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EQUIVALENCE RELATIONS INDUCED BY SOME LOCALLYCOMPACT GROUPS OF HOMEOMORPHISMS OF 2NBYB. MAJCHER-IWANOW (Wro
ªaw)Abstra
t. Let T be a lo
ally �nite rooted tree and B(T ) be the boundary spa
e of T .We study lo
ally 
ompa
t subgroups of the group TH(B(T )) = 〈Iso(T ), V 〉 generated bythe group Iso(T ) of all isometries of B(T ) and the group V of Ri
hard Thompson. Wedes
ribe orbit equivalen
e relations arising from a
tions of these groups on B(T ).0. Preliminaries0.1. Introdu
tion. Given two Borel equivalen
e relations E1, E2 on
X1, X2 respe
tively, we say E1, E2 are Borel isomorphi
 if there is a Borelbije
tion f : X1 → X2 su
h that xE1 y ⇔ f(x)E2 f(y), for all x, y ∈ X1.In [6℄ A. Ke
hris gives the following 
hara
terization of orbit equivalen
erelations indu
ed by Borel a
tions of lo
ally 
ompa
t groups on a stan-dard Borel spa
e (some 
onverse versions of this theorem have been foundin [7℄).Let G be a se
ond 
ountable lo
ally 
ompa
t group a
ting in a Borelway on a standard Borel spa
e X. Then there is a unique de
ompo-sition X = C ∪ U into invariant Borel sets satisfying the following
onditions:(1) EG|C is 
ountable, i.e. ea
h EG|C-
lass is 
ountable;(2) there is a Borel set Z ⊆ U , meeting ea
h EG|U -
lass in a 
ount-able set , su
h that EG|U is Borel isomorphi
 to the equivalen
erelation de�ned on Z × R as follows: (z, r) ∼ (z′, r′) ⇔ (z, z′) ∈

EG|Z (in symbols ((z, r), (z′, r′)) ∈ (EG|Z) × IR).This theorem is the starting point of the paper. It is natural to 
on-je
ture that in many parti
ular situations the theorem 
an be improved bydes
ription of Borel 
omplexity of U , Z and the isomorphism arising in theformulation. We study this for a
tions of some lo
ally 
ompa
t groups ofhomeomorphisms of the boundary spa
e B(T ) (of all bran
hes) of a lo
ally�nite rooted tree T . We 
onsider all lo
ally 
ompa
t subgroups of the group2000 Mathemati
s Subje
t Classi�
ation: 03E15, 20E08.Key words and phrases: Borel a
tions, rooted trees, pro�nite groups.[287℄
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TH(B(T )) = 〈Iso(T ), V 〉 generated by the group Iso(T ) of all isometries of
B(T ) and the group V of Ri
hard Thompson (see [3℄; elements of TH(B(T ))will be 
alled Thompson's type homeomorphisms of B(T )). In parti
ular ourresults des
ribe the 
ase of all lo
ally 
ompa
t groups of lo
al isometries of
B(T ), i.e. homeomorphisms g : B(T ) → B(T ) su
h that any x ∈ B(T ) hasa neighbourhood U where g is an isometry U → g(U).It is worth noting that both Thompson's group and the group of (lo
al)isometries of a rooted tree have be
ome quite important in mathemati
s. Onthe one hand, they naturally arise in 
lassi�
ation problems of group theory[11℄ (moreover any pro�nite group 
an be realized as a 
losed subgroup ofthe group Iso(T ) of all isometries of B(T ) [4℄). On the other hand, they havebe
ome a sour
e of important examples (Burnside groups [4℄) and appli
a-tions in dis
rete mathemati
s [1℄, [5℄ and geometry [3℄. From the viewpointof 
lassi�
ation of Borel equivalen
e relations, a
tions of (lo
al) isometrygroups on the spa
e of tree bran
hes look very typi
al.Our main result provides a pre
ise formulation of the theorem of Ke
hrisin the situation when T is a lo
ally �nite tree and G is a lo
ally 
ompa
tgroup 
ontinuously embedded into the group TH(B(T )) of all Thompson'stype homeomorphisms of B(T ). In parti
ular, we show that the Borel iso-morphism from part (2) 
an be realized by a homeomorphism.The paper 
ontains several examples whi
h show that some statementsof the paper 
annot be further improved. We believe that these examples
an be useful for some other questions.One 
ould think that the equivalen
e relations studied in this paper are
asual and for example there are a
tions of pro�nite groups (not ne
essarilyisometri
) whi
h indu
e mu
h more 
ompli
ated equivalen
e relations. Inthe �nal part of the paper we show that this is not the 
ase. We prove thatany pro�nite group G 
an be realized as a 
losed subgroup of the groupof all isometries of a lo
ally �nite tree, so that the spa
e B(T ) with the
orresponding G-a
tion is a universal Borel G-spa
e. In a sense this 
an be
onsidered as an improvement of the fa
t of universality of Iso(T ) mentionedabove.The stru
ture of the paper is as follows. In Se
tion 1 we �nd a version ofKe
hris' theorem for 
losed subgroups of the group Iso(T ) of all isometriesof T . The fa
t that these groups are 
ompa
t implies that there is a Boreltransversal for the equivalen
e relation indu
ed by G on B(T ). This givesa standard method of obtaining versions of Ke
hris' theorem. In our 
asethe existen
e of a tree stru
ture allows making the 
orresponding statementsmore pre
ise and straightforward. This will be applied in Se
tion 2 to groupsof lo
al isometries and Thompson's type groups. In Se
tion 3 we dis
ussuniversality properties of Iso(T ).
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ally �nite rooted trees. In this subse
tion we present ne
essaryinformation 
on
erning trees. We also prove a te
hni
al result (Lemma 3)whi
h will be applied below.A tree T is lo
ally �nite if any vertex has �nite valen
y (= the numberof adja
ent edges). Distinguishing a point we obtain a rooted tree. A vertex
v of a rooted tree is identi�ed with the path from the root to v. If this path
onsists of n edges, then we say that v belongs to level n. Thus the root ∅forms level 0. We will write s ⊆ s′ if the path s′ extends s. We say that
s, s′ ∈ T are in
omparable if neither s ⊆ s′ nor s′ ⊆ s.The elements of a lo
ally �nite tree will be represented by (initial) �nitesequen
es of natural numbers in the following way. The root 
orresponds tothe empty sequen
e ∅. For s ∈ T let lh(s) = n be the distan
e from the root.If the valen
y of s is k+1, then we �x an enumeration by {0, 1, . . . , k−1} ofall edges in
ident with s ex
luding one whi
h is between s and the root. Nowfor any s ∈ T , the path from the root to s uniquely de�nes a lh(s)-sequen
eof natural numbers 
onsisting of the numbers enumerating the edges of thepath. Below we shall frequently identify elements of the tree T with the
orresponding sequen
es. For given sequen
es s, u, we denote by s⌢u the
on
atenation of s and u. Let Tn be the set of all elements of T representedby sequen
es of length ≤ n.The boundary of a lo
ally �nite rooted tree T is the set of all bran
hes of
T (denoted by B(T )). For given s ∈ T , put (s) = {α ∈ B(T ) : s ⊆ α}. Thefamily of all su
h (s), where s ∈ T , forms a (
ountable) base of a topology on
B(T ). Then B(T ) be
omes a 
ompa
t spa
e where the base above 
onsistsof 
lopen sets. We 
onsider this spa
e under the standard metri
 de�ned by
d(γ, δ) = 2−n, where n is the minimal number m satisfying γ|m 6= δ|m.The group H(B(T )) of all homeomorphisms of B(T ) is equipped withthe (standard) metri
 d(f, g) = 2−n, where for f 6= g, n = min{l ∈ ω :
(∃α ∈ B(T ))(f(α)|l 6= g(α)|l)}. Then H(B(T )) is a separable metri
 group.For a bije
tion f : B(T ) → B(T ) and natural number n, let f |n denote therelation on the set Tn de�ned by
(s, t) ∈ f |n ⇔ (s, t ∈ Tn) ∧ (∃α, β ∈ B(T ))((s is an initial segment of α)

