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THE σ-COMPLETE MV-ALGEBRASWHICH HAVE ENOUGH STATESBYANTONIO DI NOLA (Salerno) and MIRKO NAVARA (Praha)Abstra
t. We 
hara
terize �ukasiewi
z tribes, i.e., 
olle
tions of fuzzy sets that are
losed under the standard fuzzy 
omplementation and the �ukasiewi
z t-norm with 
ount-ably many arguments. As a tool, we introdu
e σ-M
Naughton fun
tions as the 
losure ofM
Naughton fun
tions under 
ountable MV-algebrai
 operations. We give a measure-theo-reti
al 
hara
terization of σ-
omplete MV-algebras whi
h are isomorphi
 to �ukasiewi
ztribes.1. Introdu
tion. The MV-algebra approa
h presents one of the mostfruitful theoreti
al ba
kgrounds of many-valued logi
s and a basis of su
-
essful appli
ations in de
ision making, approximations, fuzzy 
ontrol, et
.(see [3, 6℄). In this paper we 
hara
terize the σ-
omplete MV-algebras repre-sented by fun
tions with values in [0, 1] with pointwise operations (�ukasie-wi
z tribes). Our result di�ers from a previous 
hara
terization whi
h saysthat every σ-
omplete MV-algebra 
an be des
ribed as a 
olle
tion of 
on-tinuous [0, 1]-valued fun
tions on the spa
e of all maximal ideals endowedwith the spe
tral topology (see [3℄). To spe
ify the distin
tion, let us tryto draw the analogy with Boolean algebras. Every Boolean algebra 
an beuniquely represented by two-valued (
hara
teristi
) fun
tions on its Stonespa
e (see [14℄). Nevertheless, another set representation may be more use-ful on o

asions. (For an analogy, the Borel σ-algebra on the real line isusually not studied via its Stone spa
e.) Here we give a 
hara
terization of
σ-
omplete MV-algebras by making use of any set representation. However,an additional 
ondition is assumed that the operations 
oin
ide with thepointwise appli
ation of the operations of the standard MV-algebra [0, 1].This spe
ial 
ase seems to be of 
onsiderable importan
e, in parti
ular asa basis of many-valued probability theory [13℄. Besides, every σ-
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MV-algebra 
an be obtained as a σ-homomorphi
 image of a �ukasiewi
ztribe [5, 10℄.It 
an happen that nonisomorphi
 σ-
omplete MV-algebras may be ex-pressed as subdire
t produ
ts of the same family of σ-
omplete MV-algebraseven if they have the same Boolean skeletons. In 
ontrast to this, we present astru
ture that represents a unique �ukasiewi
z tribe. More exa
tly, we provethat there is an underlying σ-algebra and a sequen
e of σ-�lters determiningall elements of the tribe. We also give ne
essary and su�
ient 
onditions forthese stru
tures to 
orrespond to a σ-
omplete MV-algebra.We prove that �ukasiewi
z tribes are exa
tly those σ-
omplete MV-alge-bras whi
h admit separating sets of pure states.As an important tool, we study σ-M
Naughton fun
tions, i.e., the ele-ments of the least �ukasiewi
z tribe 
ontaining all M
Naughton fun
tions.Their role in the study of σ-
omplete MV-algebras is analogous to that ofM
Naughton fun
tions in the theory of MV-algebras; every �ukasiewi
z tribeis 
losed under pointwise appli
ation of all σ-M
Naughton fun
tions.2. Basi
 notions. We refer to [3℄ for basi
 notions on MV-algebras.Unless stated otherwise, M is a σ-
omplete MV-algebra. By N, resp. Q, wedenote the set of natural, resp. rational, numbers.The standard MV-algebra is the real unit interval S∞ = [0, 1] equippedwith the �ukasiewi
z operations x⊕ y = min(1, x + y) and ¬x = 1− x. Theonly σ-
omplete proper MV-subalgebras of S∞ are of the form Sn = {i/n :
i = 0, . . . , n}, n ∈ N. All in�nite MV-subalgebras of S∞ are dense subsetsof [0, 1].Definition 2.1 ([1℄). Let X be a nonempty set. A 
olle
tion T ⊆ [0, 1]Xis 
alled a �ukasiewi
z 
lan if it 
ontains the 
onstant zero fun
tion and is
losed under the pointwise appli
ation of �ukasiewi
z operations ⊕,¬. If,moreover, T is 
losed under pointwise appli
ation of ⊕ to 
ountably manyarguments, then T is 
alled a �ukasiewi
z tribe.As we shall work only with �ukasiewi
z operations here, we shall speakbrie�y of a 
lan and a tribe. Every 
lan, resp. tribe, is an MV-algebra, resp.a σ-
omplete MV-algebra.The Boolean skeleton of M is the Boolean algebra B(M) = {a ∈ M :
a ⊕ a = a} (of all Boolean elements of M). All operations of B(M) agreewith the restri
tions of the 
orresponding operations of M (see [3℄). Booleanelements of a 
lan M are fun
tions whi
h attain only values 0, 1, thus they
oin
ide with those 
hara
teristi
 fun
tions χA (A ⊆ X) whi
h belong to M .An n-ary fun
tion is aM
Naughton fun
tion i� it belongs to the least 
lanof fun
tions [0, 1]n → [0, 1] 
ontaining all proje
tions πi,n: (x1, . . . , xn) 7→
xi, i = 1, . . . , n. Following [9℄, a fun
tion is a M
Naughton fun
tion i� it
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is 
ontinuous, pie
ewise linear, and ea
h pie
e is determined by a linearequation with integer 
oe�
ients.Corollary 2.2. Every �ukasiewi
z 
lan, T , is 
losed under 
ompositionwith all M
Naughton fun
tions, i.e., if a1, . . . , an ∈ T and f : [0, 1]n → [0, 1]is a M
Naughton fun
tion, then the fun
tion f(a1, . . . , an): x 7→ f(a1(x), . . .
. . . , an(x)) is in T .3. σ-
ompletions of M
Naughton fun
tions. In this paper we dealwith the 
lass of fun
tions whi
h is obtained when we 
lose the 
lass ofM
Naughton fun
tions under 
ountable pointwise suprema and �ukasiewi
zoperations. Let us 
all an n-ary fun
tion a σ-M
Naughton fun
tion i� it be-longs to the least tribe of fun
tions [0, 1]n → [0, 1] 
ontaining all proje
tions
πi,n: (x1, . . . , xn) 7→ xi, i = 1, . . . , n. (A similar notion for a di�erent type oftribes was introdu
ed in [11℄.) The tribe of unary σ-M
Naughton fun
tionswas 
hara
terized already in [8℄ without referen
e to MV-algebras. Here wegive an equivalent MV-algebrai
 
