abstract. The structure of (generalized) soluble groups for which the set of all sub-
normal non-normal subgroups satisfies the maximal condition is described, taking as a
model the known theory of groups in which normality is a transitive relation.

1. Introduction. A group G is called a T -group if all its subnormal
subgroups are normal, i.e. if normality is a transitive relation in G. The
structure of soluble T -groups has been described by W. Gaschütz [12] in the
finite case and by D. J. S. Robinson [13] for arbitrary groups. It turns out
that soluble groups with the property T are metabelian and hypercyclic,
and that finitely generated soluble T -groups are either finite or abelian;
moreover, Sylow properties of periodic soluble T -groups have been studied.
In recent years, many papers deal with the structure of (generalized) soluble
groups in which normality is imposed only on certain systems of subnormal
subgroups (see [8], [9], [11]). Other classes of generalized T -groups can be
introduced by imposing that the set of all subnormal non-normal subgroups
of the group is small in some sense; this point of view was for instance
adopted in [1], [6] and [10]. Groups satisfying the minimal condition on
subnormal non-normal subgroups have recently been investigated (see [7]),
and the aim of this paper is to study soluble groups satisfying the maximal
condition on subnormal non-normal subgroups.
We shall say that a group G is a T̂ -group (or that G has the property T̂ )

if the set of all subnormal non-normal subgroups of G satisfies the maximal
condition, i.e. if there does not exist in G an infinite properly ascending
chain

X1 < X2 < · · · < Xn < · · ·

of subnormal non-normal subgroups. Any group satisfying the maximal
condition on subnormal subgroups (in particular, any polycyclic-by-finite

group) is obviously a T̂ -group; notice also that groups with finitely many
subnormal non-normal subgroups, as well as groups in which every sub-
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normal subgroup of infinite index is normal, have the property T̂ . Observe
finally that nilpotent T̂ -groups must satisfy the maximal condition on non-
normal subgroups. Locally soluble groups with this latter property have been
completely described by G. Cutolo [5]; in particular, they either satisfy the
maximal condition or are nilpotent of class at most 2. For instance, it turns
out that the direct product H = X × Y of a non-abelian group X of order
p3 and exponent p and a group Y of type p∞ is not a T̂ -group, while the

property T̂ holds for the factor group H/〈xy〉, where Z(X) = 〈x〉 and y is
an element of order p of Y .
We take the known theory of T -groups as our model, and show that a

number of properties of such groups have an analogue in the class of groups

satisfying T̂ .
Most of our notation is standard and can be found in [14].

We wish to thank the referee for his useful comments.

2. General properties of T̂ -groups. In the first part of this section
we describe the behaviour of the Fitting subgroup of a T̂ -group. Recall that
the Baer radical of a group G is the subgroup generated by all abelian
subnormal subgroups of G, and that G is a Baer group if it coincides with
its Baer radical. It is easy to prove that G is a Baer group if and only if all
its cyclic subgroups are subnormal.

Lemma 2.1. Let G be a T̂ -group, and let X be a subnormal non-normal
subgroup of G. If X is a Baer group, then the normal closure XG of X
satisfies the maximal condition on subgroups.

Proof. Since X is contained in the Baer radical of G, also its normal
closure XG is a Baer group. Assume by contradiction that X is not finitely
generated. Since all finitely generated subgroups of X are subnormal in G,
we may consider a maximal element M of the set of all finitely generated
subgroups ofX which are not normal inG. Thus 〈M,x〉 is a normal subgroup
of G for each x ∈ X \M , and hence also

X = 〈〈M,x〉 | x ∈ X \M〉

is normal in G. This contradiction shows that X is finitely generated, and
so it satisfies the maximal condition on subgroups. Clearly, the set of all
subnormal subgroups H of G such that X ≤ H ≤ XG satisfies the maximal
condition. It follows that for each positive integer i the locally nilpotent
groupXG,i/XG,i+1 has the maximal condition on subnormal subgroups, and
so also the maximal condition on subgroups (see [14, Part 1, Theorem 5.37]).
Therefore XG satisfies the maximal condition on subgroups.