∧ (t is an initial segment of β) ∧ f(α) = β).Now for any n ∈ ω and any relation R ⊆ Tn × Tn with dom(R) = rng(R) =
Tn, de�ne (R) as the set of all homeomorphisms f : B(T ) → B(T ) su
hthat f |n = R. The family of all sets of this kind forms a 
ountable base ofthe topology given by the metri
 above. We will 
all this topology the treetopology.Definition 1. Let f : B(T ) → B(T ) be a homeomorphism. We say that
f is a Thompson's type homeomorphism if there is a natural number l > 0and two sequen
es (si)i<l, (ti)i<l of verti
es of the tree T su
h that:
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i<l(si) =

⋃
i<l(ti) = B(T );(ii) si, sj are in
omparable for any distin
t i, j < l;(iii) ti, tj are in
omparable for any distin
t i, j < l;(iv) α ∈ (si) ⇔ f(α) ∈ (ti), for every i < l;(v) 2lh(si)d(α, β) = 2lh(ti)d(f(α), f(β)), for any i < l and α, β ∈ (si).The last 
ondition says that to every i < l we 
an assign an isometry

fi from the subtree de�ned by (si) to the subtree de�ned by (ti) so that
f(si

⌢α) = ti
⌢fi(α). (It is 
lear that the de�nition implies that these sub-trees are isomorphi
, in parti
ular si and ti have the same valen
y.) It isroutine to 
he
k that the set of all Thompson's type homeomorphisms is agroup; we denote it by TH(B(T )).Ri
hard Thompson's original group V 
onsists of all Thompson's typehomeomorphisms whi
h satisfy a version of 
ondition (v) where we ad-ditionally demand that all appropriate isometries fi are identities of the
orresponding {0, 1}-labelled subtrees. It is easy to see that TH(B(T )) =

〈Iso(T ), V 〉.A lo
ally �nite tree T will be 
onsidered with the lexi
ogrphi
al ordering
≺ de�ned as follows. For two sequen
es s, s′ ∈ T ,
s ≺ s′ i�
((s ⊆ s′) ∨ (∃n ≤ min{lh(s), lh(s′)})((∀i < n)(s(i) = s′(i)) ∧ s(n) < s′(n))).We shall write s � s′ whenever s ≺ s′ ∨ s = s′. It is 
lear that the order �extends ⊆.The ordering � indu
es a natural linear ordering �B on B(T ) in thefollowing way. For α, β ∈ B(T ), α �B β i� (∀n ∈ N) (α|n � β|n). Below weshall use the same symbols ≺ and � for both the orderings on T and B(T ).It is easily seen that ≺ and � are open and 
losed subsets of T × T and
B(T ) ×B(T ) respe
tively.We say that T is spheri
ally homogeneous if any two points of the samedistan
e from the root have the same valen
y. In the 
ase of spheri
allyhomogeneous trees B(T ) 
an be represented by ∏

i∈N
{0, 1, . . . , ki − 1} (here

ki + 1 is the valen
y of verti
es of level i) and the topology be
omes theusual produ
t topology. Sin
e the boundary of the binary tree 2<N is justthe Cantor spa
e, we will use 2N instead of B(2<N).We now de�ne a pro
edure whi
h 
odes any spheri
ally homogeneouslo
ally �nite tree in the binary one. This will be one of the basi
 tools inSe
tion 1.Lemma 2. For every natural number k ≥ 1, there exists a sequen
e
uk(0) ≺ uk(1) ≺ · · · ≺ uk(k − 1) of pairwise in
ompatible elements from
2<N su
h that ⋃

i<k(uk(i)) = 2N.



