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KOSZUL DUALITY FOR N -KOSZUL ALGEBRAS

BY

ROBERTO MARTÍNEZ-VILLA (Morelia) and MANUEL SAORÍN (Murcia)

Abstract. The correspondence between the category of modules over a graded al-
gebra and the category of graded modules over its Yoneda algebra was studied in [8] by
means of A∞ algebras; this relation is very well understood for Koszul algebras (see for
example [5], [6]). It is of interest to look for cases such that there exists a duality gener-
alizing the Koszul situation. In this paper we will study N -Koszul algebras [1], [7], [9] for
which such a duality exists.

Dualities for N-Koszul algebras. In [10], we studied a generalization
of Yoshino’s results [12] concerning the relation between the exterior algebra
and the polynomial algebra, very close in line with the famous paper by
Bernstein–Gelfand–Gelfand [2]–[4].

It was proved there that for Koszul algebras there exists a duality be-
tween graded modules and linear complexes of projective modules over the
Yoneda algebra which restricts to a duality between Koszul modules and
complexes (P •, d•) of finitely generated projective modules over the Yoneda
algebra such that P j = 0 for j < 0 and Hj(P •) = 0 for j 6= 0. The aim
of this paper is generalize this theorem to a particular class of N -Koszul
algebras.

We will start by recalling some definitions and results from [1], [7], [9].

Definition 1. Let Λ = KQ/I be a graded factor of a path algebra.
Let N be a positive integer and δ : Z → Z the function δ(2k) = kN and
δ(2k + 1) = kN + 1. We say that a finitely generated graded module M is
N -Koszul if it has a graded projective resolution → P j → P j−1 → · · · →
P 1 → P 0 → M → 0 such that each P (j) is finitely generated with generators
in degree δ(j). If all graded simple modules with support in degree zero are
N -Koszul, then we say that Λ is N -Koszul.

Definition 2. A graded factor Λ = KQ/I of a path algebra is N -ho-
mogeneous if the ideal I is generated by homogeneous elements of degree N.
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N -Koszul algebras are a natural generalization of Koszul algebras. In-
deed, 2-Koszul algebras are just the Koszul algebras. As in the Koszul sit-
uation, if Λ = KQ/I is N -Koszul, then it is N -homogeneous and we may
consider its homogeneous dual algebra Λ! = KQop/〈I⊥N 〉, where 〈I⊥N 〉 is the
orthogonal ideal constructed in a way similar to the quadratic case. There
will be some differences from the classical situation:

(a) The algebra Λ! = KQop/〈I⊥N 〉 will not in general be N -Koszul.

(b) Λ! is not isomorphic to the Yoneda algebra for N > 2.

For (a) it is very easy to give examples such that Λ! is N -Koszul and
examples where it is not [9].

For (b) we have the following result:

Theorem 1 ([7]). Let Λ = KQ/I be an N -Koszul algebra with N ≥ 2,
and Λ! = KQop/〈I⊥N 〉 its homogeneous dual algebra. Then the Yoneda algebra

Γ =
⊕

k≥0 Extk
Λ(Λ0, Λ0) is isomorphic as a graded algebra to the algebra

B =
⊕

j≥0 Bj defined in the following way : Bn = Λ!
δ(n) as vector spaces,

and multiplication in B is defined as follows: if x ∈ Bn and y ∈ Bm, then

x · y = 0 if both m and n are odd , and x · y is the product in Λ! if either n
or m is even.

In this paper we will consider N -Koszul algebras Λ = KQ/I such that
Λ! is N -Koszul. We will see that under mild restrictions on such algebras,
there exists a natural generalization of Koszul duality.

We will need the following:

Lemma 1. Let Λ be any ring. Consider the following commutative dia-

gram of Λ-modules of finite length:

(1)

0

↓

0 → An,n

↓ ↓

0 → An−1,n−1 → An−1,n → 0

↓ ↓

0
...

...

↓ ↓ ↓

0 → A3,3 → · · · → A3,n−1 → A3,n → 0

↓ ↓ ↓ ↓

0 → A2,2 → A2,3 → · · · → A2,n−1 → A2,n → 0

↓ ↓ ↓ ↓ ↓

0 → A1,1 → A1,2 → A1,3 → · · · → A1,n−1 → A1,n → 0

↓ ↓ ↓ ↓

0 0 0 0
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such that :

(i) All columns are exact.

(ii) The row 0 → A1,1 → A1,2 → · · · → A1,n−1 → A1,n → 0 is a

complex.

(iii) All other rows are exact.

(iv) 0 → A1,1 → A1,2 is exact.

(v) A1,1
∼= An,n.