Lemma 2.2. Let G be a locally nilpotent group whose derived subgroup
G′ is finitely generated. Then G is nilpotent.
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Proof. As G′ is nilpotent, it is enough to prove that G/G′′ is nilpotent,
so that without loss of generality it can be assumed that G′ is abelian.
Moreover, since the subgroup T consisting of all elements of finite order of
G′ is finite, we may also replace G by the factor group G/T and suppose
that G′ is a finitely generated torsion-free abelian group. If G′ has rank r, it
follows that [G′,rG] is contained in (G

′)p for each prime number p, so that

[G′,rG] ≤
⋂

p

(G′)p = {1}

and the group G is nilpotent.

Lemma 2.3. Let G be a Baer group with the property T̂ . Then the derived
subgroup G′ of G satisfies the maximal condition on subgroups.

Proof. We may obviously suppose that G is not a Dedekind group. Let
X be a maximal subnormal non-normal subgroup of G; then G/XG is a
Dedekind group, and so G′XG/XG is finite. On the other hand, XG satisfies
the maximal condition on subgroups by Lemma 2.1, so that in particular
G′∩XG has this property, and hence G′ itself satisfies the maximal condition
on subgroups.

Corollary 2.4. If G is a T̂ -group, then the Baer radical of G is nilpo-
tent. In particular , the Baer radical and the Fitting subgroup of G coincide.

Proof. Let B be the Baer radical of G. By Lemma 2.3 the derived sub-
group B′ of B satisfies the maximal condition on subgroups, and hence B
is nilpotent by Lemma 2.2.

Corollary 2.5. Let G be a T̂ -group, and let F be the Fitting subgroup
of G. If X is any subgroup of F which is not finitely generated , then X is
normal in G. In particular , all infinite periodic subgroups of F are normal
in G.

Proof. As F is nilpotent by Corollary 2.4, the subgroup X is subnormal
in G and does not satisfy the maximal condition on subgroups. Thus it
follows from Lemma 2.1 that X is normal in G.

A group G is said to be subsoluble if it has an ascending series with
abelian factors consisting of subnormal subgroups. Clearly, all hyperabelian
groups are subsoluble, and for groups satisfying T̂ subsolubility is equivalent
to solubility, as the following result shows.

Theorem 2.6. Let G be a subsoluble T̂ -group. Then G is soluble.

Proof. Suppose first that the group G is hyperabelian, and let

{1} = G0 < G1 < · · · < Gα < Gα+1 < · · · < Gτ = G

be an ascending normal series of G with abelian factors. Assume that G
is not soluble, and consider the least ordinal µ ≤ τ such that Gµ is not
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soluble. Clearly, µ is a limit ordinal and Gα is soluble for each α < µ.
Let Λ be the set of all ordinals α < µ for which there exists a subnormal
non-normal subgroup X of G such that Gα < X < Gβ for some β < µ;

since G satisfies T̂ , the set Λ must be finite, and so there is an ordinal δ < µ
such that if X is any subnormal subgroup of G with Gδ ≤ X ≤ Gβ and
δ < β < µ, then X is normal in G. In particular, Gβ/Gδ is a T -group for
δ < β < µ and so it is metabelian. As

Gµ =
⋃

δ<β<µ

Gβ ,

it follows that Gµ/Gδ is likewise metabelian, contradicting the assumption
that Gµ is insoluble.
In the general case, let

{1} = X0 < X1 < · · · < Xα < Xα+1 < · · · < Xτ = G

be an ascending subnormal series of G with abelian factors. The set of all
ordinals α such that the subgroup Xα is not normal in G is obviously finite,
of order k say. If k = 0, then G is hyperabelian, and so even soluble by the
first part of the proof. Assume that k > 0, and let ̺ < τ be the largest
ordinal such that X̺ is not normal in G. Then X̺+1 is normal in G, and

G/X̺+1 is a hyperabelian T̂ -group, so that it is soluble. Moreover, X̺+1
has an ascending subnormal series with abelian factors in which there are
at most k − 1 non-normal terms, so that by induction on k the subgroup
X̺+1 is soluble, and hence G itself is soluble.

Lemma 2.7. Let G be a soluble T̂ -group which is not polycyclic, and let
F be the Fitting subgroup of G. Then F/Z(F ) is a finite abelian group. In
particular , if F is torsion-free, then it is abelian.

Proof. Since soluble groups of automorphisms of polycyclic groups are
likewise polycyclic (see [14, Part 1, Theorem 3.27]), the subgroup F is not
polycyclic. On the other hand, the nilpotent group F satisfies the maximal
condition on non-normal subgroups, and so F/Z(F ) is finite and abelian
(see [5, Corollary 2.5]). In particular, F ′ is finite by Schur’s theorem and
hence F is abelian, provided that it is torsion-free.

