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ANTONIO DI NOLA (Salerno) and MIRKO NAVARA (Praha)

Abstract. We characterize fukasiewicz tribes, i.e., collections of fuzzy sets that are
closed under the standard fuzzy complementation and the Lukasiewicz t-norm with count-
ably many arguments. As a tool, we introduce o-McNaughton functions as the closure of
McNaughton functions under countable MV-algebraic operations. We give a measure-theo-
retical characterization of o-complete MV-algebras which are isomorphic to Lukasiewicz
tribes.

1. Introduction. The MV-algebra approach presents one of the most
fruitful theoretical backgrounds of many-valued logics and a basis of suc-
cessful applications in decision making, approximations, fuzzy control, etc.
(see [3, 6]). In this paper we characterize the o-complete MV-algebras repre-
sented by functions with values in [0, 1] with pointwise operations (Zukasie-
wicz tribes). Our result differs from a previous characterization which says
that every o-complete MV-algebra can be described as a collection of con-
tinuous [0, 1]-valued functions on the space of all maximal ideals endowed
with the spectral topology (see [3]). To specify the distinction, let us try
to draw the analogy with Boolean algebras. Every Boolean algebra can be
uniquely represented by two-valued (characteristic) functions on its Stone
space (see [14]). Nevertheless, another set representation may be more use-
ful on occasions. (For an analogy, the Borel o-algebra on the real line is
usually not studied via its Stone space.) Here we give a characterization of
o-complete MV-algebras by making use of any set representation. However,
an additional condition is assumed that the operations coincide with the
pointwise application of the operations of the standard MV-algebra [0, 1].
This special case seems to be of considerable importance, in particular as
a basis of many-valued probability theory [13]. Besides, every o-complete

2000 Mathematics Subject Classification: Primary 06D35; Secondary 03B52, 03ET72,
06C15, 06D30, 06D50, 28E10.

Key words and phrases: MV-algebra, o-complete MV-algebra, McNaughton function,
tribe.

Research of M. Navara was supported by grant 201/02/1540 of the Grant Agency of
the Czech Republic and grant INDAM.

[121]



122 A. DI NOLA AND M. NAVARA

MV-algebra can be obtained as a g-homomorphic image of a F.ukasiewicz
tribe [5, 10].

It can happen that nonisomorphic o-complete MV-algebras may be ex-
pressed as subdirect products of the same family of o-complete MV-algebras
even if they have the same Boolean skeletons. In contrast to this, we present a
structure that represents a unique fLukasiewicz tribe. More exactly, we prove
that there is an underlying o-algebra and a sequence of o-filters determining
all elements of the tribe. We also give necessary and sufficient conditions for
these structures to correspond to a o-complete MV-algebra.

We prove that YLukasiewicz tribes are exactly those o-complete MV-alge-
bras which admit separating sets of pure states.

As an important tool, we study o-McNaughton functions, i.e., the ele-
ments of the least Lukasiewicz tribe containing all McNaughton functions.
Their role in the study of o-complete MV-algebras is analogous to that of
McNaughton functions in the theory of MV-algebras; every f.ukasiewicz tribe
is closed under pointwise application of all c-McNaughton functions.

2. Basic notions. We refer to [3] for basic notions on MV-algebras.
Unless stated otherwise, M is a o-complete MV-algebra. By N, resp. Q, we
denote the set of natural, resp. rational, numbers.

The standard MV-algebra is the real unit interval Sy, = [0, 1] equipped
with the Lukasiewicz operations = @y = min(1,z+y) and -z = 1 — z. The
only o-complete proper MV-subalgebras of Sy, are of the form S,, = {i/n :
i =0,...,n}, n € N. All infinite MV-subalgebras of S, are dense subsets
of [0, 1].

DEFINITION 2.1 ([1]). Let X be a nonempty set. A collection 7' C [0, 1]X
is called a fukasiewicz clan if it contains the constant zero function and is
closed under the pointwise application of Y.ukasiewicz operations @, . If,
moreover, 1" is closed under pointwise application of @ to countably many
arguments, then 7T is called a fukasiewicz tribe.

As we shall work only with Lukasiewicz operations here, we shall speak
briefly of a clan and a tribe. Every clan, resp. tribe, is an MV-algebra, resp.
a o-complete MV-algebra.