Then

0 → A1,1 → A1,2 → A1,3 → · · · → A1,n−1 → A1,n → 0

is also exact.

Proof. By induction on n. For n = 1 or n = 2 there is nothing to prove.
Consider the diagram

0

↓

0 → A3,3

↓ ↓

0 → A2,2 → A2,3 → 0

↓ ↓ ↓

0 → A1,1 → A1,2 → A1,3 → 0

↓ ↓

0 0

with exact columns, 0 → A1,1 → A1,2 exact and A1,1
∼= A3,3. Then we have

the following commutative diagram:

0 0 0

ց ↓ ↓

A1,1 99K C → A3,3 → 0

ց ↓ ↓

0 → A2,2 → A2,3 → 0

↓ ↓

0 → A1,3
1
→ A1,3 → 0

↓ ↓

0 0

where C is the kernel of A2,2 → A1,3. Hence C ∼= A3,3 and the induced map
A1,1 → C is a monomorphism. It follows, by a length argument, that the
map is an isomorphism. Therefore 0 → A1,1 → A1,2 → A1,3 → 0 is exact.

Now assume the result is true for all diagrams of size n − 1 × n − 1. We
have the following commutative diagram:
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(2)

0 0 0 0 0

↓ ↓ ↓ ↓ ↓

0 → A1,1 → C2,3 → C2,4 → · · · → C2,n−1 → C2,n → 0

↓ ↓ ↓ ↓ ↓

0 → A2,2 → A2,3 → A2,3 → · · · → A2,n−1 → A2,n → 0

↓ ↓ ↓ ↓ ↓

0 → C → A1,3 → A1,4 → · · · → A1,n−1 → A1,n → 0

↓ ↓ ↓ ↓ ↓

0 0 0 0 0

where C2,j is the kernel of A2,j → A1,j for j ≥ 3 and C is the cokernel of
0 → A1,1 → A2,2.

We have an induced commutative diagram

(3)

0

↓

0 → An,n

↓ ↓

0 → An−1,n−1 → An−1,n → 0

↓ ↓

0
...

...

↓ ↓ ↓

0 → A4,4 → · · · → A4,n−1 → A4,n → 0

↓ ↓ ↓ ↓

0 → A3,3 → A3,4 → · · · → A3,n−1 → A3,n → 0

↓ ↓ ↓ ↓ ↓

0 → A1,1 → C2,3 → C2,4 → · · · → C2,n−1 → C2,n → 0

↓ ↓ ↓ ↓

0 0 0 0

which is a diagram of size n − 1 × n − 1 satisfying the conditions of the
lemma, hence, by the induction hypothesis, the row 0 → A1,1 → C2,3 →
C2,4 → · · · → C2,n−1 → C2,n → 0 is exact.

It follows that the diagram (2) is an exact sequence of complexes such
that two of them are exact. Then, by the long homology sequence, the third
one, 0 → C → A1,3 → · · · → A1,n−1 → A1,n → 0, is also exact, as claimed.

Corollary 1. Assume we have a commutative diagram (1) as in Lem-

ma 1 such that :

(i) All columns are exact.

(ii) 0 → A2,2 → A2,3 → · · · → A2,n−1 → A2,n → 0 is a complex and the

remaining rows are exact.
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(iii) A1,1
∼= An,n.

(iv) 0 → A2,2 → A2,3 is exact.

Then 0 → A2,2 → A2,3 → · · · → A2,n−1 → A2,n → 0 is exact.

Proof. As in the proof of the lemma, we have a commutative diagram (2)
and a diagram of type (3). Hence, by the lemma the sequence 0 → A1,1 →
C2,3 → C2,4 → · · · → C2,n−1 → C2,n → 0 is exact and in the diagram (2)
we have an exact sequence of complexes and two of them are acyclic. Then,
by the long homology sequence, the middle complex 0 → A2,2 → A2,3 →
A2,4 → · · · → A2,n−1 → A2,n → 0 is exact.

Given a graded quiver algebra Λ = KQ/I =
⊕

j≥0 Λj , a finitely gen-

erated graded projective Λ-module P is isomorphic to
⊕m

s=1(
⊕

j≥0 Λj)eks

where the eks
denote, not necessarily distinct, primitive idempotents of Λ.

Hence

P ∼=
m
⊕

s=1

(

⊕

j≥0
Λjeks

)

∼=
⊕

j≥0

( m
⊕

s=1
Λj ⊗

Λ0

Λ0eks

)

∼=
⊕

j≥0
Λj ⊗

Λ0

( m
⊕

s=1
Λ0eks

)

.