A power automorphism of a group G is an automorphism mapping every
subgroup of G onto itself, and the set PAutG of all power automorphisms
of G is an abelian residually finite normal subgroup of the full automorphism
group AutG of G. Recall also that the set IAutG of all automorphisms of G
fixing every infinite subgroup is a subgroup of AutG containing PAutG.
The behaviour of the groups PAutG and IAutG has been investigated in
[3] and [4], respectively. Power automorphisms play a central role in the
study of T -groups, and they will also be important in our considerations.
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Lemma 2.8. Let G be a soluble group, and let F be the Fitting subgroup
of G. If all subgroups of F are normal in G, then CG(G

′) = F . In particular ,
G is metabelian.

Proof. The group G/CG(F ) is abelian, since it is isomorphic to a group
of power automorphisms of F , and so G′ ≤ CG(F ) ≤ F . It follows that F is
contained in CG(G

′), so that CG(G
′) = F and G′ is abelian.

Lemma 2.9. Let G be an infinite soluble T̂ -group with periodic Fitting
subgroup F . Then either all subgroups of F are normal in G, or F is a finite
extension of a Prüfer group and G(3) = {1}.

Proof. By Corollary 2.5 all infinite subgroups of F are normal in G,
so that G/CG(F ) is isomorphic to a subgroup of IAutF . In particular, if
IAutF = PAutF , then all subgroups of F are normal in G. On the other
hand, if IAutF 6= PAutF , it follows that F is a finite extension of a Prüfer
group and G/CG(F ) is metabelian (see [4, Corollary 2.4 and Proposition
2.5]), so that G′′ ≤ CG(F ) = Z(F ) and G

(3) = {1}.

Corollary 2.10. Let G be a periodic soluble T̂ -group, and let F be the
Fitting subgroup of G. Then either all subgroups of F are normal in G, or
G is a finite extension of a Prüfer group and G(3) = {1}.

Proof. The statement follows directly from Lemma 2.9, because if F is
a finite extension of a Prüfer group, then G/CG(F ) is finite (see [14, Part 1,
Corollary to Theorem 3.29.2]) and so G itself is a finite extension of a Prüfer
group.

Corollary 2.11. Let G be a periodic soluble T̂ -group which is not a
finite extension of a Prüfer group. Then G is metabelian and hypercyclic.

Proof. Let F be the Fitting subgroup of G. All subgroups of F are
normal in G by Corollary 2.10, so that G is metabelian by Lemma 2.8 and
G′ is hypercyclically embedded in G. Therefore G is hypercyclic.

Lemma 2.12. Let G be a T̂ -group, and let A be a torsion-free abelian
subnormal subgroup of G. If A is not finitely generated , then all subgroups
of A are normal in G.

Proof. The subgroup A is normal in G by Corollary 2.5. Assume by
contradiction that the statement is false, and let X be a maximal element
of the set of all subgroups of A which are not normal in G. As X is finitely
generated, the group A/X must be infinite. Moreover, in A/X the identity
subgroup cannot be obtained as intersection of a collection of non-trivial
subgroups, and hence A/X is a group of type p∞ for some prime number p.
Write

X = 〈x1〉 × · · · × 〈xt〉,
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where each 〈xi〉 is an infinite cyclic subgroup. For each prime number q 6= p
and for all i = 1, . . . , t put

Xi,q = 〈x
q
1〉 × · · · × 〈x

q
i−1〉 × 〈xi〉 × 〈x

q
i+1〉 × · · · × 〈x

q
t 〉.

Then

A/Xi,q = X/Xi,q ×Bi,q/Xi,q,

where Bi,q/Xi,q is a group of type p
∞. Clearly, each Bi,q is a normal subgroup

of G by Corollary 2.5, so that also the intersection

Bi =
⋂

p6=q

Bi,q

is normal in G. Since

Bi ∩X =
⋂

q 6=p

(Bi,q ∩X) =
⋂

q 6=p

Xi,q = 〈xi〉,

it follows that Bi has rank 1 and hence the normal closure 〈xi〉
G is cyclic by

Lemma 2.1. Therefore the subgroup 〈xi〉 is normal in G for all i = 1, . . . , t,
so that X itself is normal in G, and this contradiction proves the lemma.