EQUIVALENCE RELATIONS 291Proof. Put u1(0) = ∅ and, for k > 1,
uk(i) = 11 . . . 1︸ ︷︷ ︸

i times

0 for i < k − 1, uk(k − 1) = 11 . . . 1︸ ︷︷ ︸
k−1 times

.

Lemma 3. For every spheri
ally homogeneous tree T , there is a ≺-pre-serving homeomorphism ψT : B(T ) → 2N.Proof. Let ki+1 be the valen
y of T at level i, i ≥ 0. De�ne ψT : B(T ) →
2N as follows (under the notation of Lemma 2):

ψk(α) = lim
n→∞

uk1(α(1))⌢uk2(α(2))⌢ . . .⌢ ukn
(α(n)) for α ∈ B(Tk).Note that when ki = 1, uki

(0) be
omes ∅ and does not appear in the se-quen
es. From the de�nition of the sequen
es (uk(j))0≤j<k we 
on
lude that
ψT is a 
ontinuous, ≺-preserving bije
tion. Then the inverse fun
tion ψ−1

T isalso 
ontinuous.1. A
tions of 
losed isometry groups on a rooted tree. Let T bea lo
ally �nite rooted tree. The group Iso(T ) of all isometries of T (withrespe
t to the natural length fun
tion) is a pro�nite group with respe
t tothe 
anoni
al homomorphisms πn : Iso(T ) → Iso(Tn). Thus Iso(T ) and allits 
losed subgroups are 
ompa
t. We will see later that any lo
ally 
ompa
tgroup G of Thompson's type homeomorphisms is somehow determined bythe subgroup of all isometries from G. This suggests that we should startwith the 
ase of 
losed subgroups of Iso(T ). In this 
ase we 
an apply somestandard methods together with the existen
e of a tree stru
ture.Let G be a 
losed subgroup of Iso(T ). Consider the a
tion of G on thespa
e B(T ). The a
tion is obviously 
ontinuous. Let EG denote the 
orre-sponding equivalen
e relation on B(T ). For α ∈ B(T ) let [α] denote the
EG-orbit of α. In the following lemma we 
olle
t some folklore fa
ts 
on
ern-ing 
ompa
t groups (1).Lemma 4. Let G be a 
losed subgroup of Iso(T ) and EG the 
orrespondingequivalen
e relation on B(T ).(a) Ea
h orbit of G is a 
losed subset of B(T ).(b) EG is a 
losed subset of B(T ) ×B(T ).(
) The fun
tion pi
king up the leftmost bran
h in ea
h orbit , that is,the fun
tion S : B(T ) → B(T ) de�ned by

S(α) = β i� ((α, β) ∈ EG ∧ (∀γ ∈ B(T ))((α, γ) ∈ EG ⇒ β � γ)),is a 
ontinuous sele
tor for EG and the image of S is a 
losed trans-versal of this relation.
(1) Our lemma also resembles Theorem 5.4.3 of [8℄.



292 B. MAJCHER-IWANOWProof. To prove (a) and (b) noti
e that ea
h orbit is a 
ontinuous imageof a 
ompa
t spa
e G. Hen
e it is a 
ompa
t subset of the 
ompa
t spa
e
B(T ) and thus it is 
losed.On the other hand, EG is the 
ontinuous image of the 
ompa
t spa
e
B(T ) ×G under the fun
tion B(T ) ×G → B(T ) × B(T ) given by (δ, g) 7→
(δ, g(δ)).(
) Suppose that (αn) is a sequen
e of elements of B(T ) 
onvergent tosome α ∈ T . We shall prove that S(αn) → S(α). Sin
e B(T ) is a 
om-pa
t spa
e, it su�
es to show that the limit of ea
h 
onvergent subse-quen
e of (S(αn)) is exa
tly S(α). Passing to a subsequen
e if ne
essary,we may assume that the sequen
e (S(αn)) is already 
onvergent and let
limn→∞ S(αn) = β. For every n ∈ N, we have (αn, S(αn)) ∈ EG and then
(α, β) ∈ EG, sin
e EG is 
losed. Hen
e S(α) � β and there is some g ∈ G su
hthat g(β) = S(α). Sin
e g is 
ontinuous we have limn→∞ g(S(αn)) = g(β).Sin
e S(αn) � g(S(αn)) for every n ∈ N, we have β � S(α). Thus β = S(α),whi
h 
ompletes the proof of the �rst part.To prove the se
ond part, noti
e that the image of S is the image of a
ompa
t spa
e under a 
ontinuous fun
tion.Given n ∈ N and α ∈ B(T ), we say that n is a bran
hing point of
α ∈ B(T ) if there is some δ ∈ [α] su
h that α|n = δ|n but α(n) 6= δ(n).Obviously, αEGβ implies that n ∈ N is a bran
hing point of α if and only ifit is a bran
hing point of β. So we will say that n ∈ N is a bran
hing pointof an orbit if it is a bran
hing point of some (any) of its elements.The EG-orbit of α ∈ B(T ) has 
ardinality < 2ℵ0 if and only if the set ofits bran
hing points is �nite. Now the following formula des
ribes the unionof all EG-
lasses of 
ardinality < 2ℵ0 :