Consider the right Λ0-module V =
⊕m

s=1 eks
Λ0. Then P ∼= Λ ⊗Λ0

V ∗,
with V ∗ = HomΛ0

(V, Λ0).
Given a graded Λ-module M, the module M [n] is defined by M [n]j =

Mn+j .
The following proposition is a consequence of [9]; we give the proof for

completeness.

Proposition 1. Let Λ = KQ/I be an N -Koszul algebra with N ≥ 2,
and Λ! its homogeneous dual algebra. Then we have exact sequences

→ Λ ⊗ (Λ!
3N )∗[−3N ] → Λ ⊗ (Λ!

2N+1)
∗[−(2N + 1)] → Λ ⊗ (Λ!

2N )∗[−2N ]

→ Λ ⊗ (Λ!
N+1)

∗[−(N + 1)] → Λ ⊗ (Λ!
N )∗[−N ]

→ Λ ⊗ (Λ!
1)

∗[−1] → Λ ⊗ (Λ!
0)

∗[0] → Λ0 → 0

and

→ (Λ!
3N )∗ ⊗ Λ [−3N ] → (Λ!

2N+1)
∗ ⊗ Λ[−(2N + 1)] → (Λ!

2N )∗ ⊗ Λ[−2N ]

→ (Λ!
N+1)

∗ ⊗ Λ[−(N + 1)] → (Λ!
N )∗ ⊗ Λ[−N ] → (Λ!

1)
∗ ⊗ Λ[−1]

→ (Λ!
0)

∗ ⊗ Λ[0] → Λ0 → 0.

Here for a right Λ0-module V, V ∗ = HomΛ0
(V, Λ0).

Proof. By hypothesis, there exists a minimal graded projective resolution
of the Λ-module Λ0:

→ Λ ⊗ (V4)
∗[−2N ] → Λ ⊗ (V3)

∗[−(N + 1)] → Λ ⊗ (V2)
∗[−N ]

→ Λ ⊗ (V1)
∗[−1] → Λ ⊗ (V0)

∗[0] → Λ0 → 0.
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Hence

Extn
Λ(Λ0, Λ0) ∼= HomΛ(Λ ⊗ (Vn)∗, Λ0) ∼= HomΛ(Λ, (Vn)∗∗) ∼= (Vn)∗∗ ∼= Vn.

It was proved in [1] and [7] that Λ!
δ(n)

∼= ExtnΛ(Λ0, Λ0), so the exactness of

the first sequence follows. The exactness of the second sequence follows by
using right modules and the fact proved in [1], [7] that the opposite algebra
of an N -Koszul algebra is N -Koszul.

Omitting arrows and looking at proper degrees, we can display the left
resolution of Λ0 in a matrix as follows:

Λ0

Λ0 ⊗ (Λ!
1)

∗

Λ1

Λ1 ⊗ (Λ!
1)

∗

Λ2

...

ΛN−2 ⊗ (Λ!
1)

∗

ΛN−1

Λ0 ⊗ (Λ!
N)∗ ΛN−1 ⊗ (Λ!

1)
∗

ΛN

Λ0 ⊗ (Λ!
N+1)

∗

Λ1 ⊗ (Λ!
N)∗ ΛN ⊗ (Λ!

1)
∗

ΛN+1

Λ1 ⊗ (Λ!
N+1)

∗

Λ2 ⊗ (Λ!
N)∗ ΛN+1 ⊗ (Λ!

1)
∗

ΛN+2

...

ΛN−2 ⊗ (Λ!
N+1)

∗

ΛN−1 ⊗ (Λ!
N )∗ Λ2N−2 ⊗ (Λ!

1)
∗

Λ2N−1

Λ0 ⊗ (Λ!
2N )∗ ΛN−1 ⊗ (Λ!

N+1)
∗

ΛN ⊗ (Λ!
N )∗ Λ2N−1 ⊗ (Λ!

1)
∗

Λ2N

· · · · · · · · · · · · Λ2N+1

Hence we get exact sequences of Λ0-modules

0 → (Λ!
kN )∗ → ΛN−1 ⊗ (Λ!

(k−1)N+1)
∗ → · · · → Λ(k−1)N−1 ⊗ (Λ!

N+1)
∗

→ Λ(k−1)N ⊗ (Λ!
N )∗ → ΛkN−1 ⊗ (Λ!

1)
∗ → ΛkN → 0

and

0 → (Λ!
kN+1)

∗ → Λ1 ⊗ (Λ!
kN )∗ → ΛN ⊗ (Λ!

(k−1)N+1)
∗ → · · ·

→ Λ(k−1)N ⊗ (Λ!
N+1)

∗ → Λ(k−1)N+1 ⊗ (Λ!
N )∗ → ΛkN ⊗ (Λ!