The Boolean skeleton of M is the Boolean algebra B(M) = {a € M :
a®a = a} (of all Boolean elements of M). All operations of B(M) agree
with the restrictions of the corresponding operations of M (see [3]). Boolean
elements of a clan M are functions which attain only values 0,1, thus they
coincide with those characteristic functions x4 (A C X) which belong to M.

An n-ary function is a McNaughton function iff it belongs to the least clan
of functions [0,1]" — [0, 1] containing all projections 7;,: (z1,...,2,) —
xi, © = 1,...,n. Following [9], a function is a McNaughton function iff it
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is continuous, piecewise linear, and each piece is determined by a linear
equation with integer coefficients.

COROLLARY 2.2. Fvery Lukasiewicz clan, T, is closed under composition
with all McNaughton functions, i.e., if ai,...,a, € T and f:]0,1]" — [0, 1]
is a McNaughton function, then the function f(a1,...,an): x — f(ai(x),...
coyan(x))isin T.

3. o-completions of McNaughton functions. In this paper we deal
with the class of functions which is obtained when we close the class of
McNaughton functions under countable pointwise suprema and f.ukasiewicz
operations. Let us call an n-ary function a o-McNaughton function iff it be-
longs to the least tribe of functions [0, 1]™ — [0, 1] containing all projections
Tint (T1,...,2n) ¥ 24, @ = 1,...,n. (A similar notion for a different type of
tribes was introduced in [11].) The tribe of unary o-McNaughton functions
was characterized already in [8] without reference to MV-algebras. Here we
give an equivalent MV-algebraic characterization and its proof simplified by
the use of the McNaughton theorem. Further, we extend it to n-ary func-
tions.

The only o-McNaughton constant functions are 0 and 1. We shall need
functions which are “as close to constants as possible”. For each = € [0, 1],
let S, denote the least o-complete MV-subalgebra of S, = [0, 1] such that
x € S(y). For each r € [0, 1], we define a function ¢,: [0,1] — [0, 7] by

(1) cr(w) = sup([0,7] N Sy ).

PROPOSITION 3.1. Let r € [0,1]. Then the following cases may occur:
o Ifxe0,1]\Q, then ¢ (x) =r.
e Ifx€0,1]NQ, then c.(x) <, and equality holds iff r € S(y).

For each € > 0, there are only finitely many points x € [0,1] such that
cr(x) & [r—e,r].

THEOREM 3.2. A function f:[0,1] — [0,1] is a o-McNaughton function
iff it satisfies the following conditions:
(cMNO)  f is Borel measurable,
(oMN1)  f(q) € S(g) for all ¢ € [0,1] N Q.

Proof. The collection of all functions satisfying (¢MNO), (cMN1) is a
tribe, so it contains all o-McNaughton functions. We have to prove that

each function f satisfying (¢MNO), (cMN1) is a o-McNaughton function.
We first prove it for special forms of f. For each k € N, j € {0,...,k — 1},
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we define the McNaughton function

0 if x €0,7/k],
sik(x) = —j+ ke ifz € (j/k (j+1)/k),
1 if w € [(j+1)/k,1].

For each r = i/n € [0,1) N Q, the characteristic function x(;) is a o-
McNaughton function, because

X(r1] = \/ Sip,np-
peEN
By a standard Boolean construction, we deduce that also all characteristic
functions of Borel subsets of [0, 1] are o-McNaughton functions.

To prove that a function ¢, for r € [0,1] is a o-McNaughton function,
we take the o-McNaughton function ¢, = id A x[o,). We shall prove that
cr = \/,(trog), where the (countable) supremum is taken over all McNaugh-
ton functions g. Let = € [0,1]. We shall use Proposition 3.1. If z € Q,
it generates a finite MV-algebra S(,) and there is a McNaughton function
whose value at z is ¢, (x). If x ¢ Q, then there is a sequence of McNaugh-
ton functions whose values at = converge to r = ¢,(x) and it is enough to
compose them with ¢,.

By a standard argument, all Borel measurable functions are obtained as
pointwise suprema of simple functions (i.e., finitely-valued measurable func-
tions). All simple functions [0, 1]\ Q — [0, 1] are restrictions of o-McNaugh-
ton functions. Taking their suprema, we obtain all Borel measurable func-
tions on [0, 1] \ Q as restrictions of o-McNaughton functions. Thus, for each
function f satisfying (¢MNO), we may find a o-McNaughton function f*
which coincides with f on [0, 1] \ Q. Using Proposition 3.1 and (¢cMN1), we
see that the o-McNaughton function

\/ () N X{q}
q€[0,1]nQ

coincides with f on [0,1] NQ and vanishes on [0, 1]\ Q. Thus we obtain f as
a 0-McNaughton function

F=Axome)V Vo e Mg
q€[0,1]nQ
THEOREM 3.3. An n-ary function f:]0,1]" — [0,1] is a o-McNaughton
function iff it satisfies the following conditions:

(cMNO)  f is Borel measurable.

