COLLOQUIUM MATHEMATICUM

NONALIQUOTS AND ROBBINS NUMBERS

BY
WILLIAM D. BANKS (Columbia, MO) and FLORIAN LUCA (Morelia)

Abstract

Let $\varphi(\cdot)$ and $\sigma(\cdot)$ denote the Euler function and the sum of divisors function, respectively. We give a lower bound for the number of $m \leq x$ for which the equation $m=\sigma(n)-n$ has no solution. We also show that the set of positive integers m not of the form $(p-1) / 2-\varphi(p-1)$ for some prime number p has a positive lower asymptotic density.

1. Introduction. Let $\varphi(\cdot)$ denote the Euler function, whose value at the positive integer n is

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

and let $\sigma(\cdot)$ denote the sum of divisors function, whose value at the positive integer n is

$$
\sigma(n)=\sum_{d \mid n} d=\prod_{p^{a} \mid n} \frac{p^{a+1}-1}{p-1}
$$

An integer in the image of the function $f_{a}(n)=\sigma(n)-n$ is called an aliquot number. If m is a positive integer for which the equation $f_{a}(n)=m$ has no solution, then m is said to be nonaliquot. Erdős [1] showed that the collection of nonaliquot numbers has a positive lower asymptotic density, but no numerical lower bound on this density was given. In Theorem 1 (Section 2), we show that the lower bound $\# \mathcal{N}_{a}(x) \geq \frac{1}{48} x(1+o(1))$ holds, where

$$
\mathcal{N}_{a}(x)=\left\{1 \leq m \leq x: m \neq f_{a}(n) \text { for every positive integer } n\right\}
$$

For an odd prime p, let $f_{r}(p)=(p-1) / 2-\varphi(p-1)$. Note that $f_{r}(p)$ counts the number of quadratic nonresidues modulo p which are not primitive roots. At the 2002 Western Number Theory Conference in San Francisco, Neville Robbins asked whether there exist infinitely many positive integers m for

[^0]which $f_{r}(p)=m$ has no solution; let us refer to such integers as Robbins numbers. The existence of infinitely many Robbins numbers has been shown recently by Luca and Walsh [4], who proved that for every odd integer $w \geq 3$, there exist infinitely many integers $\ell \geq 1$ such that $2^{\ell} w$ is a Robbins number. In Theorem 2 (Section 3), we show that the set of Robbins numbers has a positive density; more precisely, if
$$
\mathcal{N}_{r}(x)=\left\{1 \leq m \leq x: m \neq f_{r}(p) \text { for every odd prime } p\right\}
$$
then the lower bound $\# \mathcal{N}_{r}(x) \geq \frac{1}{3} x(1+o(1))$ holds.
Notation. Throughout the paper, the letters p and q are used to denote prime numbers. As usual, $\pi(x)$ denotes the number of primes $p \leq x$, and if $a, b>0$ are coprime integers, $\pi(x ; b, a)$ denotes the number of primes $p \leq x$ such that $p \equiv a(\bmod b)$. For any set \mathcal{A} and real number $x \geq 1$, we denote by $\mathcal{A}(x)$ the set $\mathcal{A} \cap[1, x]$. For a real number $x>0$, we put $\log x=\max \{\ln x, 1\}$, where $\ln x$ is the natural $\operatorname{logarithm,~and~} \log _{2} x=\log (\log x)$. Finally, we use the Vinogradov symbols \ll and \gg, as well as the Landau symbols O and o, with their usual meanings.

Acknowledgements. Most of this work was done during a visit by the second author to the University of Missouri-Columbia; the hospitality and support of this institution are gratefully acknowledged. During the preparation of this paper, W. B. was supported in part by NSF grant DMS-0070628, and F. L. was supported in part by grants SEP-CONACYT 37259-E and 37260-E.

2. Nonaliquots

Theorem 1. The inequality

$$
\# \mathcal{N}_{a}(x) \geq \frac{x}{48}(1+o(1))
$$

holds as $x \rightarrow \infty$.
Proof. Let \mathcal{K} be the set of positive integers $k \equiv 0(\bmod 12)$. Clearly,

$$
\begin{equation*}
\# \mathcal{K}(x)=\frac{x}{12}+O(1) \tag{1}
\end{equation*}
$$

We first determine an upper bound for the cardinality of $\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x)$. Let $k \in\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x)$; then there exists a positive integer n such that

$$
f_{a}(n)=\sigma(n)-n=k
$$

Since $k \in \mathcal{K}$, it follows that

$$
\begin{equation*}
n \equiv \sigma(n)(\bmod 12) \tag{2}
\end{equation*}
$$

Assume first that n is odd. Then $\sigma(n)$ is odd as well, and therefore n is a perfect square. If $n=p^{2}$ for some prime p, then

$$
x \geq k=\sigma\left(p^{2}\right)-p^{2}=p+1
$$

hence, the number of such integers k is at most $\pi(x-1)=o(x)$. On the other hand, if n is not the square of a prime, then n has at least four prime factors (counted with multiplicity). Let p_{1} be the smallest prime dividing n; then $p_{1} \leq n^{1 / 4}$, and therefore

$$
n^{3 / 4} \leq \frac{n}{p_{1}} \leq \sigma(n)-n=k \leq x
$$

hence, $n \leq x^{4 / 3}$. Since n is a perfect square, the number of integers k is at most $x^{2 / 3}=o(x)$ in this case.

