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EQUIVALENCE RELATIONS INDUCED BY SOME LOCALLY
COMPACT GROUPS OF HOMEOMORPHISMS OF 2N

BY

B. MAJCHER-IWANOW (Wroclaw)

Abstract. Let T be a locally finite rooted tree and B(T') be the boundary space of T'.
We study locally compact subgroups of the group TH(B(T')) = (Iso(T"), V) generated by
the group Iso(T") of all isometries of B(T') and the group V of Richard Thompson. We
describe orbit equivalence relations arising from actions of these groups on B(T).

0. Preliminaries

0.1. Introduction. Given two Borel equivalence relations FEi,Eo on
X1, Xo respectively, we say F1, Fo are Borel isomorphic if there is a Borel
bijection f : X1 — Xy such that z E1y < f(x) E2 f(y), for all z,y € X;.
In [6] A. Kechris gives the following characterization of orbit equivalence
relations induced by Borel actions of locally compact groups on a stan-

dard Borel space (some converse versions of this theorem have been found
in [7]).

Let G be a second countable locally compact group acting in a Borel
way on a standard Borel space X. Then there is a unique decompo-
sition X = C U U 1into invariant Borel sets satisfying the following
conditions:

(1) Eg|C is countable, i.e. each Eq|C-class is countable;

(2) there is a Borel set Z C U, meeting each Eg|U-class in a count-
able set, such that Eq|U is Borel isomorphic to the equivalence
relation defined on Z X R as follows: (z,7) ~ (2/,7) & (2,2') €
Eal|Z (in symbols ((2,1), (/,)) € (Ec|Z) x Ii).

This theorem is the starting point of the paper. It is natural to con-
jecture that in many particular situations the theorem can be improved by
description of Borel complexity of U, Z and the isomorphism arising in the
formulation. We study this for actions of some locally compact groups of
homeomorphisms of the boundary space B(T') (of all branches) of a locally
finite rooted tree T'. We consider all locally compact subgroups of the group
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TH(B(T)) = (Iso(T), V) generated by the group Iso(T') of all isometries of
B(T') and the group V of Richard Thompson (see [3]; elements of TH(B(T"))
will be called Thompson’s type homeomorphisms of B(T)). In particular our
results describe the case of all locally compact groups of local isometries of
B(T), i.e. homeomorphisms g : B(T') — B(T) such that any x € B(T) has
a neighbourhood U where ¢ is an isometry U — g(U).

It is worth noting that both Thompson’s group and the group of (local)
isometries of a rooted tree have become quite important in mathematics. On
the one hand, they naturally arise in classification problems of group theory
[11] (moreover any profinite group can be realized as a closed subgroup of
the group Iso(T') of all isometries of B(T') [4]). On the other hand, they have
become a source of important examples (Burnside groups [4]) and applica-
tions in discrete mathematics [1], [5] and geometry [3]. From the viewpoint
of classification of Borel equivalence relations, actions of (local) isometry
groups on the space of tree branches look very typical.

Our main result provides a precise formulation of the theorem of Kechris
in the situation when T is a locally finite tree and G is a locally compact
group continuously embedded into the group TH(B(T')) of all Thompson’s
type homeomorphisms of B(T). In particular, we show that the Borel iso-
morphism from part (2) can be realized by a homeomorphism.

The paper contains several examples which show that some statements
of the paper cannot be further improved. We believe that these examples
can be useful for some other questions.

One could think that the equivalence relations studied in this paper are
casual and for example there are actions of profinite groups (not necessarily
isometric) which induce much more complicated equivalence relations. In
the final part of the paper we show that this is not the case. We prove that
any profinite group G can be realized as a closed subgroup of the group
of all isometries of a locally finite tree, so that the space B(T') with the
corresponding G-action is a universal Borel G-space. In a sense this can be
considered as an improvement of the fact of universality of Iso(7") mentioned
above.

The structure of the paper is as follows. In Section 1 we find a version of
Kechris’ theorem for closed subgroups of the group Iso(7) of all isometries
of T'. The fact that these groups are compact implies that there is a Borel
transversal for the equivalence relation induced by G on B(T). This gives
a standard method of obtaining versions of Kechris’ theorem. In our case
the existence of a tree structure allows making the corresponding statements
more precise and straightforward. This will be applied in Section 2 to groups
of local isometries and Thompson’s type groups. In Section 3 we discuss
universality properties of Iso(T).
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0.2. Locally finite rooted trees. In this subsection we present necessary
information concerning trees. We also prove a technical result (Lemma 3)
which will be applied below.