1)
∗ → ΛkN+1 → 0.

Using the fact that Λop is N -Koszul we obtain exact sequences

0 → (Λ!
kN )∗ → (Λ!

(k−1)N+1)
∗ ⊗ ΛN−1 → · · · → (Λ!

N+1)
∗ ⊗ Λ(k−1)N−1

→ (Λ!
N )∗ ⊗ Λ(k−1)N → (Λ!

1)
∗ ⊗ ΛkN−1 → ΛkN → 0,

0 → (Λ!
kN+1)

∗ → (Λ!
kN )∗ ⊗ Λ1 → (Λ!

(k−1)N+1)
∗ ⊗ ΛN → · · ·

→ (Λ!
N+1)

∗⊗Λ(k−1)N → (Λ!
N )∗⊗Λ(k−1)N+1 → (Λ!

1)
∗⊗ΛkN → ΛkN+1 → 0.

Dualizing the previous sequences, we obtain exact sequences
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0 → (ΛkN )∗ → Λ!
1 ⊗ (ΛkN−1)

∗ → · · · → Λ!
(k−1)N ⊗ (ΛN )∗

→ Λ!
(k−1)N+1 ⊗ (ΛN−1)

∗ → Λ!
kN → 0,

0 → (ΛkN+1)
∗ → Λ!

1 ⊗ (ΛkN )∗ → · · · → Λ!
(k−1)N+1 ⊗ (ΛN )∗

→ Λ!
kN ⊗ (Λ1)

∗ → Λ!
kN+1 → 0,

and the corresponding exact sequences

0 → (ΛkN )∗ → (ΛkN−1)
∗ ⊗ Λ!

1 → · · · → (ΛN )∗ ⊗ Λ!
(k−1)N

→ (ΛN−1)
∗ ⊗ Λ!

(k−1)N+1 → Λ!
kN → 0,

0 → (ΛkN+1)
∗ → (ΛkN )∗ ⊗ Λ!

1 → · · · → (ΛN )∗ ⊗ Λ!
(k−1)N+1

→ (Λ1)
∗ ⊗ Λ!

kN → Λ!
kN+1 → 0.

If we now assume that Λ! is also N -Koszul, then interchanging the roles
of Λ and Λ! we get the corresponding exact sequences for ΛkN and ΛkN+1.
We now prove the following by induction on k.

Proposition 2. Assume that Λ = KQ/I and Λ! are N -Koszul with

N ≥ 2 and that the quiver Q is connected and has no sources. Then for any

k ≥ 2, there exist exact sequences

0 → (ΛkN−1)
∗ → Λ!

N−1 ⊗ (Λ(k−1)N )∗ → · · · → Λ!
(k−2)N ⊗ (Λ2N−1)

∗

→ Λ!
(k−1)N−1 ⊗ (ΛN )∗ → Λ!

(k−1)N ⊗ (ΛN−1)
∗ → Λ!

kN−1 → 0.

Proof. If k = 2, then we have a commutative diagram of the form

0

↓

0 → A5,5

↓ ↓

0 → A4,4 → A4,5 → 0

↓ ↓ ↓

0 → A3,3 → A3,4 → A3,5 → 0

↓ ↓ ↓ ↓

0 → A2,2 → A2,3 → A2,4 → A2,5 → 0

↓ ↓ ↓ ↓ ↓

0 → A1,1 → A1,2 → A1,3 → A1,4 → A1,5 → 0

↓ ↓ ↓ ↓

0 0 0 0

with entries:
A5,5 = A1,1 = (Λ2N )∗, A4,4 = (ΛN+1)

∗ ⊗ (ΛN−1)
∗,

A4,5 = (ΛN+1)
∗ ⊗ Λ!

N−1, A3,3 = (ΛN )∗ ⊗ (ΛN )∗,

A3,4 = (ΛN )∗ ⊗ Λ!
1 ⊗ (ΛN−1)

∗, A3,5 = (ΛN )∗ ⊗ Λ!
N ,
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A2,2 = Λ!
1 ⊗ (Λ2N−1)

∗, A2,3 = Λ!
1 ⊗ Λ!

N−1 ⊗ (ΛN )∗,

A2,4 = Λ!
1 ⊗ Λ!

N ⊗ (ΛN−1)
∗, A2,5 = Λ!

1 ⊗ Λ!
2N−1,

A1,2 = Λ!
1 ⊗ (Λ2N−1)

∗, A1,3 = Λ!
N ⊗ (ΛN )∗,

A1,4 = Λ!
N+1 ⊗ (ΛN−1)

∗, A1,5 = Λ!
2N .