(∃n ∈ N)(∀g, g′ ∈ G)(g(α) 6= g′(α) ⇒ (∃m ≤ n)(g(α(m)) 6= g′(α(m))).As a result we have the following lemma.Lemma 5. (a) Any 
lass of EG of 
ardinality < 2ℵ0 is �nite.(b) The union of all EG-
lasses of 
ardinality < 2ℵ0 is an invariant Fσ-set.(
) Let α ∈ B(T ). The orbit of α is in�nite if and only if the set ofits bran
hing points is in�nite. The union of all in�nite orbits is aninvariant Gδ-set.Following Ke
hris [6℄, we 
all the set from part (b) of the lemma the
ountable part of EG and the set from part (
) the 
ontinuous part of EG.The following example shows that we 
annot 
laim that the 
ountablepart is a Gδ-set.
Example. Consider 2<N. Let g ∈ Iso(2<N) be de�ned as follows. At level2 let g a
t as an adding ma
hine: g(ab) = 10 + ab (from left to right), a, b ∈
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{0, 1}. At level 3 let g de�ne two 
y
les 
orresponding to the rule g(abc) =
(10 + ab)c. Moreover one of them extends to a g-
y
le on 2N 
onsisting offour elements: g(ab000 . . .) = (10 + ab)000 . . . .For any sequen
e n1, . . . , nk of numbers from N the g-image of the element

ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak,where ni is the number of zeros in the blo
k of zeros following ai−1, is de�nedas follows. Let b′a′0a′1 . . . a′k be the 2-adi
 sum (from left to right) of 100 . . . 0and ba0a1 . . . ak (restri
ted to sequen
es of length k + 2). Then let
b′a′00 . . . 01a′10 . . . 01a′20 . . . 01 . . . 01a′kbe the g-image of
ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak.We assume that g naturally extends to the 
y
le of length 2k+2 on 2N by

g(ba00 . . . 01a10 . . . 01a20 . . . 01 . . . 01ak000 . . .)

= b′a′00 . . . 01a′10 . . . 01a′20 . . . 01 . . . 01a′k000 . . .By this pro
edure we obtain an a
tion of 〈g〉 on 2N su
h that the union ofall �nite orbits 
oin
ides with Z = {̺ ∈ 2N : ∃n∀i(̺(n+ i) = 0)}. It is 
learthat the set Z is the union of all �nite orbits of the pro�nite 
ompletion 〈g〉∗.On the other hand, Z as well as its 
omplement 2N \ Z are dense subsets of
2N; thus by the Baire Category Theorem, Z is not Gδ.Theorem 6. Let T be a lo
ally �nite rooted tree. Let G be a 
losed sub-group of Iso(T ), EG be the 
orresponding orbit equivalen
e relation on B(T )and U ⊆ B(T ) be the 
ontinuous part of that relation. Let Z be the inter-se
tion of U with the 
losed transversal S(B(T )) of EG where S is de�nedas in Lemma 4. Then Z is a Gδ transversal of EG|U su
h that there is ahomeomorphism φG : Z × 2N → U satisfying

(φG((z, δ)), φG((z′, δ′))) ∈ EG|U ⇔ z = z′.Proof. We use the strategy of [6℄, although our proof does not use anyinvolved material.It follows from Lemma 5 that the 
ontinuous part U of EG is a Gδ-set.For given z ∈ Z, let Tz be the tree 
onsisting of all α|n with α ∈ [z] and
n ∈ N. Observe that the elements of Tz of level n form the G-orbit of α|n+1.Then it is 
lear that Tz is spheri
ally homogeneous. Let ψTz : B(Tz) → 2Nbe the 
orresponding 
oding fun
tion de�ned in Lemma 3. We now de�nethe required fun
tion φG : Z × 2N → U by φG(z, δ) := ψ−1

Tz
(δ).By Lemmas 2 and 3, ψTz 
an be 
onsidered as a 1-1 fun
tion on Tzsatisfying the following 
onditions:

(1) (∀s,s′ ∈Tz)((s⊆ s′⇔ψTz (s)⊆ψTz (s
′))∧ (s≺ s′ ⇔ψTz(s)≺ψTz (s

′)));

(2) (∀n)(∀δ∈ 2N)(∃s∈Tz)(ψTz(s)|n = δ|n).
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an be equivalently de�ned (for an appropriate sequen
e (ni)) by
φG(z, δ) = lim

ni→∞
ψ−1

Tz
(δ|ni

).Noti
e that for every z ∈ Z we have φG(z, 0̄) = z, where 0̄ is the sequen
e ofzeros. It easily follows from properties (1)�(2) that the fun
tion is a bije
tion.The inverse fun
tion φ−1
G : U → Z × 2N is a pair of fun
tions (S, F ) su
hthat S is the restri
tion of the sele
tor de�ned in Lemma 4 to U . Note that,by Lemma 4, S is 
ontinuous (and by (1), φG is 
ontinuous in the se
ond
oordinate). We shall prove that φ−1

G is 
ontinuous.Suppose that {βn} is a sequen
e of elements of U 
onvergent to some
β ∈ U . By Lemma 4, limn→∞ S(βn) = S(β). Let l be a natural number. Forevery i there is a natural number mi su
h that for every n > mi, βn agreeswith β at level i. Sin
e Tβ(i) is the G-orbit of β|i+1, Tβn

(i) 
oin
ides with
Tβ(i). Then 
hoosing i large enough and n > mi we have, for γ = βn,

F (β)|l = ψTβ
(β|i)|l = ψTγ (γ|i)|l = F (γ)|l.Hen
e limn→∞ F (βn) = F (β). Sin
e a 
ontinuous bije
tion between 
ompa
tspa
es is a homeomorphism, we 
on
lude that φG is a homeomorphism.2. Lo
ally 
ompa
t groups of homeomorphisms of the spa
e