A tree T is locally finite if any vertex has finite valency (= the number
of adjacent edges). Distinguishing a point we obtain a rooted tree. A vertex
v of a rooted tree is identified with the path from the root to v. If this path
consists of n edges, then we say that v belongs to level n. Thus the root ()
forms level 0. We will write s C s’ if the path s’ extends s. We say that
s, s’ € T are incomparable if neither s C s’ nor s’ C s.

The elements of a locally finite tree will be represented by (initial) finite
sequences of natural numbers in the following way. The root corresponds to
the empty sequence (). For s € T let 1h(s) = n be the distance from the root.
If the valency of s is k+ 1, then we fix an enumeration by {0,1,...,k—1} of
all edges incident with s excluding one which is between s and the root. Now
for any s € T, the path from the root to s uniquely defines a lh(s)-sequence
of natural numbers consisting of the numbers enumerating the edges of the
path. Below we shall frequently identify elements of the tree T" with the
corresponding sequences. For given sequences s,u, we denote by s u the
concatenation of s and u. Let T, be the set of all elements of T" represented
by sequences of length < n.

The boundary of a locally finite rooted tree T is the set of all branches of
T (denoted by B(T')). For given s € T, put (s) = {a € B(T) : s C a}. The
family of all such (s), where s € T', forms a (countable) base of a topology on
B(T). Then B(T) becomes a compact space where the base above consists
of clopen sets. We consider this space under the standard metric defined by
d(,9) = 27", where n is the minimal number m satisfying 7|, # d|m.

The group H(B(T)) of all homeomorphisms of B(T) is equipped with
the (standard) metric d(f,g) = 27", where for f # g, n = min{l € w :
(Ba € B(T))(f(a)|i # g(a)|;)}- Then H(B(T)) is a separable metric group.
For a bijection f : B(T) — B(T') and natural number n, let f|, denote the
relation on the set T, defined by

(s,t) € fln © (s,t €Ty) A (3,8 € B(T))((s is an initial segment of «)
A (t is an initial segment of §) A f(a) = ).
Now for any n € w and any relation R C T,, x T;, with dom(R) = rng(R) =
T,, define (R) as the set of all homeomorphisms f : B(T') — B(T) such
that f|, = R. The family of all sets of this kind forms a countable base of

the topology given by the metric above. We will call this topology the tree
topology.

DEFINITION 1. Let f : B(T) — B(T) be a homeomorphism. We say that
f is a Thompson’s type homeomorphism if there is a natural number [ > 0
and two sequences (s;);<, (ti);<; of vertices of the tree T" such that:
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(1) Uici(s:) = Uii (i) = B(T);

(ii) s;,s; are incomparable for any distinct 7,5 < ;
(iii) ¢;,t; are incomparable for any distinct 4, j < I;
iv)

(v)

(iv) a € (si) & f(a) € (t;), for every i < ;
hsidd(a, B) = 2 d(f(a), £(B3)), for any i < | and o, 3 € (s;).

The last condition says that to every ¢ < | we can assign an isometry
fi from the subtree defined by (s;) to the subtree defined by (¢;) so that
f(si "a) =t; " fi(a). (It is clear that the definition implies that these sub-
trees are isomorphic, in particular s; and ¢; have the same valency.) It is
routine to check that the set of all Thompson’s type homeomorphisms is a
group; we denote it by TH(B(T)).

Richard Thompson’s original group V consists of all Thompson’s type
homeomorphisms which satisfy a version of condition (v) where we ad-
ditionally demand that all appropriate isometries f; are identities of the
corresponding {0, 1}-labelled subtrees. It is easy to see that TH(B(T)) =
(Iso(T), V).

A locally finite tree T will be considered with the lexicogrphical ordering
< defined as follows. For two sequences s,s’ € T,

o+

N Q

s < s iff

(5 C ) v 3n < min{lh(s), In(s) }) (% < n)(s5) = 5'(8)) A 5(n) < /().
We shall write s < s’ whenever s < s’ V s = s'. It is clear that the order <
extends C.

The ordering < induces a natural linear ordering <p on B(T) in the
following way. For «, § € B(T), o <p § iff (Vn € N) (a,, < 5|n). Below we
shall use the same symbols < and < for both the orderings on 7" and B(T).
It is easily seen that < and < are open and closed subsets of T x T and
B(T) x B(T) respectively.

We say that T is spherically homogeneous if any two points of the same
distance from the root have the same valency. In the case of spherically
homogeneous trees B(T') can be represented by [[.cy{0,1,...,k; — 1} (here
k; + 1 is the valency of vertices of level i) and the topology becomes the
usual product topology. Since the boundary of the binary tree 2<V is just
the Cantor space, we will use 2" instead of B(2<N).