Since both Λ and Λ! are N -Koszul the columns are exact. By the above
observations, so are all rows except perhaps

(4) 0 → Λ!
1 ⊗ (Λ2N−1)

∗ → Λ!
1 ⊗ Λ!

N−1 ⊗ (ΛN )∗

→ Λ!
1 ⊗ Λ!

N ⊗ (ΛN−1)
∗ → Λ!

1 ⊗ Λ!
2N−1 → 0.

The product ΛN ⊗ ΛN−1 → Λ2N−1 → 0 induces a monomorphism 0 →
(Λ2N−1)

∗ → Λ!
N−1 ⊗ (ΛN )∗, hence a monomorphism 0 → Λ!

1 ⊗ (Λ2N−1)
∗ →

Λ!
1 ⊗ Λ!

N−1 ⊗ (ΛN )∗. Now Corollary 1 shows that the sequence (4) is exact.

Since we are assuming that Q has no sources, Λ!
1 is a projective generator

as a right Λ0-module. It follows that the sequence

0 → (Λ2N−1)
∗ → Λ!

N−1 ⊗ (ΛN )∗ → Λ!
N ⊗ (ΛN−1)

∗ → Λ!
2N−1 → 0

is exact.
To illustrate the general situation, consider the case k = 3. As before we

have a commutative diagram, which we write as a matrix without arrows:

0

0 A7,7

0 A6.6 A6,7 0

0 A5,5 A5,6 A5,7 0

0 A4,4 A4,5 A4,6 A4,7 0

0 A3,3 A3,4 A3,5 A3,6 A3,7 0

0 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 0

0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 0

0 0 0 0 0 0

with the following entries:
A1,1 = A7,7 = (Λ3N )∗, A6,6 = (Λ2N+1)

∗ ⊗ (ΛN−1)
∗,

A6,7 = (Λ2N+1)
∗ ⊗ Λ!

N−1, A5,5 = (Λ2N )∗ ⊗ (ΛN )∗,

A5,6 = (Λ2N )∗ ⊗ Λ!
1 ⊗ (ΛN−1)

∗, A5,7 = (Λ2N )∗ ⊗ Λ!
N ,

A4,4 = (ΛN+1)
∗ ⊗ (Λ2N−1)

∗, A4,5 = (ΛN+1)
∗ ⊗ Λ!

N−1 ⊗ (ΛN )∗,

A4,6 = (ΛN+1)
∗ ⊗ Λ!

N ⊗ (ΛN−1)
∗, A4,7 = (ΛN+1)

∗ ⊗ Λ!
2N−1,

A3,3 = (ΛN )∗ ⊗ (Λ2N )∗, A3,4 = (ΛN )∗ ⊗ Λ!
1 ⊗ (Λ2N−1)

∗,

A3,5 = (ΛN )∗ ⊗ Λ!
N ⊗ (ΛN )∗, A3,6 = (ΛN )∗ ⊗ Λ!

N+1 ⊗ (ΛN−1)
∗,

A3,7 = (ΛN )∗ ⊗ Λ!
2N , A2,2 = Λ!

1 ⊗ (Λ3N−1)
∗,

A2,3 = Λ!
1 ⊗ Λ!

N−1 ⊗ (Λ2N )∗, A2,4 = Λ!
1 ⊗ Λ!

N ⊗ (Λ2N−1)
∗,

A2,5 = Λ!
1 ⊗ Λ!

2N−1 ⊗ (ΛN )∗, A2,6 = Λ!
1 ⊗ Λ!

2N ⊗ (ΛN−1)
∗,

A2,7 = Λ!
1 ⊗ Λ!

3N−1, A1,2 = Λ!
1 ⊗ (Λ3N−1)

∗, A1,3 = Λ!
N ⊗ (Λ2N )∗,
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A1,4 = Λ!
N+1 ⊗ (Λ2N−1)

∗, A1,5 = Λ!
2N ⊗ (ΛN )∗,

A1,6 = Λ!
2N+1 ⊗ (ΛN−1)

∗, A1,7 = Λ!
3N .

Since we are assuming Λ! to be N -Koszul, all the columns are exact by the
exactness of the sequences above and the case k = 2, and hence so are all
rows except perhaps the row

0 → Λ!
1 ⊗ (Λ3N−1)

∗ → Λ!
1 ⊗ Λ!

N−1 ⊗ (Λ2N )∗ → Λ!
1 ⊗ Λ!

N ⊗ (Λ2N−1)
∗

→ Λ!
1 ⊗ Λ!