B(T ). In this se
tion we prove our main results. We shall 
onsider two typesof subgroups of the group of all homeomorphisms of the boundary spa
e B(T )of the tree T and their natural a
tions on B(T ).2.1. Thompson's type groups. Let T be a lo
ally �nite rooted tree. Wewill study orbit equivalen
e relations indu
ed on B(T ) by lo
ally 
ompa
tgroups of Thompson's type permutations.We start with an example of a non-
ompa
t 
losed subgroup of TH(2N)whi
h is lo
ally 
ompa
t with respe
t to the standard tree topology (seePreliminaries). It is worth noting that this group 
annot be a subgroup of
Iso(2N), be
ause all 
losed isometry subgroups are 
ompa
t.
Example. Consider 2<N. Let r : 2<N → 2<N be the right shift fun
-tion w 7→ 1⌢w, w ∈ 2<N. For every n ≥ 1 we de�ne by indu
tion a set

Cn ⊂ 2<N 
onsisting of 2n−1 elements. The de�nition depends on an appro-priate fun
tion q : 2<N → 2<N. Let C1 = {q(∅)}, C2 = {q(0), q(1)}, where
q(∅) = 10, q(0) = 1100, q(1) = 1101. At Step n + 1 let q(a1 . . . an−1b) =
r(q(a1 . . . an−1))b, where ai ∈ {0, 1} and b ∈ {0, 1}, and let Cn+1 
onsist ofall q(a1 . . . an), ai ∈ {0, 1}.Let c be the 1-letter word 0. We now de�ne by indu
tion permutations
gn on {c} ∪ C1 ∪ · · · ∪Cn ∪ · · · , whi
h are 
y
li
 on {c} ∪ C1 ∪ · · · ∪ Cn andpreserve ea
h Cm with m > n. We demand that g1(c) = q(∅), g1(q(∅)) = cand gn−1 = g2

n. For ea
h l ≥ 1 the permutation gn on Cn+l is de�ned bythe following rule. Let a′1 . . . a′l−1a
′
la

′
l+1 . . . a

′
n+l−1 be the 2-adi
 sum (from



EQUIVALENCE RELATIONS 295left to right) of 0 . . . 010 . . . 0 and a1 . . . al−1alal+1 . . . an+l−1 (restri
ted tosequen
es of length n+ l−1). Then let gn(q(a1 . . . al−1alal+1 . . . an+l−1)
⌢w)be q(a′1 . . . a′l−1a

′
la

′
l+1 . . . a

′
n+l−1)

⌢w, where w ∈ 2<N.For elements v ∈ {c} ∪ C1 ∪ · · · ∪ Cn we de�ne gn as follows. Let gn(c)be the q-image of the (n− 1)-tuple 00 . . . 0. The rest of the de�nition of gnon {c} ∪ C1 ∪ · · · ∪ Cn follows from the assumption that g2
n = gn−1 and thede�nition of gn−1 on Cn and {c} ∪C1 ∪ · · · ∪Cn−1. For elements of the form

v⌢w with v ∈ {c}∪C1∪· · ·∪Cn and w ∈ 2<N we de�ne gn(v⌢w) = gn(v)⌢w.If an element u ∈ 2<N 
annot be represented as a subword of a word ofthe form v⌢w with v ∈ {c} ∪ C1 ∪ · · · ∪ Ck ∪ · · · and w ∈ 2<N we de�ne
gn(u) = u (this is the 
ase of 111 . . .).As a result we obtain an a
tion of the Prüfer group C2∞ on 2<N and thuson 2N. We 
onsider C2∞ as a topologi
al group under the topology indu
edfrom its a
tion, thus under the standard tree topology. The group C2∞ isdis
rete under this topology. Indeed for any n the element gn is determineduniquely by its a
tion on the set {c} ∪ C1 ∪ · · · ∪ Cn−1.Lemma 7. Let G < TH(B(T )). For every n ∈ ω de�ne Gn = {f ∈ G :
f is de�ned by some sequen
es (si)i<l and (ti)i<l as in De�nition 1 with
max{lh(si), lh(ti) : i < l} ≤ n}. Then (Gn)n∈ω is an in
reasing sequen
eof 
losed subgroups of G su
h that G =

⋃
nGn and the equivalen
e relationindu
ed by G on B(T ) is the union of the equivalen
e relations indu
ed by Gnon B(T ). If G is lo
ally 
ompa
t with respe
t to the standard tree topology ,then all Gn are open in G. In this 
ase G0 has a subgroup H of 
ountableindex whi
h is a 
losed subgroup of Iso(T ).Proof. The �rst part of the lemma is obvious. Now assume that G islo
ally 
ompa
t. Then G is a Baire spa
e. Therefore there is a natural number

k su
h that for every n ≥ k, Gn is not meager. Then, by Pettis' Theorem,
Gn is open for every n ≥ k.Let n < k and f ∈ Gn. Sin
e f ∈ Gk, there is m ≥ k su
h that thebasi
 open set (f |m) is 
ontained in Gk. Thus there are sequen
es (si) and
(ti) of the same length su
h that maxi,j(si, tj) ≤ k and any g ∈ (f |m) isde�ned (as in De�nition 1) by the map si 7→ ti and appropriate isometries ofthe 
orresponding subtrees. Sin
e f ∈ Gn, there are sequen
es (sf

i ) and (tfi )su
h that maxi,j(s
f
i , t

f
j ) ≤ n and f is determined by the map sf

i 7→ sf
i andappropriate isometries of the 
orresponding subtrees. In parti
ular the map

si 7→ ti 
an be realized by sf
i 7→ tfi and appropriate isometries. This impliesthat (f |m) ⊆ Gn. We see that Gn is open.Sin
e G is lo
ally 
ompa
t, there is a 
ompa
t subgroup H < G0 of
ountable index. Thus H is 
losed in Iso(T ).