We now define a procedure which codes any spherically homogeneous
locally finite tree in the binary one. This will be one of the basic tools in
Section 1.

LEMMA 2. For every matural number k > 1, there exists a sequence
up(0) < uk(l) < -+ < ug(k — 1) of pairwise incompatible elements from
2<N such that | J;_, (ur (i) = 2V.
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Proof. Put u1(0) = and, for k > 1,

up(i)=11...10 fori<k—1, wu(k—1)=11...1. =
— — =
7 times k—1times
LEMMA 3. For every spherically homogeneous tree T, there is a <-pre-

serving homeomorphism ¥ : B(T) — 2N,

Proof. Let k;+1 be the valency of T at level i, i > 0. Define ¢y : B(T) —
2N as follows (under the notation of Lemma 2):

Ur(a) = lim ug, (0(1)) g, (a(2)) . g, (a(n))  for o € B(T).

Note that when k; = 1, ug,(0) becomes () and does not appear in the se-
quences. From the definition of the sequences (uy(j))o<j<r We conclude that
W is a continuous, <-preserving bijection. Then the inverse function ¢;1 is
also continuous. =

1. Actions of closed isometry groups on a rooted tree. Let T be
a locally finite rooted tree. The group Iso(T') of all isometries of T' (with
respect to the natural length function) is a profinite group with respect to
the canonical homomorphisms 7, : Iso(T") — Iso(7},). Thus Iso(T") and all
its closed subgroups are compact. We will see later that any locally compact
group GG of Thompson’s type homeomorphisms is somehow determined by
the subgroup of all isometries from G. This suggests that we should start
with the case of closed subgroups of Iso(7). In this case we can apply some
standard methods together with the existence of a tree structure.

Let G be a closed subgroup of Iso(T). Consider the action of G on the
space B(T'). The action is obviously continuous. Let Eg denote the corre-
sponding equivalence relation on B(T'). For @ € B(T) let [o] denote the
Eg-orbit of a. In the following lemma we collect some folklore facts concern-
ing compact groups (1).

LEMMA 4. Let G be a closed subgroup of Iso(T) and E¢q the corresponding
equivalence relation on B(T).

(a) Each orbit of G is a closed subset of B(T').
(b) Eg is a closed subset of B(T) x B(T).
(¢) The function picking up the leftmost branch in each orbit, that is,
the function S : B(T)) — B(T) defined by
S(e) = B 4ff ((a, B) € Eg A (Vy € B(T))((a,7) € Eg = 8 2 7)),

is a continuous selector for Eg and the image of S is a closed trans-
versal of this relation.

(*) Our lemma also resembles Theorem 5.4.3 of [8].
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Proof. To prove (a) and (b) notice that each orbit is a continuous image
of a compact space G. Hence it is a compact subset of the compact space
B(T') and thus it is closed.

On the other hand, Fg is the continuous image of the compact space
B(T) x G under the function B(T) x G — B(T') x B(T) given by (6,¢) —
(5,9(6)).

(c) Suppose that (ay,) is a sequence of elements of B(T') convergent to
some o € T. We shall prove that S(a,) — S(a). Since B(T') is a com-
pact space, it suffices to show that the limit of each convergent subse-
quence of (S(ay,)) is exactly S(a). Passing to a subsequence if necessary,
we may assume that the sequence (S(ay,)) is already convergent and let
lim;,, oo S(cv,) = B. For every n € N, we have (ay, S(a,)) € Eg and then
(ar, B) € Eg, since E¢ is closed. Hence S(«) < (3 and there is some g € G such
that g(8) = S(«). Since ¢ is continuous we have lim,, . g(S(a)) = g(5).
Since S(ay,) = g(S(ay,)) for every n € N, we have § < S(a). Thus g = S(«),
which completes the proof of the first part.

To prove the second part, notice that the image of S is the image of a
compact space under a continuous function. =

Given n € N and a € B(T), we say that n is a branching point of
a € B(T) if there is some § € [o] such that a|, = d|, but a(n) # d(n).
Obviously, aEq( implies that n € N is a branching point of « if and only if
it is a branching point of 3. So we will say that n € N is a branching point
of an orbit if it is a branching point of some (any) of its elements.

The Eg-orbit of a € B(T) has cardinality < 2% if and only if the set of
its branching points is finite. Now the following formula describes the union
of all Eg-classes of cardinality < 2%o:

(Gn e N)(Vg,g' € G)(g(a) # g'(@) = (Im < n)(g(a(m)) # g'(a(m))).
As a result we have the following lemma.