The above arguments show that all but $o(x)$ integers $k \in\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x)$ satisfy an equation of the form

$$
f_{a}(n)=\sigma(n)-n=k
$$

for some even positive integer n. For such k, we have

$$
\frac{n}{2} \leq \sigma(n)-n=k \leq x
$$

that is, $n \leq 2 x$. It follows from the work of [2] (see, for example, the discussion on page 196 of [3]) that $12 \mid \sigma(n)$ for all but at most $o(x)$ positive integers $n \leq 2 x$. Hence, using (2), we see that every integer $k \in\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x)$, with at most $o(x)$ exceptions, can be represented in the form $k=f_{a}(n)$ for some $n \equiv 0(\bmod 12)$. For such k, we have

$$
x \geq k=\sigma(n)-n=n\left(\frac{\sigma(n)}{n}-1\right) \geq n\left(\frac{\sigma(12)}{12}-1\right)=\frac{4 n}{3}
$$

therefore $n \leq \frac{3}{4} x$. Since n is a multiple of 12 , it follows that

$$
\#\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x) \leq \frac{x}{16}(1+o(1))
$$

Combining this estimate with (1), we derive that

$$
\begin{aligned}
\# \mathcal{N}_{a}(x) & \geq \#\left(\mathcal{K} \cap \mathcal{N}_{a}\right)(x)=\# \mathcal{K}(x)-\#\left(\mathcal{K} \backslash \mathcal{N}_{a}\right)(x) \\
& \geq\left(\frac{x}{12}-\frac{x}{16}\right)(1+o(1))=\frac{x}{48}(1+o(1))
\end{aligned}
$$

which completes the proof.

3. Robbins numbers

Theorem 2. The inequality

$$
\# \mathcal{N}_{r}(x) \geq \frac{x}{3}(1+o(1))
$$

holds as $x \rightarrow \infty$.

Proof. Let

$$
\begin{aligned}
& \mathcal{M}_{1}=\left\{2^{\alpha} k: k \equiv 3(\bmod 6) \text { and } \alpha \equiv 0(\bmod 2)\right\} \\
& \mathcal{M}_{2}=\left\{2^{\alpha} k: k \equiv 5(\bmod 6) \text { and } \alpha \equiv 1(\bmod 2)\right\}
\end{aligned}
$$

and let \mathcal{M} be the (disjoint) union $\mathcal{M}_{1} \cup \mathcal{M}_{2}$. It is easy to see that

$$
\# \mathcal{M}_{1}(x)=\frac{2 x}{9}(1+o(1)) \quad \text { and } \quad \# \mathcal{M}_{2}(x)=\frac{x}{9}(1+o(1))
$$

as $x \rightarrow \infty$; therefore,

$$
\# \mathcal{M}(x)=\frac{x}{3}(1+o(1))
$$

Hence, it suffices to show that all but $o(x)$ numbers in $\mathcal{M}(x)$ also lie in $\mathcal{N}_{r}(x)$.

Let $m \in \mathcal{M}(x)$, and suppose that $f_{r}(p)=m$ for some odd prime p. If $m=2^{\alpha} k$ and $p-1=2^{\beta} w$, where k and w are positive and odd, then

$$
2^{\beta-1}(w-\varphi(w))=\frac{p-1}{2}-\varphi(p-1)=f_{r}(p)=m=2^{\alpha} k
$$

If $w=1$, then $w-\varphi(w)=0$, and thus $m=0$, which is not possible. Hence, $w \geq 3$, which implies that $\varphi(w)$ is even, and $w-\varphi(w)$ is odd. We conclude that $\beta=\alpha+1$ and $w-\varphi(w)=k$.