(¢MNn) Let x1,...,x, € [0,1] N Q. Then f(x1,...,x,) € Sk, where
k € N is the least index such that {x1,...,x,} C Sk.
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Proof. The proof follows the pattern of Theorem 3.2. The characteristic
function of any n-dimensional subinterval of [0,1]" is o-McNaughton, and
this extends to all Borel subsets of [0, 1]. We obtain all measurable functions
[0,1]*\ Q™ — [0,1] as suprema of simple functions, and the values at the
(countably many) remaining points are restricted only by (cMNn). =

In analogy to Corollary 2.2, o-McNaughton functions play a similar role
with respect to tribes as McNaughton functions do with respect to clans:

COROLLARY 3.4. Fwvery Lukasiewicz tribe T is closed under composition
with all o-McNaughton functions, i.e., ifay,...,an, € T and f:[0,1]™ — [0, 1]
is a o-McNaughton function, then f(ai,...,an): x — f(ai(x),...,an(x)) is
i T.

We obtained an analytical characterization of o-McNaughton functions.
From the logical point of view, operations with countably many arguments
should be avoided; if this is not possible, their use should be at least reduced
to the very last step. Thus it is desirable to express any o-McNaughton func-
tion as a supremum (or infimum) of McNaughton functions. However, X{r}s
r € [0, 1], cannot be expressed as suprema of McNaughton functions. There
are also o-McNaughton functions which are neither suprema nor infima of
McNaughton functions. Thus the o-complete lattice generated by all n-ary
McNaughton functions is a proper sublattice of the o-complete lattice of all
n-ary o-McNaughton functions. (The case of MacNeille completions instead
of o-completions is clarified in [7, Th. 6.3, p. 91].)

4. Characterization of Lukasiewicz tribes and o-complete MV-
algebras. We shall refer to the lattice (N, |), where | is the divisibility rela-
tion on N. For a o-algebra B, we denote by F(B) the set of all its o-filters.
For a Lukasiewicz tribe T on X we define C(T) = {A C X : x4 € T} (which
is a o-algebra isomorphic to B(T)).

THEOREM 4.1. Let T be a Lukasiewicz tribe on X. Then there is a o-
algebra B C 2% and an order-preserving mapping V: (N,|) — (F(B),D)
such that

2) T ={ac[0,1)X :a is B-measurable and (¥n € N) a~*[S,] € V(n)}.

Proof. We shall prove that T is of the above form for B = C(T') and
V()= {/[Sa]: f €T}, neN.

For all n € N, V(n) is a o-filter in B. Indeed, the preimages f~![S,]
under f € T belong to B. If A € V(n), B € B, and A C B, then there
is an f € T such that f~![S,] = A. We take g = f V xp € T and obtain
g '[Sn] = AUB = B € V(n). For a sequence (4;);eny € V(n)Y, there are
fi € T such that A; = f;'[S,]. We take an r € (1 — 1/2n,1) and the o-
McNaughton function ¢, from (1). The o-McNaughton function s, = ¢,Vxs,
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equals 1 on S,,; at all other points it takes values from [0, 7]\ S,. We define
the function g = A jen(sp o f;) € T. Then ;e Ai = g~ 1[Sa] € V(n).

Let a € T. Each characteristic function xp of a Borel set B C [0, 1] is
o-McNaughton and hence x,-1z) = xpoa € T' Thus a is B-measurable and
we are done.

On the other hand, let a € [0,1]* be a B-measurable function such that
a~1[Sy] € V(n) for all n € N. Then x,-1(,,1; € T for all r € [0,1] and for
each n € N there exists a function f,, € T such that a=1[S,] = £, 1[Sn]. We
shall reconstruct the function a from X,-17.q7, 7 € [0,1], and f,, n € N,
using o-McNaughton functions.