LEMMA 5. (a) Any class of Eg of cardinality < 2%0 is finite.

(b) The union of all Eg-classes of cardinality < 28 is an invariant F,-
set.

(c) Let a« € B(T). The orbit of « is infinite if and only if the set of
its branching points is infinite. The union of all infinite orbits is an
mvariant Gg-set.

Following Kechris [6], we call the set from part (b) of the lemma the
countable part of Eg and the set from part (¢) the continuous part of Eg.

The following example shows that we cannot claim that the countable
part is a G g-set.

ExAMPLE. Consider 2<N. Let g € Iso(2<Y) be defined as follows. At level
2 let g act as an adding machine: g(ab) = 10 + ab (from left to right), a,b €
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{0,1}. At level 3 let g define two cycles corresponding to the rule g(abc) =
(10 + ab)c. Moreover one of them extends to a g-cycle on 2N consisting of
four elements: g(ab000...) = (10 + ab)000....

For any sequence ny, ..., ng of numbers from N the g-image of the element

bap0...01a;0...01a20...01...01a,

where n; is the number of zeros in the block of zeros following a;_1, is defined
as follows. Let V'aga) . .. aj, be the 2-adic sum (from left to right) of 100...0
and bapay . .. ay (restricted to sequences of length k& + 2). Then let

v'ag0...01a10...01a50...01...01a;,
be the g-image of
bag0...01a10...01az0...01...01a.
We assume that g naturally extends to the cycle of length 25+2 on 2N by

g(bag0...01as0...01a30...01...01a;000...)
=bal0...01a}0...01ab0...01...01a,000. ..

By this procedure we obtain an action of (g) on 2V such that the union of
all finite orbits coincides with Z = {o € 2 : InVi(o(n + i) = 0)}. It is clear
that the set Z is the union of all finite orbits of the profinite completion (g)*.
On the other hand, Z as well as its complement 2"\ Z are dense subsets of
2N: thus by the Baire Category Theorem, Z is not Gs. m

THEOREM 6. Let T be a locally finite rooted tree. Let G be a closed sub-
group of Iso(T), E¢ be the corresponding orbit equivalence relation on B(T)
and U C B(T) be the continuous part of that relation. Let Z be the inter-
section of U with the closed transversal S(B(T)) of Eg where S is defined
as in Lemma 4. Then Z is a Gy transversal of Eqg|y such that there is a
homeomorphism ¢ : Z x 2N — U satisfying

(6c((2,0)),0c((2,8)) € Ecly & z=2"

Proof. We use the strategy of [6], although our proof does not use any
involved material.

It follows from Lemma 5 that the continuous part U of E¢ is a Gs-set.

For given z € Z, let T, be the tree consisting of all |, with a € [z] and
n € N. Observe that the elements of T, of level n form the G-orbit of ay,41.
Then it is clear that T} is spherically homogeneous. Let 7, : B(T,) — 2N
be the corresponding coding function defined in Lemma 3. We now define
the required function ¢¢ : Z x 2V — U by ¢q(z,0) := wil(é).

By Lemmas 2 and 3, ¢, can be considered as a 1-1 function on 7T,
satisfying the following conditions:

(1) (Vs,8' € T2)((s S 5" = ¥r(s) Sor () A (s < 8" & Pr (s) <Y1 (5)));
(2) (¥n) (V0 € 2%)(3s € T2) (Y. (5)n = 0]n).-
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Then ¢ can be equivalently defined (for an appropriate sequence (n;)) by
¢ (2,0) = lim ¢7!(3]n,).
n;—00

Notice that for every z € Z we have ¢¢(z,0) = z, where 0 is the sequence of
zeros. It easily follows from properties (1)—(2) that the function is a bijection.
The inverse function gbal : U — Z x 2V is a pair of functions (S, F) such
that S is the restriction of the selector defined in Lemma 4 to U. Note that,
by Lemma 4, S is continuous (and by (1), ¢¢ is continuous in the second
coordinate). We shall prove that qﬁal is continuous.

Suppose that {3,} is a sequence of elements of U convergent to some
B € U. By Lemma 4, lim,_,o S(8,) = S(8). Let [ be a natural number. For
every ¢ there is a natural number m; such that for every n > m;, G, agrees
with 3 at level i. Since Tp(7) is the G-orbit of 3|;y1, Tj3, (i) coincides with
T3(i). Then choosing i large enough and n > m; we have, for v = 3,

F(B)i = ¢y (Bli)i = ¥z, (V)i = F ()i

Hence lim,,_,o F(3,) = F (). Since a continuous bijection between compact
spaces is a homeomorphism, we conclude that ¢¢ is a homeomorphism. =

2. Locally compact groups of homeomorphisms of the space
B(T'). In this section we prove our main results. We shall consider two types
of subgroups of the group of all homeomorphisms of the boundary space B(T")
of the tree T and their natural actions on B(T).