Lemma 2.13. Let G be a soluble T̂ -group which is not polycyclic, and
let F be the Fitting subgroup of G. If the largest periodic subgroup T of F
is neither finite nor a finite extension of a Prüfer group, then all subgroups
of F are normal in G.

Proof. If F is a periodic group, the statement follows from Lemma 2.9.
Thus suppose that T is properly contained in F , and that T is neither finite
nor a finite extension of a Prüfer group. Let A be a maximal abelian normal
subgroup of T ; then CT (A) = A and A contains a subgroup B such that
B = B1 × B2, where both B1 and B2 are infinite. Let a be any element
of infinite order of F . The subgroups 〈a,B1〉 and 〈a,B2〉 are normal in G
by Corollary 2.5, so that also 〈a〉 = 〈a,B1〉 ∩ 〈a,B2〉 is a normal subgroup
of G. If x is any element of T , then 〈x〉 is characteristic in 〈a, x〉 = 〈a〉〈x〉
and so normal in G. Therefore all subgroups of F are normal in G.

Lemma 2.14. Let G be a soluble T̂ -group which is not polycyclic, and let
F be the Fitting subgroup of G. If the largest periodic subgroup T of F is
finite, then CG(G

′) = F and in particular G is metabelian.

Proof. By Corollary 2.4 the group F is nilpotent, so that it satisfies
the maximal condition on non-normal subgroups. As F is not polycyclic,
it follows that either F is abelian or it is isomorphic to Q2 × E, where Q2
is the additive group of rational numbers whose denominators are powers
of 2 and E is finite (see [5]). In any case, F contains a torsion-free abelian
subgroup A such that F = T ×A, and all subgroups of A are normal in G by
Lemma 2.12. Let x be any element of T . Since A is not finitely generated,
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there exist elements a1, a2, . . . , an, . . . of A such that

〈x, a1〉 < 〈x, a1, a2〉 < · · · < 〈x, a1, a2, . . . , an〉 < · · · ,

and so the subgroup 〈x, a1, . . . , am〉 is normal in G for some positive in-
teger m. Clearly, 〈x〉 is the subgroup of all elements of finite order of
〈x, a1, . . . , am〉 and hence it is likewise normal in G. Therefore G induces
groups of power automorphisms on both T and A, so that in particular

G′ ≤ CG(T ) ∩ CG(A) = CG(F )

and hence CG(G
′) = F .

Our next result shows in particular that, with the obvious exception of
polycyclic groups, soluble T̂ -groups have derived length at most 3.

Theorem 2.15. If G is a soluble T̂ -group which is not polycyclic, then
G′′ is abelian. Moreover , if G is not an extension of a Prüfer group by a
polycyclic group, then G′ is nilpotent of class at most 2 and G′′ is cyclic with
prime power order.

Proof. Let F be the Fitting subgroup ofG. If F has no Prüfer subgroups,
it follows from Lemmas 2.13 and 2.14 that G is metabelian. Suppose now
that F contains a subgroup P of type p∞ for some prime number p, and
let X be any subgroup of G such that P ≤ X ≤ F . Then X is not finitely
generated and so it is normal in G by Corollary 2.5. Therefore G′ acts
trivially on both P and F/P , so that G′′ ≤ CG(F ) ≤ F and G

′′ is abelian.
Assume that G is not an extension of a Prüfer group by a polycyclic

group. We may obviously suppose that G′′ 6= {1}, so that it follows again
from Lemmas 2.13 and 2.14 that the largest periodic subgroup T of F con-
tains a subgroup P of type p∞ with T/P finite. Put G = G/P and let K
be the Fitting subgroup of G. If Q = Q/P is a Prüfer subgroup of K,
then P ≤ Z(Q) and Q lies in F . This contradiction shows that K cannot
contain Prüfer subgroups, and hence a further application of Lemmas 2.13
and 2.14 shows that G is metabelian and so G′′ is contained in P . In par-
ticular, G′ ≤ CG(G

′′) and G′ is nilpotent of class 2. Finally, G′′ satisfies the
maximal condition on subgroups by Lemma 2.3 and hence it is cyclic with
prime power order.

As finitely generated soluble T -groups are either finite or abelian, the
last result of this section shows that finitely generated soluble groups behave
similarly with respect to the properties T and T̂ .

Theorem 2.16. Let G be a finitely generated soluble T̂ -group. Then G
is polycyclic.