296 B. MAJCHER-IWANOWLemma 8. Let G be a lo
ally 
ompa
t group of Thompson's type homeo-morphisms and EG be the equivalen
e relation on B(T ) indu
ed by the natu-ral a
tion of G on that spa
e. Let GB := H be the 
losed subgroup of Iso(T )de�ned in Lemma 7.(a) Let C ⊆ B(T ) be the 
losed transversal of the GB-orbit equivalen
erelation de�ned by an appli
ation of Lemma 4 to GB. Then any 
lassof EG has a non-empty 
ountable interse
tion with C.(b) Any 
lass of EG of 
ardinality < 2ω is the union of a 
ountablefamily of �nite EGB
-
lasses. Any un
ountable EG-
lass is the unionof a 
ountable family of un
ountable EGB

-
lasses. In parti
ular the
ontinuous part of EG 
oin
ides with the 
ontinuous part of EGB
, theyare G-invariant Gδ-sets and the union of all EG-
lasses of 
ountable
ardinality is a G-invariant Fσ-set.Proof. (a) Observe that C is a se
tion of the equivalen
e relation indu
edby G. We 
laim that C is a 
ountable se
tion. By Lemma 7, G0 is a 
lopensubgroup of G, thus it is of 
ountable index in G, so GB is of 
ountable indexin G. Suppose that there is some α ∈ C su
h that [α]G ∩ C is un
ountable.Then there are two distin
t elements fα, hα ∈ C su
h that f, h are in thesame 
oset of GB . Hen
e fh−1 ∈ GB and fα = fh−1(hα). Thus C 
ontainstwo distin
t elements fα, hα from the same GB-orbit, whi
h 
ontradi
ts thefa
t that C is a transversal.(b) Let α ∈ B(T ), [α]GB

be the 
lass of α with respe
t to the GB-a
tionand A be a 
ountable set of representatives of all right 
osets of GB in G.We have [α]G =
⋃

g∈A g([α]GB
). Then we are done by Lemma 5.Theorem 9. Let G < TH(B(T )) be a lo
ally 
ompa
t group, EG bethe 
orresponding orbit equivalen
e relation on B(T ) and U ⊆ B(T ) be the
ontinuous part of the relation. Then there is a Gδ set Z whi
h is a 
ountablese
tion of EG|U and a homeomorphism φG : Z × 2N → U su
h that

(φG((z, δ)), φG((z′, δ′))) ∈ EG|U ⇔ zEGz
′.Proof. It follows from Lemma 8 that the 
ontinuous part U of EG is a

Gδ-set and 
oin
ides with the 
ontinuous part of EGB
. Let C be the 
ountablese
tion of EG de�ned in the proof of this lemma. Then Z = C∩U is a Gδ-setwhi
h is a 
ountable se
tion of EG|U .Now let φGB

: Z × 2N → U be the homeomorphism de�ned in the proofof Theorem 6 applied to GB . Sin
e (φGB
((z, δ)), z) ∈ EG for every z and

δ ∈ B(T ), it satis�es the assertion of the theorem.2.2. Lo
al isometriesDefinition 10. Let f : B(T ) → B(T ) be a homeomorphism, α ∈ B(T )and n ∈ ω.



EQUIVALENCE RELATIONS 297(a) We say that n stabilizes f on α if for every β and γ from the basi
open set (α|n) we have
d(β, γ) = d(f(β), f(γ)).(b) We say that n destabilizes f on α if there are β, γ ∈ (α|n) su
h that

d(β, γ) = 2−(n+1) whereas d(f(α), f(β)) 6= 2−(n+1).It is obvious that for given α, f and n as above, n stabilizes f on α exa
tlywhen no k ≥ n destabilizes f on any β ∈ (α|n).Definition 11. We say that a homeomorphism f : B(T ) → B(T ) is alo
al isometry if for every α ∈ B(T ) there is n ∈ ω stabilizing f on α.It is 
lear that this de�nition just says that for every δ ∈ B(T ) there existsa neighbourhood U su
h that d(x1, x2) = d(f(x1), f(x2)) for all x1, x2 ∈ U .We denote the group of all lo
al isometries of B(T ) by LI(B(T )). At the 
on-feren
e �Groups and Group Rings 10� (Ustro«, 2003), Yaroslav Lavrenyuk(Kiev) has announ
ed that the 
entre of this group is trivial and any auto-morphism of LI(B(T )) is indu
ed by a 
onjugation.The following observation shows that a lo
al isometry is a Thompson'stype homeomorphism of B(T ).Lemma 12. Let f : B(T ) → B(T ) be a lo
al isometry. There is a naturalnumber n whi
h stabilizes f on every α ∈ B(T ). Thus f is a Thompson'stype homeomorphism where the sequen
e (si) 
oin
ides with the sequen
e (ti)and 
onsists of all elements of T of length n.Proof. We have to show that the set of natural numbers k su
h that kdestabilizes f on some α ∈ B(T ) is �nite. Otherwise by König's Lemma,there would be α ∈ B(T ) su
h that the set of natural numbers k whi
hdestabilize f on α is in�nite. The latter 
ontradi
ts the assumption that fis stabilized on α by some natural n.It is easy to verify that LI(B(T )) is a 
losed subgroup of TH(B(T )). FromLemma 12 we see that Theorem 9 holds for all lo
ally 
ompa
t subgroups of
LI(B(T )).We �nish this se
tion with an example of a lo
ally 
ompa
t (with respe
tto the tree topology) group of lo
al isometries whi
h is not 
ompa
t. In thisexample the subgroup H arising in Lemma 7 is un
ountable.
Example. We de�ne the sequen
e (gn) of lo
al isometries of the bound-ary spa
e 2N of the binary tree as follows:
g0 = id,