2.1. Thompson’s type groups. Let T be a locally finite rooted tree. We
will study orbit equivalence relations induced on B(T') by locally compact
groups of Thompson’s type permutations.

We start with an example of a non-compact closed subgroup of TH(2Y)
which is locally compact with respect to the standard tree topology (see
Preliminaries). It is worth noting that this group cannot be a subgroup of
Iso(2Y), because all closed isometry subgroups are compact.

ExamPLE. Consider 2<N. Let r : 2<N — 2<N be the right shift func-
tion w — 17w, w € 2<N. For every n > 1 we define by induction a set
C,, C 2<N consisting of 21 elements. The definition depends on an appro-
priate function ¢ : 2<N — 2<N. Let C; = {q(0)}, Ca = {q(0),¢(1)}, where
q(0) = 10, ¢(0) = 1100, ¢(1) = 1101. At Step n + 1 let g(a; ...an—1b) =
r(q(ay ...an—1))b, where a; € {0,1} and b € {0,1}, and let C,; consist of
all (a1 ...a,), a; € {0,1}.

Let ¢ be the 1-letter word 0. We now define by induction permutations
gnon {c}UCLU---UC,U---, which are cyclic on {c} UC; U---UC,, and
preserve each Cy, with m > n. We demand that g1(c) = q(0), g1(¢(0)) = ¢
and g, 1 = g2. For each | > 1 the permutation g, on C,; is defined by
the following rule. Let af ... a;_la;ag_ﬂ .. .a;H_l_l be the 2-adic sum (from
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left to right) of 0...010...0 and ay...a;_1a;a;11 . ..ap+;—1 (restricted to
sequences of length n+1—1). Then let g,(q(ay ...a—1a;a141 - . - Gpy1—1) W)
be q(a} ...aj_jaja),, ...al ;)" w, where w € 2<N.

For elements v € {c} UC, U--- U C),, we define g, as follows. Let g,(c)
be the g-image of the (n — 1)-tuple 00...0. The rest of the definition of g,
on {c}UCiU---UC, follows from the assumption that g2 = g,,_1 and the
definition of g,—1 on C, and {c} UCU---UC),_1. For elements of the form
v w with v € {c}UC1U---UC, and w € 2<N we define g, (v w) = g, (v) " w.

If an element u € 2<N cannot be represented as a subword of a word of
the form v~ w with v € {c} UCLU---UC,LU--- and w € 2<N we define
gn(u) = u (this is the case of 111...).

As a result we obtain an action of the Priifer group Co on 2<N and thus
on 2Y. We consider Cy~ as a topological group under the topology induced
from its action, thus under the standard tree topology. The group Che is
discrete under this topology. Indeed for any n the element g, is determined
uniquely by its action on the set {c}UC;U---UCp_1. n

LEMMA 7. Let G < TH(B(T)). For every n € w define G, = {f € G :
f is defined by some sequences (s;)i<; and (t;)i<; as in Definition 1 with
max{lh(s;),1h(¢;) : ¢ < I} < n}. Then (Gp)new i an increasing sequence
of closed subgroups of G such that G = J,, Gy, and the equivalence relation
induced by G on B(T) is the union of the equivalence relations induced by G,
on B(T). If G is locally compact with respect to the standard tree topology,
then all Gy, are open in G. In this case Gy has a subgroup H of countable
index which is a closed subgroup of Iso(T).

Proof. The first part of the lemma is obvious. Now assume that G is
locally compact. Then G is a Baire space. Therefore there is a natural number
k such that for every n > k, G,, is not meager. Then, by Pettis’ Theorem,
G, is open for every n > k.

Let n < k and f € G,. Since f € G, there is m > k such that the
basic open set (f|,,) is contained in Gj. Thus there are sequences (s;) and
(t;) of the same length such that max; ;j(s;,t;) < k and any g € (f]m) is
defined (as in Definition 1) by the map s; — t; and appropriate isometries of
the corresponding subtrees. Since f € GGy, there are sequences (s{) and (t{)

such that maxi7j(s{,t§) < n and f is determined by the map slf — szf and
appropriate isometries of the corresponding subtrees. In particular the map
s; — t; can be realized by s{ — t{ and appropriate isometries. This implies
that (f|m) € Gy. We see that G, is open.