Let C be the least clan containing all f,,, n € N. It is a countable subset
of T'. For each ¢ € [0,1] N Q, we define a function g,: X — [0,1] by

(3) 9q = Xa-1q1) A \/ (cqob) €T.
beC
Let
(4) d= \/ g €T
qe[O,l}mQ

We shall prove that a = d. For each b € C, the function ¢, o b attains only
values from [0, g]; so does the supremum \/,.~(cq 0 b). Therefore g, < a and
also d < a. Suppose that there is an € X such that d(z) < a(z). Assume
first that a(z) ¢ Q. Then, for each n € N, we have z ¢ a~![S,], therefore
x ¢ f.1[Sn]. We have values f,(z), n € N, satisfying f,,(z) ¢ S,. There
is no m € N such that S, contains all these values f, (z). Therefore they
generate an infinite MV-subalgebra which is dense in [0, 1]. The restriction
of the clan C to {z} gives a dense set of values in [0,1]. For any rational
number ¢ € (d(x),a(x)), the set {b(z) : b € C} N (d(z),q] is infinite. We
apply ¢4 to this set. According to Proposition 3.1, there are only finitely
many points at which ¢, attains values outside the interval (d(x), ], so there
is a function b € C such that (¢, 0 b)(z) € (d(z),q]. As ¢ < a(x), with the
use of (3) we obtain

d(r) < (cqob)(z) = Xaq-1{jg17(%) A (cq 0 b)(z) < gq(w).
1

This contradicts (4), hence a(x) cannot be irrational.

Suppose finally that a(x) = i/m, where i,m € N, i < m, and i,m
are relatively prime. Then a(z) € S, iff m|n. Thus f,(x) € S, iff m|n.
If the values f,(z), n € N, are not contained in Si for any k € N, then
they generate an MV-subalgebra dense in [0,1] and we proceed as in the
previous case. In the remaining case, there is the least £k € N such that
{fn(z) : n € N} C Sg. If k is not a multiple of m, then fy(x) ¢ Sy which
is impossible. Thus m | k. Hence i/m € Si. As S is the MV-subalgebra of
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[0,1] generated by {f,(x) : n € N}, there is an element b € C such that
b(x) = i/m. As ¢;p,(i/m) = i/m, we obtain g;/,(v) = i/m = a(x) > d(z),
a contradiction with (4). We proved that d(z) = a(z) for all x € X, therefore
ac€Tl. nu

We may ask which o-algebras and sequences of o-filters give rise to Lu-
kasiewicz tribes. It appears that V preserves not only the ordering, but also
all meets.

THEOREM 4.2. Let B be a o-algebra of subsets of a set X and (V(n))nen
be a sequence of o-ideals in B. Then the following are equivalent:

(i) {a € [0,1)% : a is B-measurable and (¥n € N) a=1[S,] € V(n)} is a
Lukasiewicz tribe,
(i) V: (N,|) = (F(B),D) is a meet semilattice isomorphism.

Proof. As (ii)=(i) follows from Theorem 4.1, we shall prove that (i)=-(ii).
For brevity, let P = {a € [0,1]% : a is B-measurable and (Vn € N) a™'[S,] €
V(n)}. From the definition of P and the ordering of (Sp)nen (by the set-
theoretical inclusion), we see that V preserves the ordering. It remains to
prove that it also preserves all meets.

Let p,g € N, n = p A ¢ (in the divisibility lattice (N,|), i.e., n is the
greatest common divisor of p,q and S, = S, NS;). We shall prove that
V(n) coincides with the meet of V(p) and V(gq) in (F(B),2), i.e., with
the o-filter generated by V(p) U V(g). One inclusion is obvious, because
V(n) 2 V(p) UV(q). For the reverse inclusion, take D € V(n). It is enough
to find g,h € P such that D O g~ ![S,] N h~1[S,]. Due to the definition of
V(n), there is an f € P satisfying D = f~1[S,]. We define o-McNaughton
functions d, = idV xs, and d; =idV xs,. The function s = (d,o f) A(dgo f)
belongs to P and satisfies s~1[S,] = f71[S,] N f1[S,]. It suffices to take
g=dyofand h=dsof. m

The meet semilattice homomorphism V need not be injective and need
not preserve joins:

ExXAMPLE 4.3. Let p, q be two different prime numbers, n =p-q =pVg.
Let X = {z,y}, T = S;X. Then f~![S,] may be empty for some f € T
(e.g., for the constant function 1/q on X), so V(p) = C(T) and analogously
V(q) = C(T). Nevertheless, V(n) = {X} # V(p) vV V(q) = C(T).