gn(0011 . . . 110︸ ︷︷ ︸
length n+1

⌢α) = 1100 . . . 001︸ ︷︷ ︸
length n+1

⌢α,
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gn(1100 . . . 001︸ ︷︷ ︸

length n+1

⌢α) = 0011 . . . 110︸ ︷︷ ︸
length n+1

⌢α,

gn(s⌢α) = s⌢α for any s ∈ 2n+1 \ {1100 . . . 001︸ ︷︷ ︸
length n+1

, 0011 . . . 110︸ ︷︷ ︸
length n+1

}.

Now, let G < LI(2N) be the group generated by the group GL = 〈gn :
n ∈ ω〉 and the group GI of all isometries �xing all δ ∈ 2N of the form 00⌢δ′and 11⌢δ′. Sin
e no �nite union of basi
 
lopen sets of the form (g|n+1)
overs {gn : n ∈ ω}, we see that G is not 
ompa
t with respe
t to the treetopology. We are going to show that G is lo
ally 
ompa
t. Observe that GIis 
ompa
t, G = GL ⊕ GI and GL is an abelian group of exponent 2. Takeany g ∈ GL. Let n0 < n1 < · · · < nk be an in
reasing sequen
e of naturalnumbers su
h that g = gnk

gnk−1
. . . gn0 . We 
laim that (g|nk+1) is a 
om-pa
t neighbourhood of g. To prove this suppose that h ∈ (g|nk+1) ∩ G. Wehave

h(0011 . . . 11︸ ︷︷ ︸
length nk+1

⌢α) = 0011 . . . 11︸ ︷︷ ︸
length nk+1

⌢α for any α ∈ 2ω.

Hen
e if h ∈ gml
gmk−1

. . . gm0 +GI then ml ≤ nk. Indeed, otherwise we havethe following 
ontradi
tion with the equality above:
h(0011 . . . 11︸ ︷︷ ︸

lengthnk+1

⌢ 11 . . . 10︸ ︷︷ ︸
length ml−nk

⌢α)

= gml
(0011 . . . 11︸ ︷︷ ︸

length nk+1

⌢ 11 . . . 10︸ ︷︷ ︸
length ml−nk

⌢α)

= 1100 . . . 00︸ ︷︷ ︸
length nk+1

⌢ 00 . . . 01︸ ︷︷ ︸
length ml−nk

⌢α for any α ∈ 2ω.

We now see that (g|nk+1) is 
ontained in the subgroup 〈gn : n ≤ nk〉 ⊕ GIand thus is 
ompa
t. The group GI 
an be taken as GB in Lemma 8.3. Universal properties of B(T ). We 
lose the paper with two remarks
on
erning the universal 
hara
ter of the spa
e B(T ) viewed as a G-spa
efor various G < Iso(T ). Let us re
all some terminology.Let G be a Polish group. Any Borel spa
e U with a Borel measurablea
tion a : G × U → U is 
alled a Borel G-spa
e. For two Borel G-spa
es
U1, U2, we say that U1 is Borel embeddable into U2 if there is a Borel measur-able, one-to-one map π : U1 → U2 su
h that π(g(x)) = g(π(x)) for every
g ∈ G and x ∈ U1. A Borel G-spa
e U is universal if any Borel G-spa
e U
an be Borel embedded into U .The following example of a universal Borel G-spa
e is given by H. Be
kerand A. Ke
hris in [2℄. By F(G) we denote the standard Borel spa
e of 
losedsubsets of G with the E�ros Borel stru
ture. It is proved in [2℄ that
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(F(G))N with the left a
tions of G by g(Fn)n∈ω = (gFn)n∈ω is auniversal Borel G-spa
e.Our observation 
on
erns a
tions of pro�nite groups.Proposition 13. For any 
ountably based pro�nite group G, there is alo
ally �nite tree T and an isometri
 a
tion of G on T su
h that the G-spa
e
B(T ) is a universal Borel G-spa
e.Proof. Let G be a 
ountably based pro�nite group. We want to showthat there is a lo
ally �nite tree T and an isometri
 a
tion of G on T su
hthat the universal Borel G-spa
e UG = (F(G))N with the left a
tion of G
an be Borel embedded into B(T ) with this a
tion.By Proposition 4.1.3 of [10℄, there is a 
hain of open normal subgroups
G = M0 ≥ M1 ≥ · · · su
h that the set of all their 
osets forms a base of G.For every i ∈ N let ni = |G : Mi| and {Aij : j < 2ni} be any enumerationof the set of all unions of subfamilies of the family of 
osets of Mi. Let Tbe the spheri
ally homogeneous tree su
h that for every i > 1, any point atlevel i−1 has valen
y 2ni +1 (the root has valen
y 2n1). De�ne an isometri
a
tion of G on T as follows. Let g ∈ G. For s, s′ ∈ T (n) put g(s) = s′ i�
(∀i ≤ n)(gAis(i) = Ais′(i)).We now want to de�ne a G-embedding of (F(G))N into B(T ). First, toevery F ∈ F(G) and i ∈ N, we assign a natural number jiF < 2ni su
h that
F ⊆ AijiF

and (∀j < 2ni)(F ⊆ Aij ⇒ AijiF
⊆ Aij). Also �x some f : N → Nsu
h that for every natural i, we have i + 1 > f(i + 1) and the preimage

f−1[i] is in�nite.We de�ne an embedding π : (F(G))N → B(T ) as follows. For every
(Fi)i∈ω ∈ (F(G))N, we put
π((F0, F1, . . . , Fi, . . .)) = α i� α ∈ B(T ) and (∀i ∈ N)(α(i) = jiFf(i)