Since G is locally compact, there is a compact subgroup H < Gy of

countable index. Thus H is closed in Iso(T"). =
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LEMMA 8. Let G be a locally compact group of Thompson’s type homeo-
morphisms and E¢g be the equivalence relation on B(T') induced by the natu-
ral action of G on that space. Let Gp := H be the closed subgroup of Iso(T)
defined in Lemma 7.

(a) Let C C B(T') be the closed transversal of the Gp-orbit equivalence
relation defined by an application of Lemma 4 to Gp. Then any class
of Eg has a non-empty countable intersection with C.

(b) Any class of Eqg of cardinality < 2% is the union of a countable
family of finite Eq,-classes. Any uncountable Eg-class is the union
of a countable family of uncountable Eg,-classes. In particular the
continuous part of Eq coincides with the continuous part of Eq ,, they
are G-invariant Gg-sets and the union of all Eqg-classes of countable
cardinality is a G-invariant Fy-set.

Proof. (a) Observe that C'is a section of the equivalence relation induced
by G. We claim that C is a countable section. By Lemma 7, Gy is a clopen
subgroup of G, thus it is of countable index in G, so G is of countable index
in G. Suppose that there is some a € C such that [a|g N C is uncountable.
Then there are two distinct elements fa, ha € C' such that f, h are in the
same coset of G. Hence fh™! € Gp and fa = fh~!(ha). Thus C contains
two distinct elements fo, ha from the same Gp-orbit, which contradicts the
fact that C is a transversal.

(b) Let v € B(T)), [&], be the class of a with respect to the G-action
and A be a countable set of representatives of all right cosets of Gg in G.
We have [a]¢ = U4 9([a]G ). Then we are done by Lemma 5.

THEOREM 9. Let G < TH(B(T)) be a locally compact group, Eq be
the corresponding orbit equivalence relation on B(T') and U C B(T) be the
continuous part of the relation. Then there is a Gs set Z which is a countable
section of Eg|uy and a homeomorphism ¢ : Z X 2N U such that

(6c((2,6)),6c((z', ")) € Egly < zEqZ.

Proof. Tt follows from Lemma 8 that the continuous part U of Eg is a
Gs-set and coincides with the continuous part of Eg,. Let C be the countable
section of E¢g defined in the proof of this lemma. Then Z = CNU is a G§-set
which is a countable section of Eg|y.

Now let ¢, : Z X 2N — U be the homeomorphism defined in the proof
of Theorem 6 applied to Gp. Since (¢G5((2,9)),2) € Eg for every z and
0 € B(T), it satisfies the assertion of the theorem. m

2.2. Local isometries

DEFINITION 10. Let f: B(T) — B(T') be a homeomorphism, o € B(T)
and n € w.
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(a) We say that n stabilizes f on « if for every 8 and « from the basic
open set (al,) we have

d(B,~) = d(f(8), f(7))-
(b) We say that n destabilizes f on « if there are 3,7 € (al,) such that
d(8,7) = 27"V whereas d(f(a), f(8)) # 271,

It is obvious that for given «, f and n as above, n stabilizes f on « exactly
when no k > n destabilizes f on any § € (afy).

DEFINITION 11. We say that a homeomorphism f : B(T) — B(T) is a
local isometry if for every o € B(T) there is n € w stabilizing f on a.

It is clear that this definition just says that for every § € B(T') there exists
a neighbourhood U such that d(x1,x2) = d(f(x1), f(x2)) for all z;,z9 € U.
We denote the group of all local isometries of B(T") by LI(B(T")). At the con-
ference “Groups and Group Rings 10”7 (Ustron, 2003), Yaroslav Lavrenyuk
(Kiev) has announced that the centre of this group is trivial and any auto-
morphism of LI(B(T)) is induced by a conjugation.

The following observation shows that a local isometry is a Thompson’s
type homeomorphism of B(T).

LEMMA 12. Let f : B(T) — B(T) be a local isometry. There is a natural
number n which stabilizes f on every o € B(T). Thus f is a Thompson’s
type homeomorphism where the sequence (s;) coincides with the sequence (t;)
and consists of all elements of T of length n.

Proof. We have to show that the set of natural numbers k such that &
destabilizes f on some a € B(T) is finite. Otherwise by Konig’s Lemma,
there would be a € B(T) such that the set of natural numbers k& which
destabilize f on « is infinite. The latter contradicts the assumption that f
is stabilized on a by some natural n. =

It is easy to verify that LI(B(T)) is a closed subgroup of TH(B(T)). From
Lemma 12 we see that Theorem 9 holds for all locally compact subgroups of
LI(B(T)).