Proof. Let A be the smallest non-trivial term of the derived series of G.
By induction on the derived length of G it can be assumed that the factor
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group G/A is polycyclic, so that A contains a finitely generated subgroup E
such that A = EG. Since E is subnormal in G, it follows from Lemma 2.1
that A is finitely generated. Therefore the group G is polycyclic.

3. Periodic T̂ -groups. Recall that a group G is called an IT -group if
all its infinite subnormal subgroups are normal. The structure of IT -groups
has been described in [8], where it is proved in particular that a periodic
soluble group G has the property IT if and only if G is either a T -group or
an extension of a Prüfer group by a finite T -group. Clearly, every IT -group
satisfies the minimal condition on subnormal non-normal subgroups; our
next result shows that in the periodic soluble case the property IT forces
the group to satisfy also the maximal condition on subnormal non-normal
subgroups.

Lemma 3.1. Let G be a periodic soluble IT -group. Then G is a T̂ -group.

Proof. We may obviously suppose that G is infinite and it is not a
T -group. Thus G contains a normal subgroup P of type p∞ for some prime
number p such that G/P is a finite T -group. Assume by contradiction that G

is not a T̂ -group, so that there exist infinitely many subnormal non-normal
subgroups X1, X2, . . . , Xn, . . . of G such that

X1 < X2 < · · · < Xn < · · · ,

and each Xn must be finite since G is an IT -group. Then [P,Xn] = {1} and
so P normalizes all Xn. The subgroup

X =
⋃

n∈N

Xn

is infinite and so it contains P . As G/P is finite, there is a positive integerm
such that XkP = XmP for every k ≥ m, so that in particular X = XmP
is subnormal and hence also normal in G. Let {g1, . . . , gt} be a set of repre-
sentatives of the cosets of P in G. For each i = 1, . . . , t the subgroup Xgim is
contained in X and so Xgim ≤ Xsi for a suitable si ≥ m. Moreover,

Xr = XmP ∩Xr = Xm(P ∩Xr)
for all r ≥ si and then

Xgir = X
gi
m(P ∩Xr) ≤ Xr,

so that Xgir = Xr. In particular, if s = max{s1, . . . , st}, then X
gi
s = Xs for

each i = 1, . . . , t, and hence Xs is normal in G. This contradiction proves
the lemma.

It can be observed that there exist soluble T̂ -groups which are finite
extensions of a Prüfer group but do not have the property IT . In fact, let K
be a group of type p∞ (where p is a prime number), H = 〈x, y〉 a dihedral
group of order 8 with x2 = y2 = 1, and consider the semidirect product
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G = H ⋉K, where ax = ay = a−1 for each a ∈ K. Then CG(K) = 〈xy〉×K
is abelian and all its subgroups are normal in G. Since each finite subnormal
subgroup of G is contained in CG(K), it follows that any subnormal non-
normal subgroup of G is infinite; thus G has finitely many subnormal non-
normal subgroups and so it is a T̂ -group. On the other hand, the infinite
subnormal subgroup 〈x,K〉 is not normal and hence G is not an IT -group.

The next results of this section show that periodic soluble T̂ -groups ei-
ther have the property T or contain an abelian subgroup of finite index;
moreover, any periodic soluble T̂ -group has finite conjugacy classes of sub-
normal subgroups.

Theorem 3.2. Let G be a periodic soluble T̂ -group which is not a T -
group. Then G is abelian-by-finite and G/G′ is either finite or a finite ex-
tension of a Prüfer group.

Proof. It can obviously be assumed that G is neither finite nor a finite
extension of a Prüfer group. If F is the Fitting subgroup of G, it follows
from Corollary 2.10 that all subgroups of F are normal in G, and so G′ is
abelian by Lemma 2.8. Let X be a subnormal non-normal subgroup of G.
Then X ′ is normal in G and X/X ′ is an abelian subnormal non-normal
subgroup of G/X ′. Another application of Corollary 2.10 shows that G/X ′

is either finite or a finite extension of a Prüfer group, so that G/G′ has
the same structure. If G/G′ is finite, then G is abelian-by-finite. Suppose
that G/G′ contains a subgroup P/G′ of type p∞ such that G/P is finite.
As G/CG(G

′) is isomorphic to a group of power automorphisms of G′, it is
residually finite and hence P ≤ CG(G

′). Thus P is nilpotent, so that it is
contained in F and G/F finite. Since F is a Dedekind group, it follows that
the group G is abelian-by-finite.

