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NONALIQUOTS AND ROBBINS NUMBERS

BY

WILLIAM D. BANKS (Columbia, MO) and FLORIAN LUCA (Morelia)

Abstract. Let ϕ(·) and σ(·) denote the Euler function and the sum of divisors func-
tion, respectively. We give a lower bound for the number of m ≤ x for which the equation
m = σ(n) − n has no solution. We also show that the set of positive integers m not of
the form (p − 1)/2 − ϕ(p − 1) for some prime number p has a positive lower asymptotic
density.

1. Introduction. Let ϕ(·) denote the Euler function, whose value at
the positive integer n is

ϕ(n) = n
∏

p|n

(

1 − 1

p

)

,

and let σ(·) denote the sum of divisors function, whose value at the positive
integer n is

σ(n) =
∑

d|n

d =
∏

pa|n

pa+1 − 1

p − 1
.

An integer in the image of the function fa(n) = σ(n)−n is called an aliquot

number . If m is a positive integer for which the equation fa(n) = m has
no solution, then m is said to be nonaliquot . Erdős [1] showed that the
collection of nonaliquot numbers has a positive lower asymptotic density,
but no numerical lower bound on this density was given. In Theorem 1
(Section 2), we show that the lower bound #Na(x) ≥ 1

48
x (1 + o(1)) holds,

where

Na(x) = {1 ≤ m ≤ x : m 6= fa(n) for every positive integer n}.
For an odd prime p, let fr(p) = (p−1)/2−ϕ(p−1). Note that fr(p) counts

the number of quadratic nonresidues modulo p which are not primitive roots.
At the 2002 Western Number Theory Conference in San Francisco, Neville
Robbins asked whether there exist infinitely many positive integers m for
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which fr(p) = m has no solution; let us refer to such integers as Robbins

numbers. The existence of infinitely many Robbins numbers has been shown
recently by Luca and Walsh [4], who proved that for every odd integer w ≥ 3,
there exist infinitely many integers ℓ ≥ 1 such that 2ℓw is a Robbins number.
In Theorem 2 (Section 3), we show that the set of Robbins numbers has a
positive density; more precisely, if

Nr(x) = {1 ≤ m ≤ x : m 6= fr(p) for every odd prime p},
then the lower bound #Nr(x) ≥ 1

3
x (1 + o(1)) holds.

Notation. Throughout the paper, the letters p and q are used to denote
prime numbers. As usual, π(x) denotes the number of primes p ≤ x, and if
a, b > 0 are coprime integers, π(x; b, a) denotes the number of primes p ≤ x
such that p ≡ a (mod b). For any set A and real number x ≥ 1, we denote by
A(x) the set A∩[1, x]. For a real number x > 0, we put log x = max{lnx, 1},
where lnx is the natural logarithm, and log2 x = log(log x). Finally, we use
the Vinogradov symbols ≪ and ≫, as well as the Landau symbols O and o,
with their usual meanings.
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37260-E.

2. Nonaliquots

Theorem 1. The inequality

#Na(x) ≥ x

48
(1 + o(1))

holds as x → ∞.

Proof. Let K be the set of positive integers k ≡ 0 (mod12). Clearly,

(1) #K(x) =
x

12
+ O(1).

We first determine an upper bound for the cardinality of (K \ Na)(x).
Let k ∈ (K \ Na)(x); then there exists a positive integer n such that

fa(n) = σ(n) − n = k.

Since k ∈ K, it follows that

(2) n ≡ σ(n) (mod12).
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Assume first that n is odd. Then σ(n) is odd as well, and therefore n is
a perfect square. If n = p2 for some prime p, then

x ≥ k = σ(p2) − p2 = p + 1;

hence, the number of such integers k is at most π(x − 1) = o(x). On the
other hand, if n is not the square of a prime, then n has at least four prime
factors (counted with multiplicity). Let p1 be the smallest prime dividing n;
then p1 ≤ n1/4, and therefore

n3/4 ≤ n

p1

≤ σ(n) − n = k ≤ x;

hence, n ≤ x4/3. Since n is a perfect square, the number of integers k is at
most x2/3 = o(x) in this case.

The above arguments show that all but o(x) integers k ∈ (K \ Na)(x)
satisfy an equation of the form

fa(n) = σ(n) − n = k

for some even positive integer n. For such k, we have
n

2
≤ σ(n) − n = k ≤ x;

that is, n ≤ 2x. It follows from the work of [2] (see, for example, the dis-
cussion on page 196 of [3]) that 12 |σ(n) for all but at most o(x) positive
integers n ≤ 2x. Hence, using (2), we see that every integer k ∈ (K\Na)(x),
with at most o(x) exceptions, can be represented in the form k = fa(n) for
some n ≡ 0 (mod12). For such k, we have

x ≥ k = σ(n) − n = n

(

σ(n)

n
− 1

)

≥ n

(

σ(12)

12
− 1

)

=
4n

3
,

therefore n ≤ 3

4
x. Since n is a multiple of 12, it follows that

#(K \ Na)(x) ≤ x

16
(1 + o(1)).