REMARK 4.4. A related result has been proved in [2] (see also [12]): Let
n € N and let M be an MV-algebra from the variety generated by S,. We
denote by (N,,,|) the lattice of all divisors of n. Let X be the Stone space
of B(M) and Cl(X) the lattice of all closed subsets of X. Then there is a
meet-semilattice homomorphism h: (N, |) — (Cl(X), D) such that

M = {f e S : fis continuous and f(h(j)) C S; for all j}.
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This theorem embraces also MV-algebras which are not isomorphic to tribes,
but it does not cover all Lukasiewicz tribes.

5. Relation to states. Here we study a many-valued extension of prob-
ability according to [13]. A state (probability measure) on M is a mapping
s: M — [0, 1] such that

1. s(1) =1,
2. ifa®b=0, then s(a ®b) = s(a) + s(b),
3. if (a;)ien is an increasing sequence in M, then s(\/;cy ai) =V, 5(ai)-

As a consequence, s(0) = 0 and s(—a) = 1 — s(a). Every countable convex
combination of states is a state. A state s is called pure if it cannot be
expressed as a nontrivial convex combination of different states, i.e., if s
does not admit the equality

(5) s=MM+(1-Nu

for different states ¢,u and X\ € (0,1). As we required o-additivity, the state
space of M need not be a compact subset of [0,1]™ and it need not have any
pure states. Only the case when M admits many pure states is of importance
in probability.

The restriction of a pure state s on M to B(M) attains only the values 0
and 1. Indeed, if s|B(M) is not two-valued, then there is a b € B(M) such
that s(b) = A € (0,1). Two different states ¢, u defined by

_ s(anbd) ~ s(an—b)
=" "= 5w
satisfy (5), so s is not pure.

We shall characterize all set representations of M. A set H of functionals
on M is called separating if

(Ya,b € M)(a #b= (3h € H) h(a) % h(b)).

PROPOSITION 5.1. Let M be a o-complete MV-algebra and let X be the
space of all o-homomorphisms from M to So.. Then M is isomorphic to
a Lukasiewicz tribe iff X is separating. All set representations of M (as a
Lukasiewicz tribe) are restrictions of the representation on X to separating

subsets of X.

Proof. If M is a tribe, then the restriction to a point of its domain is a o-
homomorphism into So,. The set of all such c-homomorphisms is separating.

Conversely, suppose that X is separating. Then each a € M can be
represented by a function f(a): X — [0,1] = Sy defined by f(a)(h) = h(a).
Apparently, f: M — [0,1]X = SX is an injective c-homomorphism and it is
an isomorphism onto a o-complete MV-subalgebra of the tribe [0, 1]X.

The final statement of the proposition follows directly. m
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Every o-homomorphism into S, is a state, but not all states are -homo-
morphisms. This cannot happen with pure states:

PROPOSITION 5.2. Fach pure state s on a o-complete MV-algebra M 1is
a o-homomorphism from M to S.

Proof. Let X be the Stone space of B(M). The restriction s[B(M) is
a two-valued state on a o-algebra, hence there exists an ideal J € X such
that s(b) = 0 < b € J. It determines a unique maximal ideal Z of M by
ZT={a€e M:(3FbeJ)a < b} (see [3] or [4, Prop. 1.7]) which is the
kernel of a o-homomorphism, hz. We shall prove that hy = s. Then, due to
monotonicity of s and maximality of Z, we infer that Z equals the kernel of s
and the quotient algebra M /7 is a subalgebra of Su.

Suppose that ¢,d € M are such that hz(c) = hz(d). Then there is b € Z
satisfying cVb = dVb. Without loss of generality, we can assume that b € 7.
As s(b) = 0, we obtain s(c) = s((c A =b) @ (c A b)) = s(c¢ A —b) and similarly
s(cVvb) = s(eA—b), s(d) = s(dA—b), and s(dVb) = s(dA—b). All these values
are equal, hence s(c) = s(d). We have proved that, for each ¢ € M, the value
s(c) depends only on hz(c). Thus there exists a function ¢: M/Z — [0, 1]
such that s = pohz. Obviously, ¢ is a state on M/Z, i.e., the identity, hence
hr =s. u

We obtained the following analogue of Proposition 5.1:

COROLLARY 5.3. A o-complete MV-algebra M is isomorphic to a fuka-
siewicz tribe iff there exists a separating set of pure states on M.

The latter condition cannot be replaced by the weaker requirement that
M admits a separating set of states. (E.g., the Borel o-algebra on the real
line factorized over all sets of Lebesgue measure zero admits a separating set
of states, but it has no pure states.)
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