2N−1 ⊗ (ΛN )∗ → Λ!
1 ⊗ Λ!

2N ⊗ (ΛN−1)
∗ → Λ!

1 ⊗ Λ!
3N−1 → 0.

As in case k = 2, the map 0 → Λ!
1 ⊗ (Λ3N−1)

∗ → Λ!
1 ⊗ Λ!

N−1 ⊗ (Λ2N )∗ is
mono, hence the above sequence is also exact.

From the fact that Λ!
1 is a generator as a right Λ0-module, it follows that

the sequence

0 → (Λ3N−1)
∗ → Λ!

N−1 ⊗ (Λ2N )∗ → Λ!
N ⊗ (Λ2N−1)

∗

→ Λ!
2N−1 ⊗ (ΛN )∗ → Λ!

2N ⊗ (ΛN−1)
∗ → Λ!

3N−1 → 0

is exact. It is clear how to continue the induction.

Now let M be an N -Koszul Λ-module and denote by Ek(M) the Λ0-
module ExtkΛ(M, Λ0). The minimal graded projective resolution of M can be
displayed as a matrix witout arrows where we have put Λn.Ek(M)∗ instead
of Λn ⊗ (ExtkΛ(M, Λ0))

∗ and Λn.Mj instead of Λn ⊗ Mj :

(5)

0 Λ0.M0 M0 0

0 Λ0.E
1(M)∗ Λ1.M0 M1 0

0 Λ1.E
1(M)∗ Λ2.M0 M2 0

...
...

...
...

...

0 ΛN−2.E
1(M)∗ ΛN−1.M0 MN−1 0

0 Λ0.E
2(M)∗ ΛN−1.E

1(M)∗ ΛN .M0 MN 0

Λ0.E
3(M)∗ Λ1.E

2(M)∗ ΛN .E
1(M)∗ ΛN+1.M0 MN+1 0

Λ1.E
3(M)∗ Λ2.E

2(M)∗ ΛN+1.E
1(M)∗ ΛN+2.M0 MN+2 0

...
...

...
...

...
...

ΛN−2.E
3(M)∗ ΛN−1.E

2(M)∗ Λ2N−2.E
1(M)∗ Λ2N−1.M0 M2N−1 0

· · · ΛN−1.E
3(M)∗ ΛN .E

2(M)∗ Λ2N−1.E
1(M)∗ Λ2N .M0 M2N 0

· · · ΛN .E
3(M)∗ ΛN+1.E

2(M)∗ Λ2N .E
1(M)∗ Λ2N+1.M0 M2N+1 0

Dualizing the first two rows we obtain exact sequences 0 → (M0)
∗ ⊗ Λ!

0

→ HomΛ(M, Λ0) → 0 and 0 → (M1)
∗ → (M0)

∗ ⊗ Λ!
1 → Ext1Λ(M, Λ0) → 0.

We can now prove our main theorem.

Theorem 2. Let Λ = KQ/I be an N -Koszul algebra with N ≥ 2 such

that its homogeneous dual algebra Λ! = KQop/〈I⊥N 〉 is also N -Koszul and



164 R. MARTÍNEZ-VILLA AND M. SAORÍN

that the quiver Q is connected and has no sources. Let M = {Mj}j≥0 be an

N -Koszul module. Then for any k ≥ 0, there exist exact sequences

0 → (MkN )∗ → (M(k−1)N+1)
∗ ⊗ Λ!

N−1 → · · · → (M2N )∗ ⊗ Λ!
(k−2)N

→ (MN+1)
∗ ⊗ Λ!

(k−1)N−1 → (MN )∗ ⊗ Λ!
(k−1)N

→ (M1)
∗ ⊗ Λ!

kN−1 → (M0)
∗ ⊗ Λ!

kN → Ext2k
Λ (M, Λ0) → 0

and

0 → (MkN+1)
∗ → (MkN )∗ ⊗ Λ!

1 → · · · → (M2N )∗ ⊗ Λ!
(k−2)N+1

→ (MN+1)
∗ ⊗ Λ!

(k−1)N → (MN )∗ ⊗ Λ!
(k−1)N+1 → (M1)

∗ ⊗ Λ!
kN

→ (M0)
∗ ⊗ Λ!

kN+1 → Ext2k+1
Λ (M, Λ0) → 0.

Proof. We illustrate the proof by looking at the cases k = 0, 1, 2, 3, 4,
and leave the general argument to the reader.

The cases k = 0, 1 are clear.
Dualizing the corresponding row of (5) we get an exact sequence

0 → (MN )∗→ (M0)
∗⊗(ΛN )∗→ Ext1Λ(M, Λ0)⊗(ΛN−1)

∗→ Ext2Λ(M, Λ0) → 0.