Corollary 3.3. Let G be a periodic soluble T̂ -group, and let X be a
subnormal non-normal subgroup of G. Then G/XG is either finite or a finite
extension of a Prüfer group. Moreover , if G is neither finite nor a finite
extension of a Prüfer group, then X/XG is abelian and X

G/XG is finite.

Proof. It can obviously be assumed that G is neither finite nor a finite
extension of a Prüfer group. The argument used in the proof of Theorem 3.2
shows that X ′ is normal in G and G/X ′ is either finite or a finite extension
of a Prüfer group, so that in particular G/XG has the same structure and
X/XG is abelian. Moreover, X/XG has finitely many conjugates in G/XG
(see [14, Part 1, Theorem 5.49]). Since the Fitting subgroup F of G has
finite index and X ∩ F ≤ XG, it follows that X/XG is finite, and hence its
normal closure XG/XG is likewise finite.

If G is any T -group, then γ3(G) = γ4(G) and so the factor group G/γ(G)
is nilpotent (here γ(G) denotes the last term of the lower central series of G).
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Our next lemma shows in particular that also in the case of periodic soluble
T̂ -groups the lower central series stops after finitely many steps.

Lemma 3.4. Let G be a periodic soluble T̂ -group, and let L be the last
term of the lower central series of G. Then the factor group G/L is nilpotent.

Proof. The statement is obvious for Černikov groups. Suppose that G is
not a Černikov group, and assume by contradiction that G/L is not nilpo-
tent; then neither is G/γω(G), and of course the latter group does not satisfy
the minimal condition on subgroups. Replacing G by G/γω(G), we may also
suppose that the group G is residually nilpotent. Thus G is the direct prod-
uct of its Sylow subgroups (see [14, Part 2, p. 8]). Let D be the largest
divisible abelian normal subgroup of G. As [D,G] ≤ γn(G) for each positive
integer n, also [D,G] ≤ γω(G) = {1}, and hence D is contained in Z(G). On
the other hand, each subnormal subgroup of G has finite index in its normal
closure by Corollary 3.3, and it follows that all Sylow subgroups of G are
nilpotent (see [2, Theorem 3.2]). Therefore the group G itself is nilpotent,
and this contradiction proves that G/L is nilpotent.

Lemma 3.5. Let G be an infinite periodic soluble T̂ -group, and let L
be the smallest term of the lower central series of G. If G is not a finite
extension of a Prüfer group, then L2 = L.

Proof. Clearly, it can be assumed that G is not a T -group, so that G/G′

is either finite or a finite extension of a Prüfer group by Theorem 3.2. As
the factor group G/L is nilpotent by Lemma 3.4, it satisfies the maximal
condition on non-normal subgroups and hence is a finite extension of a Prüfer
group (see [5]). Thus L must be infinite. Let H be a subgroup of L such that
|L : H| ≤ 2. Then H is normal in G by Theorem 2.15 and Lemma 2.10, and
clearly G/H is nilpotent, so that H = L and L2 = L.

It was proved in [13] that a soluble p-group G with the property T is
abelian if p > 2, while if p = 2 then either G is a Dedekind group or it
has a very restricted structure. For primary soluble T̂ -groups we have the
following result.

Theorem 3.6. Let G be an infinite primary soluble T̂ -group which is
not a finite extension of a Prüfer group.

(a) If G is a p-group for some odd prime p, then G is abelian.
(b) If G is a 2-group, then it has finitely many subnormal non-normal
subgroups.

Proof. By Corollary 3.3 every subnormal subgroup of G has finite index
in its normal closure. If G is a p-group with p odd, then G is abelian (see [2,
Theorem 3.2]). Suppose now that G is a 2-group. The same result of Casolo
shows that the Fitting subgroup F of G has index at most 2. Moreover, all
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subgroups of F are normal in G by Corollary 2.10, so that it can be assumed
that |G : F | = 2 and hence G = 〈F, z〉 for any element z of G\F . As the last
term L of the lower central series of G is a non-trivial divisible subgroup by
Lemmas 3.4 and 3.5, it follows that F is abelian and az = a−1 for all a ∈ F .
Thus G′ = [F, z] = F 2 and so L = γn+1(G) = F

2n for some non-negative
integer n. Therefore G/L has finite exponent and hence it is either finite or
a Dedekind group (see [5]). Let X be any subnormal non-normal subgroup
of G. Then X cannot be contained in F , so that [L,X] = L2 = L and
L ≤ X. Therefore the group G has only finitely many subnormal non-normal
subgroups.