hara
terization and its proof simpli�ed bythe use of the M
Naughton theorem. Further, we extend it to n-ary fun
-tions.The only σ-M
Naughton 
onstant fun
tions are 0 and 1. We shall needfun
tions whi
h are �as 
lose to 
onstants as possible�. For ea
h x ∈ [0, 1],let S(x) denote the least σ-
omplete MV-subalgebra of S∞ = [0, 1] su
h that
x ∈ S(x). For ea
h r ∈ [0, 1], we de�ne a fun
tion cr: [0, 1] → [0, r] by

cr(x) = sup([0, r] ∩ S(x)).(1) Proposition 3.1. Let r ∈ [0, 1]. Then the following 
ases may o

ur :
• If x ∈ [0, 1] \ Q, then cr(x) = r.
• If x ∈ [0, 1] ∩ Q, then cr(x) ≤ r, and equality holds i� r ∈ S(x).For ea
h ε > 0, there are only �nitely many points x ∈ [0, 1] su
h that

cr(x) /∈ [r − ε, r].Theorem 3.2. A fun
tion f : [0, 1] → [0, 1] is a σ-M
Naughton fun
tioni� it satis�es the following 
onditions:(σMN0) f is Borel measurable,(σMN1) f(q) ∈ S(q) for all q ∈ [0, 1] ∩ Q.Proof. The 
olle
tion of all fun
tions satisfying (σMN0), (σMN1) is atribe, so it 
ontains all σ-M
Naughton fun
tions. We have to prove thatea
h fun
tion f satisfying (σMN0), (σMN1) is a σ-M
Naughton fun
tion.We �rst prove it for spe
ial forms of f . For ea
h k ∈ N, j ∈ {0, . . . , k − 1},
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we de�ne the M
Naughton fun
tion

sj,k(x) =







0 if x ∈ [0, j/k],

−j + kx if x ∈ (j/k, (j + 1)/k),

1 if x ∈ [(j + 1)/k, 1].For ea
h r = i/n ∈ [0, 1) ∩ Q, the 
hara
teristi
 fun
tion χ(r,1] is a σ-M
Naughton fun
tion, be
ause
χ(r,1] =