With the same notation as above, we get a commutative diagram

0

↓

0 → (MN )∗

↓ ↓

0 → (M1)
∗

.Λ
!
N−1 → (M1)

∗

.Λ
!
N−1 → 0

↓ ↓ ↓

0 → (M0)
∗

.(ΛN)∗ → (M0)
∗

.Λ
!
1.Λ

!
N−1 → (M0)

∗

.Λ
!
N → 0

↓ ↓ ↓ ↓

0 → (MN )∗ → (M0)
∗

.(ΛN)∗ → E
1(M).Λ!

N−1 → E
2(M) → 0

↓ ↓ ↓

0 0 0

such that:

(i) All rows are exact.
(ii) All columns but perhaps the last one are exact and this column is

a complex.
(iii) 0 → (MN )∗ → (M1)

∗ ⊗ Λ!
N−1 is exact.

Then by symmetry, Lemma 1 applies and it follows that the last column is
also exact.

Consider now the case k = 3. Dualizing the corresponding sequence in
(5) we have an exact sequence
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0 → (MN+1)
∗ → (M0)

∗ ⊗ (ΛN+1)
∗

→ Ext1Λ(M, Λ0) ⊗ (ΛN )∗ → Ext2Λ(M, Λ0) ⊗ Λ!
1 → Ext3Λ(M, Λ0) → 0.

We obtain as above a commutative diagram of the type

0

↓

0 → A5,5

↓ ↓

0 → A4,4 → A4,5 → 0

↓ ↓ ↓

0 → A3,3 → A3,4 → A3,5 → 0

↓ ↓ ↓ ↓

0 → A2,2 → A2,3 → A2,4 → A2,5 → 0

↓ ↓ ↓ ↓ ↓

0 A1,1 → A1,2 → A1,3 → A1,4 → A1,5 → 0

↓ ↓ ↓ ↓

0 0 0 0

with the following entries:

A1,1 = A5,5 = (MN+1)
∗, A4,4 = A4,5 = (MN )∗ ⊗ Λ!

1,

A3,3 = (M1)
∗ ⊗ (ΛN )∗, A3,4 = (M1)

∗ ⊗ Λ!
N−1 ⊗ Λ!

1,

A3,5 = (M1)
∗ ⊗ Λ!

N , A2,2 = (M0)
∗ ⊗ (ΛN+1)

∗,

A2,3 = (M0)
∗ ⊗ Λ!

1 ⊗ (ΛN )∗, A2,4 = (M0)
∗ ⊗ Λ!

N ⊗ Λ!
1,

A2,5 = (M0)
∗ ⊗ Λ!

N+1, A1,2 = (M0)
∗ ⊗ (ΛN+1)

∗,

A1,3 = Ext1Λ(M, Λ0) ⊗ (ΛN )∗, A1,4 = Ext2Λ(M, Λ0) ⊗ Λ!
1,

A1,5 = Ext3Λ(M, Λ0).

The diagram satisfies the following conditions:

(i) All rows are exact.
(ii) The last column is a complex and the remaining columns are exact.
(iii) 0 → (MN+1)

∗ → (MN )∗ ⊗ Λ!
1 is exact.

According to Lemma 1, the first column is also exact.
For k = 4, dualizing the corresponding columns of (5) we obtain an exact

sequence

0 → (M2N )∗ → (M0)
∗ ⊗ (Λ2N )∗ → Ext1Λ(M, Λ0) ⊗ (Λ2N−1)

∗

→ Ext2Λ(M, Λ0) ⊗ (ΛN )∗ → Ext3Λ(M, Λ0) ⊗ Λ!
N−1 → Ext4Λ(M, Λ0) → 0.

We have as above a commutative diagram of the form
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0

↓

0 → A6,6

↓ ↓

0 → A5,5 → A5,6 → 0

↓ ↓ ↓

0 → A4,4 → A4,5 → A4,6 → 0

↓ ↓ ↓ ↓

0 → A3,3 → A3,4 → A3,5 → A3,6 → 0

↓ ↓ ↓ ↓ ↓

0 → A2,2 → A2,3 → A2,4 → A2,5 → A2,6 → 0

↓ ↓ ↓ ↓ ↓ ↓

0 → A1,1 → A1,2 → A1,3 → A1,4 → A1,5 → A1,6 → 0

↓ ↓ ↓ ↓ ↓

0 0 0 0 0

with the following entries:

A1,1 = A6,6 = (M2N )∗, A5,5 = A5,6 = (MN+1)
∗ ⊗ Λ!