Combining this estimate with (1), we derive that

#Na(x) ≥ #(K ∩Na)(x) = #K(x) − #(K \ Na)(x)

≥
(

x

12
− x

16

)

(1 + o(1)) =
x

48
(1 + o(1)),

which completes the proof.

3. Robbins numbers

Theorem 2. The inequality

#Nr(x) ≥ x

3
(1 + o(1))

holds as x → ∞.
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Proof. Let

M1 = {2αk : k ≡ 3 (mod6) and α ≡ 0 (mod2)},
M2 = {2αk : k ≡ 5 (mod6) and α ≡ 1 (mod2)},

and let M be the (disjoint) union M1 ∪M2. It is easy to see that

#M1(x) =
2x

9
(1 + o(1)) and #M2(x) =

x

9
(1 + o(1))

as x → ∞; therefore,

#M(x) =
x

3
(1 + o(1)).

Hence, it suffices to show that all but o(x) numbers in M(x) also lie in
Nr(x).

Let m ∈ M(x), and suppose that fr(p) = m for some odd prime p. If
m = 2αk and p − 1 = 2βw, where k and w are positive and odd, then

2β−1(w − ϕ(w)) =
p − 1

2
− ϕ(p − 1) = fr(p) = m = 2αk.

If w = 1, then w −ϕ(w) = 0, and thus m = 0, which is not possible. Hence,
w ≥ 3, which implies that ϕ(w) is even, and w − ϕ(w) is odd. We conclude
that β = α + 1 and w − ϕ(w) = k.

Let us first treat the case that q2 |w for some odd prime q. In this case,
we have

k = w − ϕ(w) ≥ w

q
,

and therefore w ≤ qk ≤ qm ≤ qx. Since q2 |w and w | (p− 1), it follows that
p ≡ 1 (mod q2). Note that q2 ≤ w ≤ qx; hence, q ≤ x. Since

p = 2α+1w + 1 ≤ 2α+1qk + 1 = 2qm + 1 ≤ 3qx,

the number of such primes p is at most π(3qx; q2, 1). Put y = exp(
√

log x ).
If q < x/y, we use the well known result of Montgomery and Vaughan [5]
to derive that

π(3qx; q2, 1) ≤ 6qx

ϕ(q2) log(3x/q)
<

6x

(q − 1) log y
<

9x

q
√

log x

(in the last step, we used the fact that q ≥ 3), while for q ≥ x/y, we have
the trivial estimate

π(3qx; q2, 1) ≤ 3qx

q2
=

3x

q
.

Summing over q, we see that the total number of possibilities for the prime p
is at most

9x√
log x

∑

q<x/y

1

q
+ 3x

∑

x/y≤q≤x

1

q
.
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Since
∑

q<x/y

1

q
≪ log2(x/y) ≤ log2 x,

and
∑

x/y≤q≤x

1

q
= log2 x − log2(x/y) + O

(

1

log x

)

= log

(

1 +
log y

log x − log y

)

+ O

(

1

log x

)

≪ 1√
log x

,

the number of possibilities for p (hence, also for m = fr(p)) is at most

O

(

x log2 x√
log x

)

= o(x).

Thus, for the remainder of the proof, we can assume that w is squarefree.

We claim that 3 |w. Indeed, suppose that this is not the case. As w is
squarefree and coprime to 3, it follows that ϕ(w) 6≡ 2 (mod3) (if q |w for
some prime q ≡ 1 (mod3), then 3 | (q − 1) |ϕ(w); otherwise q ≡ 2 (mod3)
for all q |w; hence, ϕ(w) =

∏

q|w(q − 1) ≡ 1 (mod3)). In the case that

m ∈ M1, we have p = 2α+1w + 1 ≡ 2w + 1 (mod3), thus w 6≡ 1 (mod3)
(otherwise, p = 3 and m = 0); then w ≡ 2 (mod3). However, since ϕ(w) 6≡ 2
(mod3), it follows that 3 cannot divide k = w − ϕ(w), which contradicts
the fact that k ≡ 3 (mod6). Similarly, in the case that m ∈ M2, we have
p = 2α+1w + 1 ≡ w + 1 (mod3), thus w 6≡ 2 (mod3); then w ≡ 1 (mod3).
However, since ϕ(w) 6≡ 2 (mod3), it follows that k = w − ϕ(w) ≡ 0 or 1
(mod3), which contradicts the fact that k ≡ 5 (mod6). These contradictions
establish our claim that 3 |w.

From the preceding result, we have

k = w − ϕ(w) ≥ w

3
,

which implies that p = 2α+1w + 1 = 2α+1 · 3k + 1 ≤ 6m + 1 ≤ 7x. As
π(7x) ≪ x/log x, the number of integers m ∈ M(x) such that m = fr(p) for
some prime p of this form is at most o(x), and this completes the proof.
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