In the last part of this section we consider the Sylow structure of periodic
soluble groups with the property T̂ . If G is a periodic soluble T -group, then
the intersection π([G′, G])∩π(G/[G′, G]) contains no odd primes; moreover,
if 2 ∈ π([G′, G]), it is known that the Sylow 2-subgroups of G satisfy certain
strong restrictions (see [13, Theorem 4.2.2]). Our previous results can be

applied to obtain a corresponding information for periodic soluble T̂ -groups.
It is not surprising that the only exceptions are produced by Sylow subgroups
of small size.

Theorem 3.7. Let G be a periodic soluble T̂ -group which is not a finite
extension of a Prüfer group, and let L be the last term of the lower central
series of G. If for some prime number p the p-component Lp of L is infinite
and q > p is a prime in π(L), then q 6∈ π(G/L).

Proof. Let πp be the set of all prime numbers q > p. The group G is
locally supersoluble by Corollary 2.11, and hence the set N consisting of all
πp-elements of G is a subgroup. Let X be any subnormal subgroup of N .
As Lp is infinite and all its subgroups are normal in G, there exists a finite
subgroup E of Lp such that XE is normal in G; but X is a characteristic
subgroup ofXE, and so it is normal inG. Therefore all subnormal subgroups
of N are normal in G, and in particular N is a T -group; it follows that the
last term K of the lower central series of N is a Hall subgroup of N (see
[13, Theorem 4.2.2]). In particular, π(K) ∩ π(G/L) = ∅. Moreover, N/K is
nilpotent, so that all its subgroups are normal in G/K and N/K must be
abelian. Let q > p be an element of π(L) \ π(K) and let M/K be the q-
component of N/K. Then Lq is contained inM and CG(LqK/K) = CG(Lq)
is a proper subgroup of G. Since G/CG(M/K) is isomorphic to a periodic
q′-group of power automorphisms ofM/K, it follows that G acts fixed-point-
freely on M/LqK. On the other hand, ML/L lies in the centre of G/L, so
that

[M,G] ≤M ∩ L = LqK

and hence M = LqK ≤ L. Therefore q 6∈ π(G/L).
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Corollary 3.8. Let G be a periodic soluble T̂ -group, and let L be the
last term of the lower central series of G. If p is a prime number such that
the p-component Lp of L is neither finite nor a finite extension of a Prüfer
group and q ≥ p is an odd prime in π(L), then q 6∈ π(G/L).

Proof. By Theorem 3.7 it is enough to prove that if the prime p is odd,
then p 6∈ π(L). Let Lp′ be the p

′-component of L. Replacing G by the
factor group G/Lp′ , it can be assumed without loss of generality that L is
a p-group. As G/L is nilpotent by Lemma 3.4, it follows that G contains a
unique Sylow p-subgroup M . Then M is abelian by Theorem 3.6 and so all
its subgroups are normal in G by Corollary 2.10. In particular, G/CG(L) is
isomorphic to a non-trivial p′-group of power automorphisms of L. Thus G
acts fixed-point-freely on L and so also on M and on M/L (see for instance
[13, Lemma 4.1.2]). On the other hand, M/L is contained in the centre of
G/L, so that L =M and G/L is a p′-group.

Corollary 3.9. Let G be a periodic soluble T̂ -group, and let L be the
last term of the lower central series of G. If L has no elements of order 2,
then there exists a finite set π of prime numbers such that the π-component
Lπ of L is either finite or a finite extension of a Prüfer group and Lπ′ is a
Hall subgroup of G.

Proof. We may obviously suppose that L is not a Hall subgroup of G, so
that in particular G is not a T -group. The nilpotent group G/L satisfies the
maximal condition on non-normal subgroups and so its derived subgroup
G′/L is finite (see [5]). Then it follows from Theorem 3.2 that the set π =
π(G/L) is finite. Clearly, Lπ′ is a Hall subgroup of G and Lπ′ < L. Assume
that Lπ is infinite, and let p be the smallest prime in π such that Lp is
infinite. As p > 2, Corollary 3.8 implies that Lp must be a finite extension
of a Prüfer group. Moreover, by Theorem 3.7 the set π(L)∩ π(G/L) cannot
contain primes greater than p. Therefore Lπ is a finite extension of a Prüfer
group.