We finish this section with an example of a locally compact (with respect
to the tree topology) group of local isometries which is not compact. In this
example the subgroup H arising in Lemma 7 is uncountable.

EXAMPLE. We define the sequence (g;,) of local isometries of the bound-
ary space 2N of the binary tree as follows:
go = id,
9, (0011...110"a) = 1100...001 " ¢,
—_— —_—
length n+1 length n+1
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9n(1100...001" ) = 0011...110" «,
— —
lengthn+1 lengthn+1

gn(s7a) =s"a forany s € 2"\ {1100...001,0011...110}.
length n+1 lengthn+1

Now, let G < LI(2Y) be the group generated by the group G = (g, :
n € w) and the group G of all isometries fixing all § € 2N of the form 007§’
and 117¢’. Since no finite union of basic clopen sets of the form (g|,+1)
covers {g, : n € w}, we see that G is not compact with respect to the tree
topology. We are going to show that G is locally compact. Observe that Gy
is compact, G = G & G1 and Gy, is an abelian group of exponent 2. Take
any g € Gr. Let ng < n; < --- < ng be an increasing sequence of natural
numbers such that ¢ = gn, gn,_, - - - gno- We claim that (g|,,+1) is a com-
pact neighbourhood of g. To prove this suppose that h € (g|n,+1) N G. We
have
h(0011...117a) =0011...11"a for any a € 2%.
N—_—— —_——
length ng+1 length ng+1

Hence if b € gy, 9my_, - - - Gmo + G 1 then m; < ny. Indeed, otherwise we have
the following contradiction with the equality above:

R(0011...11 7 11...10 ")
SN——r N——
lengthng+1 length m;—ny
= gm,(0011...11 7 11...10 "a)
lengthng+1 length m;—ny

=1100...00 — 00...01 T« for any o € 2%,
—_— ~—
length ng+1 length m;—ny

We now see that (g|p,+1) is contained in the subgroup (g, : n < ng) & G
and thus is compact. The group G can be taken as Gp in Lemma 8.

3. Universal properties of B(T'). We close the paper with two remarks
concerning the universal character of the space B(T) viewed as a G-space
for various G < Iso(T'). Let us recall some terminology.

Let G be a Polish group. Any Borel space U with a Borel measurable
action a : G x U — U is called a Borel G-space. For two Borel G-spaces
Uy, Us, we say that U; is Borel embeddable into Us if there is a Borel measur-
able, one-to-one map 7 : Uy — Uz such that w(g(x)) = g(n(x)) for every
g € G and x € Uy. A Borel G-space U is universal if any Borel G-space U
can be Borel embedded into U.

The following example of a universal Borel G-space is given by H. Becker
and A. Kechris in [2|. By F(G) we denote the standard Borel space of closed
subsets of G with the Effros Borel structure. It is proved in [2| that
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(F(G)N with the left actions of G by g(Fy)new = (9F)new is a
universal Borel G-space.

Our observation concerns actions of profinite groups.

PROPOSITION 13. For any countably based profinite group G, there is a
locally finite tree T' and an isometric action of G on T such that the G-space
B(T) is a universal Borel G-space.

Proof. Let G be a countably based profinite group. We want to show
that there is a locally finite tree T' and an isometric action of G on T such
that the universal Borel G-space Ug = (F(G))Y with the left action of G
can be Borel embedded into B(T") with this action.

By Proposition 4.1.3 of [10], there is a chain of open normal subgroups
G = My > My > --- such that the set of all their cosets forms a base of G.
For every i € N let n; = |G : M;| and {A;; : j < 2"} be any enumeration
of the set of all unions of subfamilies of the family of cosets of M;. Let T
be the spherically homogeneous tree such that for every ¢ > 1, any point at
level i — 1 has valency 2™ 4 1 (the root has valency 2™ ). Define an isometric
action of G on T as follows. Let g € G. For s,s' € T(n) put g(s) = ¢ iff

We now want to define a G-embedding of (F(G))Y into B(T). First, to
every ' € F(G) and i € N, we assign a natural number j; < 2™ such that
F C AijiF and (Vj < 2”1)(F - Aij = Al]zF - AU) Also fix some f: N — N
such that for every natural ¢, we have i + 1 > f(i + 1) and the preimage
f71[4] is infinite.