Let us first treat the case that $q^{2} \mid w$ for some odd prime q. In this case, we have

$$
k=w-\varphi(w) \geq \frac{w}{q}
$$

and therefore $w \leq q k \leq q m \leq q x$. Since $q^{2} \mid w$ and $w \mid(p-1)$, it follows that $p \equiv 1\left(\bmod q^{2}\right)$. Note that $q^{2} \leq w \leq q x$; hence, $q \leq x$. Since

$$
p=2^{\alpha+1} w+1 \leq 2^{\alpha+1} q k+1=2 q m+1 \leq 3 q x
$$

the number of such primes p is at most $\pi\left(3 q x ; q^{2}, 1\right)$. Put $y=\exp (\sqrt{\log x})$. If $q<x / y$, we use the well known result of Montgomery and Vaughan [5] to derive that

$$
\pi\left(3 q x ; q^{2}, 1\right) \leq \frac{6 q x}{\varphi\left(q^{2}\right) \log (3 x / q)}<\frac{6 x}{(q-1) \log y}<\frac{9 x}{q \sqrt{\log x}}
$$

(in the last step, we used the fact that $q \geq 3$), while for $q \geq x / y$, we have the trivial estimate

$$
\pi\left(3 q x ; q^{2}, 1\right) \leq \frac{3 q x}{q^{2}}=\frac{3 x}{q}
$$

Summing over q, we see that the total number of possibilities for the prime p is at most

$$
\frac{9 x}{\sqrt{\log x}} \sum_{q<x / y} \frac{1}{q}+3 x \sum_{x / y \leq q \leq x} \frac{1}{q}
$$

Since

$$
\sum_{q<x / y} \frac{1}{q} \ll \log _{2}(x / y) \leq \log _{2} x
$$

and

$$
\begin{aligned}
\sum_{x / y \leq q \leq x} \frac{1}{q} & =\log _{2} x-\log _{2}(x / y)+O\left(\frac{1}{\log x}\right) \\
& =\log \left(1+\frac{\log y}{\log x-\log y}\right)+O\left(\frac{1}{\log x}\right) \ll \frac{1}{\sqrt{\log x}}
\end{aligned}
$$

the number of possibilities for p (hence, also for $m=f_{r}(p)$) is at most

$$
O\left(\frac{x \log _{2} x}{\sqrt{\log x}}\right)=o(x)
$$

Thus, for the remainder of the proof, we can assume that w is squarefree.
We claim that $3 \mid w$. Indeed, suppose that this is not the case. As w is squarefree and coprime to 3 , it follows that $\varphi(w) \not \equiv 2(\bmod 3)$ (if $q \mid w$ for some prime $q \equiv 1(\bmod 3)$, then $3|(q-1)| \varphi(w)$; otherwise $q \equiv 2(\bmod 3)$ for all $q \mid w$; hence, $\left.\varphi(w)=\prod_{q \mid w}(q-1) \equiv 1(\bmod 3)\right)$. In the case that $m \in \mathcal{M}_{1}$, we have $p=2^{\alpha+1} w+1 \equiv 2 w+1(\bmod 3)$, thus $w \not \equiv 1(\bmod 3)$ (otherwise, $p=3$ and $m=0)$; then $w \equiv 2(\bmod 3)$. However, since $\varphi(w) \not \equiv 2$ $(\bmod 3)$, it follows that 3 cannot divide $k=w-\varphi(w)$, which contradicts the fact that $k \equiv 3(\bmod 6)$. Similarly, in the case that $m \in \mathcal{M}_{2}$, we have $p=2^{\alpha+1} w+1 \equiv w+1(\bmod 3)$, thus $w \not \equiv 2(\bmod 3) ;$ then $w \equiv 1(\bmod 3)$. However, since $\varphi(w) \not \equiv 2(\bmod 3)$, it follows that $k=w-\varphi(w) \equiv 0$ or 1 $(\bmod 3)$, which contradicts the fact that $k \equiv 5(\bmod 6)$. These contradictions establish our claim that $3 \mid w$.

From the preceding result, we have

$$
k=w-\varphi(w) \geq \frac{w}{3},
$$

which implies that $p=2^{\alpha+1} w+1=2^{\alpha+1} \cdot 3 k+1 \leq 6 m+1 \leq 7 x$. As $\pi(7 x) \ll x / \log x$, the number of integers $m \in \mathcal{M}(x)$ such that $m=f_{r}(p)$ for some prime p of this form is at most $o(x)$, and this completes the proof. -

REFERENCES

[1] P. Erdős, Über die Zahlen der Form $\sigma(n)-n$ und $n-\varphi(n)$, Elem. Math. 28 (1973), 83-86.
[2] -, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976), 641-645.
[3] P. Erdős, A. Granville, C. Pomerance and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in: Analytic Number Theory, Proc. Conf. in Honor of P. T. Bateman, Birkhäuser, Boston, 1990, 165-204.
[4] F. Luca and P. G. Walsh, On the number of nonquadratic residues which are not primitive roots, Colloq. Math. 100 (2004), 91-93.
[5] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.

Department of Mathematics
Instituto de Matemáticas
University of Missouri
Columbia, MO 65211, U.S.A.
E-mail: bbanks@math.missouri.edu
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México

E-mail: fluca@matmor.unam.mx

[^0]: 2000 Mathematics Subject Classification: Primary 11A25; Secondary 11A41, 11N64.
 Key words and phrases: Euler function, sum of divisors, aliquot number, Robbins number.