We finally show that the primary structure of a periodic soluble T̂ -group
is quite similar to that of periodic soluble groups with the property T ,
provided that the last term of the lower central series contains elements of
order 2.

Theorem 3.10. Let G be an infinite periodic soluble T̂ -group which is
not a finite extension of a Prüfer group, and let L be the last term of the
lower central series of G. If L has elements of order 2, then the odd compo-
nent L2′ of L is a Hall subgroup of G, G

′/L is a 2-group, 2 ∈ π(G/G′) and
each element of G acts on L2 either as the identity or as the inversion.

Proof. Since L2 = L by Lemma 3.5, the 2-component L2 of L must
be infinite and so it follows from Theorem 3.7 that L2′ is a Hall subgroup
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of G. Moreover, all subgroups of L are normal in G by Corollary 2.10, and
in particular each element of G \ CG(L2) induces on L2 the inversion map.
On the other hand, L2 is not contained in Z(G), and so 2 ∈ π(G/G

′).
Let K/L2′ be the unique Sylow 2-subgroup of G/L2′ . As G is hypercyclic by
Corollary 2.11, the elements of odd order of G form a characteristic subgroup
M and M/L2′ is nilpotent. Clearly,

G/L2′ = K/L2′ ×M/L2′

and all subgroups of M/L2′ are normal in G/L2′ because L2 is infinite. It
follows that M/L2′ is abelian, so that G

′ lies in K and G′/L is a 2-group.

4. Non-periodic T̂ -groups. A group G is called an LT -group if each
subnormal non-normal subgroup of G has finite index. Clearly, groups with
the property LT can be considered as duals of IT -groups, and the structure
of soluble LT -groups has been studied in [11]; in particular, it turns out that
infinite soluble LT -groups are metabelian. It is also clear that all LT -groups

have the property T̂ .

Theorem 4.1. Let G be a soluble T̂ -group which is not polycyclic, and
let F be the Fitting subgroup of G. If either F is torsion-free, or the largest
periodic subgroup T of F is infinite but it is not a finite extension of a Prüfer
group, then G is an LT -group.

Proof. We may obviously suppose that G is not a T -group, so that it
contains a subnormal non-normal subgroup X. It follows from Lemmas 2.7,
2.12 and 2.13 that all subgroups of F are normal in G, so that in particular
F is abelian and CG(F ) = F . Then G/F is isomorphic to a non-trivial group
of power automorphisms of F , so that |G : F | = 2 and G = 〈F, z〉 where
az = a−1 for all a ∈ F . It follows that γn+1(G) = F

2n for each positive
integer n, and so G/γn+1(G) has finite exponent. Assume by contradiction
that the nilpotent group G/γ4(G) is infinite. As G/γ4(G) satisfies the max-
imal condition on non-normal subgroups, it is a Dedekind group (see [5]).
In particular, L = γ3(G) is the last term of the lower central series of G
and L2 = L. As X is not contained in F , there is an element x of X such
that ax = a−1 for all a ∈ F ; then [L, x] = L2 = L, so that L ≤ X and X is
normal in G. This contradiction shows that G/γ4(G) is finite. In particular,
the group G/F 2 is finite and hence G is an LT -group (see [11, Theorem
3.3]).

Corollary 4.2. Let G be a torsion-free soluble T̂ -group. If G is not
polycyclic, then it is abelian.

Proof. The group G has the property LT by Theorem 4.1 and hence it
is abelian (see [11, Corollary 3.4]).
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Observe finally that there exist soluble non-polycyclic T̂ -groups with
torsion-free Fitting subgroup for which the set of subnormal non-normal
subgroups is infinite. In fact, let p be an odd prime number and consider
the semidirect product G = 〈x〉⋉ A, where A is isomorphic to the additive
group of rational numbers whose denominators are powers of p and x is
an element of order 2 such that ax = a−1 for all a ∈ A. Then A is the
Fitting subgroup of G and G is an LT -group (see [11, Theorem 3.3]), so

that in particular G has the property T̂ . On the other hand, 〈x,A2
n

〉 is a
subnormal non-normal subgroup of G for each integer n ≥ 2, so that G
contains infinitely many subnormal non-normal subgroups.
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