).It is 
lear that π is inje
tive. By a straightforward argument we see that forevery (Fi)i∈ω ∈ (F(G))N and g ∈ G,
π(g(F0, . . . , Fi, . . .)) = g(π(F0, . . . , Fi, . . .)).To prove π is a Borel map 
onsider preimages of basi
 open sets of theform (j1j2 . . . ji), where j1j2 . . . ji ∈ ∏

l≤i{0, 1, . . . , 2
nl − 1} for some naturalnumber i. We have

π−1[(j1j2 . . . ji)] = {(Fi)i∈ω ∈ (F(G))N :

(∀l ≤ i)((Ff(l) ⊆ Aljl
) ∧ (∀k < 2nl)(∅ 6= Alk ⊆ Aljl

⇒ Ff(l) ∩Alk 6= ∅))},whi
h is a Borel subset of (F(G))N.Our �nal observation does not 
on
ern 
losed subgroups of Iso(B). Itreveals a variety of di�erent a
tions of 
ountable subgroups of Iso(T ) on thespa
e B(T ). We transfer the example of S. Thomas of two in
omparable
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tions of the same 
ountable group to our 
ontext. We need some moreterminology.Given two Borel equivalen
e relations E1, E2 on X1 and X2 respe
tively,we say that E1 is Borel redu
ible to E2 if there is a Borel measurable fun
tion
f : X1 → X2 su
h that xE1 y ⇔ f(x)E2 f(y), for all x, y ∈ X1. We saythat E1 and E2 are in
omparable if neither E1 is redu
ible to E2, nor E2 isredu
ible to E1.Let n ≥ 3 be some �xed odd integer, J ⊆ P be a non-empty subsetof primes and let {p1, p2, . . . , pi, . . .} be the in
reasing enumeration of J .Put

K(J) =
∏

i∈N

SLn(Zpi
),where Zp is the ring of p-adi
 integers. The group SLn(Z) 
an be regardedas a subgroup of K(J) via the diagonal embedding. Then it naturally a
tson K(J) via left translations. Let EJ denote the orbit equivalen
e relationarising from that a
tion. In [9℄ S. Thomas has proved the following theo-rem.Let J1 6= J2 be two distin
t non-empty subsets of primes. Then EJ1and EJ2 are in
omparable Borel equivalen
e relations.Observe that SLn(Zp) is a pro�nite group with respe
t to the 
anoni
almaps πr : SLn(Zp) → SLn(Zp/p

r
Zp), r > 0, determined by applying thequotient maps Zp → Zp/p

r
Zp to ea
h matrix entry (see [10℄ for details). Thepro�nite topology on SLn(Zp) is given by the family of 
osets of open normalsubgroups

Kp
r = Ker(πr) = {g ∈ SLn(Zp) : g − 1 ∈ prSLn(Zp)}, r > 0.Then also K(J) is a pro�nite group endowed with a sequen
e K(J) = M0 >

M1 > · · · > Mi > · · · of open normal subgroups of the form
Mi = Kp1

i × · · · ×Kpi

i × SLn(Zpi+1) × SLn(Zpi+2) × · · · , i ∈ N,whose 
osets form a base of the topology on K(J).For every i > 0, let ni = |Mi−1 : Mi| and {gij : j < ni} be an enumer-ation of some transversal of the family of all 
osets of Mi in Mi−1. Thenwe have Mi−1 =
⋃

j<ni
gijMi and K(J) =

⋃
{g1j1g2j2 . . . giji

Mi : j1 < n1,
. . . , ji < ni}.Let T be a lo
ally �nite spheri
ally homogeneous rooted tree su
h that forevery i>1 any vertex of level i−1 has valen
y ni+1 (the root is of valen
y n1).For every x ∈ K(J), every i ∈ N and l < i, there is exa
tly one jl(x) < nlsu
h that x ∈ g1j1(x) . . . giji(x)Mi. Hen
e x = limi→∞ g1j1(x) . . . giji(x). Wede�ne π : K(J) → B(T ) by πJ(x) = limi→∞ j1(x) . . . ji(x).It is easily seen that π is a homeomorphism. Moreover, for every g ∈
SLn(Z) < K(J) there is exa
tly one ĝ ∈ Iso(T ) su
h that πJ(g(x)) =
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ĝ(πJ(x)) for every x ∈ K(J). So, the fun
tion σJ : g → ĝ is an isomorphi
embedding of SLn(Z) into Iso(T ). Denote by GJ the image of σJ . Then theequivalen
e relation arising from the a
tion of SLn(Z) on K(J) is isomorphi
to the equivalen
e relation arising from the a
tion of GJ on B(T ).Let J1 6= J2 be any non-empty subsets of primes. Then GJ1 and GJ2are isomorphi
 subgroups of Iso(T1) and Iso(T2) respe
tively. A

ording toS. Thomas, the 
orresponding equivalen
e relations on B(T1) and B(T2) arein
omparable.Thus, we have obtained the following variant of Thomas' theorem.Proposition 14. There are lo
ally �nite rooted trees T1 and T2 and twoisomorphi
 �nitely generated subgroups G1 < Iso(T1), G2 < Iso(T2) su
h thatthe orbit equivalen
e relations E1 and E2 arising from the isometry a
tionsof these groups on B(Ti) are in
omparable with respe
t to Borel redu
ibility.
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