∨

p∈N

sip,np.By a standard Boolean 
onstru
tion, we dedu
e that also all 
hara
teristi
fun
tions of Borel subsets of [0, 1] are σ-M
Naughton fun
tions.To prove that a fun
tion cr for r ∈ [0, 1] is a σ-M
Naughton fun
tion,we take the σ-M
Naughton fun
tion tr = id ∧ χ[0,r]. We shall prove that
cr =

∨

g(tr ◦g) , where the (
ountable) supremum is taken over all M
Naugh-ton fun
tions g. Let x ∈ [0, 1]. We shall use Proposition 3.1. If x ∈ Q,it generates a �nite MV-algebra S(x) and there is a M
Naughton fun
tionwhose value at x is cr(x). If x /∈ Q, then there is a sequen
e of M
Naugh-ton fun
tions whose values at x 
onverge to r = cr(x) and it is enough to
ompose them with tr.By a standard argument, all Borel measurable fun
tions are obtained aspointwise suprema of simple fun
tions (i.e., �nitely-valued measurable fun
-tions). All simple fun
tions [0, 1] \Q → [0, 1] are restri
tions of σ-M
Naugh-ton fun
tions. Taking their suprema, we obtain all Borel measurable fun
-tions on [0, 1] \Q as restri
tions of σ-M
Naughton fun
tions. Thus, for ea
hfun
tion f satisfying (σMN0), we may �nd a σ-M
Naughton fun
tion f∗whi
h 
oin
ides with f on [0, 1] \ Q. Using Proposition 3.1 and (σMN1), wesee that the σ-M
Naughton fun
tion
∨

q∈[0,1]∩Q

cf(q) ∧ χ{q}
oin
ides with f on [0, 1]∩Q and vanishes on [0, 1] \Q. Thus we obtain f asa σ-M
Naughton fun
tion
f = (f∗ ∧ χ[0,1]\Q) ∨

∨

q∈[0,1]∩Q

cf(q) ∧ χ{q}.

Theorem 3.3. An n-ary fun
tion f : [0, 1]n → [0, 1] is a σ-M
Naughtonfun
tion i� it satis�es the following 
onditions:(σMN0) f is Borel measurable.(σMNn) Let x1, . . . , xn ∈ [0, 1] ∩ Q. Then f(x1, . . . , xn) ∈ Sk, where
k ∈ N is the least index su
h that {x1, . . . , xn} ⊆ Sk.
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Proof. The proof follows the pattern of Theorem 3.2. The 
hara
teristi
fun
tion of any n-dimensional subinterval of [0, 1]n is σ-M
Naughton, andthis extends to all Borel subsets of [0, 1]. We obtain all measurable fun
tions
[0, 1]n \ Qn → [0, 1] as suprema of simple fun
tions, and the values at the(
ountably many) remaining points are restri
ted only by (σMNn).In analogy to Corollary 2.2, σ-M
Naughton fun
tions play a similar rolewith respe
t to tribes as M
Naughton fun
tions do with respe
t to 
lans:Corollary 3.4. Every �ukasiewi
z tribe T is 
losed under 
ompositionwith all σ-M
Naughton fun
tions, i.e., if a1, . . . , an ∈ T and f : [0, 1]n → [0, 1]is a σ-M
Naughton fun
tion, then f(a1, . . . , an): x 7→ f(a1(x), . . . , an(x)) isin T .We obtained an analyti
al 
hara
terization of σ-M
Naughton fun
tions.From the logi
al point of view, operations with 
ountably many argumentsshould be avoided; if this is not possible, their use should be at least redu
edto the very last step. Thus it is desirable to express any σ-M
Naughton fun
-tion as a supremum (or in�mum) of M
Naughton fun
tions. However, χ{r},
r ∈ [0, 1], 
annot be expressed as suprema of M
Naughton fun
tions. Thereare also σ-M
Naughton fun
tions whi
h are neither suprema nor in�ma ofM
Naughton fun
tions. Thus the σ-
omplete latti
e generated by all n-aryM
Naughton fun
tions is a proper sublatti
e of the σ-
omplete latti
e of all
n-ary σ-M
Naughton fun
tions. (The 
ase of Ma
Neille 
ompletions insteadof σ-
ompletions is 
lari�ed in [7, Th. 6.3, p. 91℄.)4. Chara
terization of �ukasiewi
z tribes and σ-
omplete MV-algebras. We shall refer to the latti
e (N, |), where | is the divisibility rela-tion on N. For a σ-algebra B, we denote by F(B) the set of all its σ-�lters.For a �ukasiewi
z tribe T on X we de�ne C(T ) = {A ⊆ X : χA ∈ T} (whi
his a σ-algebra isomorphi
 to B(T )).Theorem 4.1. Let T be a �ukasiewi
z tribe on X. Then there is a σ-algebra B ⊆ 2X and an order-preserving mapping ∇: (N, |) → (F(B),⊇)su
h that