We define an embedding 7 : (F(G))Y — B(T) as follows. For every
(Fiiew € (F(G))Y, we put

7'(((}710,}7117 R )) =q iff a€ B(T) and (VZ S N)(a(z) = jiFf(i))'

It is clear that 7 is injective. By a straightforward argument we see that for
every (F})icw € (F(G))N and g € G,
W(g(Fo,...,Fi,...)) :g(W(Fo,...,Fi,...)).

To prove 7 is a Borel map consider preimages of basic open sets of the
form (jija2 ... ji), where jija...j € [[;<;{0,1,...,2™ — 1} for some natural
number i. We have -

7 (g2 )] = {(Fiiew € (F(G)Y
(VZ < i)((Ff(l) - Aljl) VAN (Vk‘ < 2"1)((3 %+ Ay, C Aljl = Ff(l) N Ay # @))},

which is a Borel subset of (F(G))N. u

Our final observation does not concern closed subgroups of Iso(B). It
reveals a variety of different actions of countable subgroups of Iso(7") on the
space B(T). We transfer the example of S. Thomas of two incomparable
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actions of the same countable group to our context. We need some more
terminology.

Given two Borel equivalence relations Fq, Fo on X7 and X respectively,
we say that F is Borel reducible to Es if there is a Borel measurable function
f X1 — Xy such that z By y < f(z) B2 f(y), for all z,y € X;. We say
that F7 and E» are incomparable if neither E; is reducible to Es, nor Ey is
reducible to Ej.

Let n > 3 be some fixed odd integer, J C P be a non-empty subset

of primes and let {p1,p2,...,p;,...} be the increasing enumeration of J.
Put
K(J) = [[SLa(Zy).
1€EN

where Z,, is the ring of p-adic integers. The group SL,(Z) can be regarded
as a subgroup of K (J) via the diagonal embedding. Then it naturally acts
on K(J) via left translations. Let E; denote the orbit equivalence relation
arising from that action. In [9] S. Thomas has proved the following theo-
rem.

Let Jy # Ja be two distinct non-empty subsets of primes. Then Ej,
and Ej, are incomparable Borel equivalence relations.

Observe that SL,,(Zy) is a profinite group with respect to the canonical
maps 7, : SL,(Zy) — SLy(Z,/p"Zy), v > 0, determined by applying the
quotient maps Z, — Z,/p"Z, to each matrix entry (see [10] for details). The
profinite topology on SL,,(Z,) is given by the family of cosets of open normal
subgroups

KP? = Ker(m,) = {g € SLy(Zp) : g — 1 € p"SL,(Z,)}, r > 0.

Then also K (J) is a profinite group endowed with a sequence K (J) = My >
My >---> M; > --- of open normal subgroups of the form

M; = K x - x KV x SLy(Zp, ) X SLn(Zp,,5) X -+, i €N,

whose cosets form a base of the topology on K (J).

For every ¢ > 0, let n; = |M;—; : M;| and {g;; : j < n;} be an enumer-
ation of some transversal of the family of all cosets of M; in M;_;. Then
we have M;_ 1 = Uj<m gijMi and K(J) = U{glj1g2j2 .. -gijiMi 2 j1 < na,

g < nz}

Let T be a locally finite spherically homogeneous rooted tree such that for
every ¢ > 1 any vertex of level i—1 has valency n;+1 (the root is of valency ny).
For every x € K(J), every i € N and [ < i, there is exactly one j;(z) < mny
such that € g1, (2) - - - 9ij; (o) Mi. Hence z = lim; o0 915, (2) - - - Giji(x)- We
define 7 : K(J) — B(T) by mj(z) = lim;00 j1(x) . .. ji(x).

It is easily seen that 7 is a homeomorphism. Moreover, for every g €
SL,(Z) < K(J) there is exactly one g € Iso(T) such that m;(g(z)) =
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g(my(x)) for every x € K(J). So, the function oy : ¢ — ¢ is an isomorphic
embedding of SL,(Z) into Iso(T"). Denote by G the image of o ;. Then the
equivalence relation arising from the action of SL,,(Z) on K (J) is isomorphic
to the equivalence relation arising from the action of G; on B(T).

Let J1 # J2 be any non-empty subsets of primes. Then G;, and G,
are isomorphic subgroups of Iso(77) and Iso(7%) respectively. According to
S. Thomas, the corresponding equivalence relations on B(T}) and B(T») are
incomparable.

Thus, we have obtained the following variant of Thomas’ theorem.

PROPOSITION 14. There are locally finite rooted trees T1 and Ts and two
isomorphic finitely generated subgroups G1 < Iso(T1), Ga < Iso(T3) such that
the orbit equivalence relations E1 and Eo arising from the isometry actions
of these groups on B(T;) are incomparable with respect to Borel reducibility.
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