N−1,

A4,4 = (MN )∗ ⊗ (ΛN )∗, A4,5 = (MN )∗ ⊗ Λ!
1 ⊗ Λ!

N−1,

A4,6 = (MN )∗ ⊗ Λ!
N , A3,3 = (M1)

∗ ⊗ (Λ2N−1)
∗,

A3,4 = (M1)
∗ ⊗ Λ!

N−1 ⊗ (ΛN )∗, A3,5 = (M1)
∗ ⊗ Λ!

N ⊗ Λ!
N−1,

A3,6 = (M1)
∗ ⊗ Λ!

2N−1, A2,2 = (M0)
∗ ⊗ (Λ2N )∗,

A2,3 = (M0)
∗ ⊗ Λ!

1 ⊗ (Λ2N−1)
∗, A2,4 = (M0)

∗ ⊗ Λ!
N ⊗ (ΛN )∗,

A2,5 = (M0)
∗ ⊗ Λ!

N+1 ⊗ Λ!
N−1, A2,6 = (M0)

∗ ⊗ Λ!
2N ,

A1,2 = (M0)
∗ ⊗ (Λ2N )∗, A1,3 = Ext1Λ(M, Λ0) ⊗ (Λ2N−1)

∗,

A1,4 = Ext2Λ(M, Λ0) ⊗ (ΛN )∗, A1,5 = Ext3Λ(M, Λ0) ⊗ Λ!
N−1,

A1,6 = Ext4Λ(M, Λ0).

As in the previous cases, the last column is a complex and all remaining
columns are exact. All the rows are exact and the sequence 0 → (M2N )∗ →
(MN+1)

∗ ⊗Λ!
N−1 is exact. It follows as above that the last column is exact.

Now it is clear how to continue the induction.

The following definition was given in [11]:

Definition 3. Let Λ = KQ/I be a graded factor of a path algebra.
A sequence of graded modules

→ Mn[−n]
δ
→ Mn−1[−(n − 1)]

δ
→ · · ·

δ
→ Mk[−k]

δ
→

is called an N -complex if N is a positive integer such that the composition
of N maps δ is zero; this is written as δN = 0.
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If an N -complex is bounded above, for example if it is of the form

→ Mn[−n]
δ
→ Mn−1[−(n − 1)]

δ
→ · · ·

δ
→ M1[−1]

δ
→ M0 → 0,

then it induces by composition an ordinary complex:

· · · → M2N+1[−(2N + 1)]
δ
→ M2N [−(2N)]

δN−1

→ MN+1[−(N + 1)]

δ
→ MN [−(N)]

δN−1

→ M1[−1]
δ
→ M0 → 0.

The following theorem was proved in [11]:

Theorem 3. Let Λ = KQ/I be an N -homogeneous graded factor of a

path algebra with homogeneous dual Λ! = KQop/〈I⊥N 〉. Then there exists a

duality between the category of locally finite graded Λ-modules, lfgrΛ, and the

category of N -complexes of finitely generated projective Λ!-modules, NLcΛ! .

The duality is given as follows: to a graded locally finite Λ-module M =
{Mn}n∈Z corresponds an N -complex

→ D(Mn) ⊗ Λ![−n]
δ
→ D(Mn−1) ⊗ Λ![−(n − 1)]

δ
→ · · ·

δ
→ D(Mk) ⊗ Λ![−k] → · · ·

where the maps δ are induced by the multiplication µ : Λ1 ⊗ Mn → Mn+1

and D(Mn) = HomΛ0
(Mn, Λ0).

The main theorem of the paper can be interpreted as follows:

Theorem 4. Let Λ = KQ/I be an N -Koszul algebra with N ≥ 2 such

that its homogeneous dual algebra Λ! = KQop/〈I⊥N 〉 is also N -Koszul and

that the quiver Q is connected and has no sources. Let M = {Mj}j≥0 be an

N -Koszul module. Then the corresponding N -complex

→ D(Mn) ⊗ Λ![−n]
δ
→ D(Mn−1) ⊗ Λ![−(n − 1)]

δ
→ · · ·

δ
→ D(M1) ⊗ Λ![−1] → D(M0) ⊗ Λ! → 0

induces an ordinary complex (P, d) of finitely generated graded projective

Λ!-modules:

→ D(MN+1) ⊗ Λ![−(N + 1)]
δ
→ D(MN ) ⊗ Λ![−N ]

δN−1

→ D(M1) ⊗ Λ![−1]
δ
→ D(M0) ⊗ Λ! → 0

with homology H(P)j
δ(k) = 0 for j 6= 0 and H(P)0δ(k) = ExtkΛ(M, Λ0).
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