T = {a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈ ∇(n)}.(2) Proof. We shall prove that T is of the above form for B = C(T ) and
∇(n) = {f−1[Sn] : f ∈ T}, n ∈ N.For all n ∈ N, ∇(n) is a σ-�lter in B. Indeed, the preimages f−1[Sn]under f ∈ T belong to B. If A ∈ ∇(n), B ∈ B, and A ⊆ B, then thereis an f ∈ T su
h that f−1[Sn] = A. We take g = f ∨ χB ∈ T and obtain
g−1[Sn] = A ∪ B = B ∈ ∇(n). For a sequen
e (Ai)i∈N ∈ ∇(n)N, there are
fi ∈ T su
h that Ai = f−1

i [Sn]. We take an r ∈ (1 − 1/2n, 1) and the σ-M
Naughton fun
tion cr from (1). The σ-M
Naughton fun
tion sn = cr∨χSn
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equals 1 on Sn; at all other points it takes values from [0, r] \ Sn. We de�nethe fun
tion g =

∧

i∈N(sn ◦ fi) ∈ T . Then ⋂

i∈N Ai = g−1[Sn] ∈ ∇(n).Let a ∈ T . Ea
h 
hara
teristi
 fun
tion χB of a Borel set B ⊆ [0, 1] is
σ-M
Naughton and hen
e χa−1[B] = χB ◦a ∈ T . Thus a is B-measurable andwe are done.On the other hand, let a ∈ [0, 1]X be a B-measurable fun
tion su
h that
a−1[Sn] ∈ ∇(n) for all n ∈ N. Then χa−1[[r,1]] ∈ T for all r ∈ [0, 1] and forea
h n ∈ N there exists a fun
tion fn ∈ T su
h that a−1[Sn] = f−1

n [Sn]. Weshall re
onstru
t the fun
tion a from χa−1[[r,1]], r ∈ [0, 1], and fn, n ∈ N,using σ-M
Naughton fun
tions.Let C be the least 
lan 
ontaining all fn, n ∈ N. It is a 
ountable subsetof T . For ea
h q ∈ [0, 1] ∩ Q, we de�ne a fun
tion gq: X → [0, 1] by
gq = χa−1[[q,1]] ∧

∨

b∈C

(cq ◦ b) ∈ T.(3)Let
d =

∨

q∈[0,1]∩Q

gq ∈ T.(4)We shall prove that a = d. For ea
h b ∈ C, the fun
tion cq ◦ b attains onlyvalues from [0, q]; so does the supremum ∨

b∈C(cq ◦ b). Therefore gq ≤ a andalso d ≤ a. Suppose that there is an x ∈ X su
h that d(x) < a(x). Assume�rst that a(x) /∈ Q. Then, for ea
h n ∈ N, we have x /∈ a−1[Sn], therefore
x /∈ f−1

n [Sn]. We have values fn(x), n ∈ N, satisfying fn(x) /∈ Sn. Thereis no m ∈ N su
h that Sm 
ontains all these values fn(x). Therefore theygenerate an in�nite MV-subalgebra whi
h is dense in [0, 1]. The restri
tionof the 
lan C to {x} gives a dense set of values in [0, 1]. For any rationalnumber q ∈ (d(x), a(x)), the set {b(x) : b ∈ C} ∩ (d(x), q] is in�nite. Weapply cq to this set. A

ording to Proposition 3.1, there are only �nitelymany points at whi
h cq attains values outside the interval (d(x), q], so thereis a fun
tion b ∈ C su
h that (cq ◦ b)(x) ∈ (d(x), q]. As q < a(x), with theuse of (3) we obtain
d(x) < (cq ◦ b)(x) = χa−1[[q,1]](x)

︸ ︷︷ ︸

1

∧ (cq ◦ b)(x) ≤ gq(x).

This 
ontradi
ts (4), hen
e a(x) 
annot be irrational.Suppose �nally that a(x) = i/m, where i, m ∈ N, i ≤ m, and i, mare relatively prime. Then a(x) ∈ Sn i� m |n. Thus fn(x) ∈ Sn i� m |n.If the values fn(x), n ∈ N, are not 
ontained in Sk for any k ∈ N, thenthey generate an MV-subalgebra dense in [0, 1] and we pro
eed as in theprevious 
ase. In the remaining 
ase, there is the least k ∈ N su
h that
{fn(x) : n ∈ N} ⊆ Sk. If k is not a multiple of m, then fk(x) /∈ Sk whi
his impossible. Thus m | k. Hen
e i/m ∈ Sk. As Sk is the MV-subalgebra of



MV-ALGEBRAS 127

[0, 1] generated by {fn(x) : n ∈ N}, there is an element b ∈ C su
h that
b(x) = i/m. As ci/m(i/m) = i/m, we obtain gi/m(x) = i/m = a(x) > d(x),a 
ontradi
tion with (4). We proved that d(x) = a(x) for all x ∈ X, therefore
a ∈ T .We may ask whi
h σ-algebras and sequen
es of σ-�lters give rise to �u-kasiewi
z tribes. It appears that ∇ preserves not only the ordering, but alsoall meets.Theorem 4.2. Let B be a σ-algebra of subsets of a set X and (∇(n))n∈Nbe a sequen
e of σ-ideals in B. Then the following are equivalent :(i) {a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈ ∇(n)} is a�ukasiewi
z tribe,(ii) ∇: (N, |) → (F(B),⊇) is a meet semilatti
e isomorphism.Proof. As (ii)⇒(i) follows from Theorem 4.1, we shall prove that (i)⇒(ii).For brevity, let P =

{
a ∈ [0, 1]X : a is B-measurable and (∀n ∈ N) a−1[Sn] ∈

∇(n)
}. From the de�nition of P and the ordering of (Sn)n∈N (by the set-theoreti
al in
lusion), we see that ∇ preserves the ordering. It remains toprove that it also preserves all meets.Let p, q ∈ N, n = p ∧ q (in the divisibility latti
e (N, |), i.e., n is thegreatest 
ommon divisor of p, q and Sn = Sp ∩ Sq). We shall prove that

∇(n) 
oin
ides with the meet of ∇(p) and ∇(q) in (F(B),⊇), i.e., withthe σ-�lter generated by ∇(p) ∪ ∇(q). One in
lusion is obvious, be
ause
∇(n) ⊇ ∇(p) ∪∇(q). For the reverse in
lusion, take D ∈ ∇(n). It is enoughto �nd g, h ∈ P su
h that D ⊇ g−1[Sp] ∩ h−1[Sq]. Due to the de�nition of
∇(n), there is an f ∈ P satisfying D = f−1[Sn]. We de�ne σ-M
Naughtonfun
tions dp = id∨χSp

and dq = id∨χSq
. The fun
tion s = (dp ◦f)∧ (dq ◦f)belongs to P and satis�es s−1[Sn] = f−1[Sp] ∩ f−1[Sq]. It su�
es to take

g = dp ◦ f and h = dq ◦ f .The meet semilatti
e homomorphism ∇ need not be inje
tive and neednot preserve joins:Example 4.3. Let p, q be two di�erent prime numbers, n = p · q = p∨q.Let X = {x, y}, T = SX
n . Then f−1[Sp] may be empty for some f ∈ T(e.g., for the 
onstant fun
tion 1/q on X), so ∇(p) = C(T ) and analogously

∇(q) = C(T ). Nevertheless, ∇(n) = {X} 6= ∇(p) ∨∇(q) = C(T ).Remark 4.4. A related result has been proved in [2℄ (see also [12℄): Let
n ∈ N and let M be an MV-algebra from the variety generated by Sn. Wedenote by (Nn, |) the latti
e of all divisors of n. Let X be the Stone spa
eof B(M) and Cl(X) the latti
e of all 
losed subsets of X. Then there is ameet-semilatti
e homomorphism h: (Nn, |) → (Cl(X),⊇) su
h that

M ∼= {f ∈ SX
n : f is 
ontinuous and f(h(j)) ⊆ Sj for all j}.
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This theorem embra
es also MV-algebras whi
h are not isomorphi
 to tribes,but it does not 
over all �ukasiewi
z tribes.5. Relation to states. Here we study a many-valued extension of prob-ability a

ording to [13℄. A state (probability measure) on M is a mapping
s: M → [0, 1] su
h that1. s(1) = 1,2. if a ⊙ b = 0, then s(a ⊕ b) = s(a) + s(b),3. if (ai)i∈N is an in
reasing sequen
e in M, then s(

∨

i∈N ai)=
∨

i∈N s(ai).As a 
onsequen
e, s(0) = 0 and s(¬a) = 1 − s(a). Every 
ountable 
onvex
ombination of states is a state. A state s is 
alled pure if it 
annot beexpressed as a nontrivial 
onvex 
ombination of di�erent states, i.e., if sdoes not admit the equality
s = λt + (1 − λ)u(5)for di�erent states t, u and λ ∈ (0, 1). As we required σ-additivity, the statespa
e of M need not be a 
ompa
t subset of [0, 1]M and it need not have anypure states. Only the 
ase when M admits many pure states is of importan
ein probability.The restri
tion of a pure state s on M to B(M) attains only the values 0and 1. Indeed, if s↾B(M) is not two-valued, then there is a b ∈ B(M) su
hthat s(b) = λ ∈ (0, 1). Two di�erent states t, u de�ned by

t(a) =
s(a ∧ b)

s(b)
, u(a) =

s(a ∧ ¬b)

s(¬b)satisfy (5), so s is not pure.We shall 
hara
terize all set representations of M . A set H of fun
tionalson M is 
alled separating if
(∀a, b ∈ M)(a 6= b ⇒ (∃h ∈ H) h(a) 6= h(b)).Proposition 5.1. Let M be a σ-
omplete MV-algebra and let X be thespa
e of all σ-homomorphisms from M to S∞. Then M is isomorphi
 toa �ukasiewi
z tribe i� X is separating. All set representations of M (as a�ukasiewi
z tribe) are restri
tions of the representation on X to separatingsubsets of X.Proof. If M is a tribe, then the restri
tion to a point of its domain is a σ-homomorphism into S∞. The set of all su
h σ-homomorphisms is separating.Conversely, suppose that X is separating. Then ea
h a ∈ M 
an berepresented by a fun
tion f(a): X → [0, 1] = S∞ de�ned by f(a)(h) = h(a).Apparently, f : M → [0, 1]X = SX

∞ is an inje
tive σ-homomorphism and it isan isomorphism onto a σ-
omplete MV-subalgebra of the tribe [0, 1]X .The �nal statement of the proposition follows dire
tly.
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Every σ-homomorphism into S∞ is a state, but not all states are σ-homo-morphisms. This 
annot happen with pure states:Proposition 5.2. Ea
h pure state s on a σ-
omplete MV-algebra M isa σ-homomorphism from M to S∞.Proof. Let X be the Stone spa
e of B(M). The restri
tion s↾B(M) isa two-valued state on a σ-algebra, hen
e there exists an ideal J ∈ X su
hthat s(b) = 0 ⇔ b ∈ J . It determines a unique maximal ideal I of M by
I = {a ∈ M : (∃b ∈ J ) a ≤ b} (see [3℄ or [4, Prop. 1.7℄) whi
h is thekernel of a σ-homomorphism, hI . We shall prove that hI = s. Then, due tomonotoni
ity of s and maximality of I, we infer that I equals the kernel of sand the quotient algebra M/I is a subalgebra of S∞.Suppose that c, d ∈ M are su
h that hI(c) = hI(d). Then there is b ∈ Isatisfying c∨b = d∨b. Without loss of generality, we 
an assume that b ∈ J .As s(b) = 0, we obtain s(c) = s((c ∧ ¬b)⊕ (c ∧ b)) = s(c ∧ ¬b) and similarly
s(c∨b) = s(c∧¬b), s(d) = s(d∧¬b), and s(d∨b) = s(d∧¬b). All these valuesare equal, hen
e s(c) = s(d). We have proved that, for ea
h c ∈ M , the value
s(c) depends only on hI(c). Thus there exists a fun
tion ϕ: M/I → [0, 1]su
h that s = ϕ◦hI . Obviously, ϕ is a state on M/I, i.e., the identity, hen
e
hI = s.We obtained the following analogue of Proposition 5.1:Corollary 5.3. A σ-
omplete MV-algebra M is isomorphi
 to a �uka-siewi
z tribe i� there exists a separating set of pure states on M .The latter 
ondition 
annot be repla
ed by the weaker requirement that
M admits a separating set of states. (E.g., the Borel σ-algebra on the realline fa
torized over all sets of Lebesgue measure zero admits a separating setof states, but it has no pure states.)A
knowledgements. The authors wish to express their gratitude toDaniele Mundi
i for valuable dis
ussions and suggestions. They also thankthe referee for 
areful reading and 
orre
tions.
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