COLLOQUIUM MATHEMATICUM

ODD PERFECT NUMBERS OF A SPECIAL FORM

BY
TOMOHIRO YAMADA (Kyoto)

Abstract

We show that there is an effectively computable upper bound of odd perfect numbers whose Euler factors are powers of fixed exponent.

1. Introduction. We denote by $\sigma(N)$ the sum of divisors of N. We say that N is perfect if $\sigma(N)=2 N$. Though it is not known whether or not an odd perfect number exists, many conditions which must be satisfied by such a number are known. Suppose N is an odd perfect number. Euler has shown that $N=p^{\alpha} q_{1}^{2 \beta_{1}} \cdots q_{t}^{2 \beta_{t}}$ for distinct odd primes p, q_{1}, \ldots, q_{t} with $p \equiv \alpha \equiv 1$ $(\bmod 4)$. Steuerwald $[12]$ proved that we cannot have $\beta_{1}=\cdots=\beta_{t}=1$. McDaniel [8] proved that we cannot have $\beta_{1} \equiv \cdots \equiv \beta_{t} \equiv 1(\bmod 3)$. If $\beta_{1}=\cdots=\beta_{t}=\beta$, then it is known that $\beta \neq 2$ (Kanold $[6]$), $\beta \neq 3$ (Hagis and McDaniel [5]), $\beta \neq 5,12,17,24,62$ (McDaniel and Hagis [9]), and $\beta \neq 6,8,11,14,18$ (Cohen and Williams [2]). In their paper [5], Hagis and McDaniel conjecture that $\beta_{1}=\cdots=\beta_{t}=\beta$ does not occur. We have not been able to prove this conjecture. But we can prove that for any fixed β, all of the odd perfect numbers N can be effectively determined. Our result is as follows.

THEOREM 1.1. Let $\beta \geq 1$. If $N=p^{\alpha} q_{1}^{2 \beta} \cdots q_{t}^{2 \beta}$ is an odd perfect number, then

$$
\begin{equation*}
\omega(N) \leq 4 \beta^{2}+2 \beta+3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N \leq 2^{4^{4 \beta^{2}+2 \beta+3}} \tag{2}
\end{equation*}
$$

2. Lemmas. Let us denote by $v_{p}(n)$ the solution e of $p^{e} \| n$. For distinct primes p and q, we denote by $o_{q}(p)$ the exponent of $p \bmod q$ and we define $a_{q}(p)=v_{q}\left(p^{d}-1\right)$, where $d=o_{q}(p)$. Clearly $o_{q}(p)$ divides $q-1$ and $a_{q}(p)$ is a positive integer. Now we quote some elementary properties of $v_{q}\left(\sigma\left(p^{x}\right)\right)$. Lemmas 2.1 and 2.2 are well known. Lemma 2.1 follows from Theorems 94

[^0]and 95 in Nagell [10]. Lemma 2.2 has been proved by Zsigmondy [13] and rediscovered by many authors such as Dickson [4] and Kanold [7].

Lemma 2.1. Let p, q be distinct primes with $q \neq 2$ and c be a positive integer. If $p \equiv 1(\bmod q)$, then $v_{q}\left(\sigma\left(p^{c}\right)\right)=v_{q}(c+1)$. Moreover, if $p \not \equiv 1$ $(\bmod q)$, then $v_{q}\left(\sigma\left(p^{c}\right)\right)=a_{q}(p)+v_{q}(c+1)$ if $o_{q}(p) \mid(c+1)$ and $v_{q}\left(\sigma\left(p^{c}\right)\right)=0$ otherwise.

LEmmA 2.2. If $a>b \geq 1$ are coprime integers, then $a^{n}-b^{n}$ has a prime factor which does not divide $a^{m}-b^{m}$ for any $m<n$, unless $(a, b, n)=(2,1,6)$ or $a-b=n=1$, or $n=2$ and $a+b$ is a power of 2 .

By Lemma 2.2, we obtain the following lemmas.
Lemma 2.3. Suppose p is a prime and n is a positive integer. If $d \mid(n+1)$, $d>1$ and (p, d) satisfies neither $(p, d)=(2,6)$ nor $(p, d)=\left(2^{m}-1,2\right)$ for some integer m, then there exists a prime q with $o_{q}(p)=d$ and $q \mid \sigma\left(p^{n}\right)$.

Proof. We can apply Lemma 2.2 with $(a, b)=(p, 1)$ and we see that there exists a prime p such that $o_{p}(q)=d$. Furthermore, q does not divide $p-1$ since $o_{p}(q)=d>1$. On the other hand, q divides $p^{n+1}-1$ since $1<d \mid(n+1)$. Hence $q \mid \sigma\left(p^{n}\right)$.

Lemma 2.4. If p is a prime and n is a positive integer, then $\omega\left(\sigma\left(p^{n}\right)\right) \geq$ $\tau(n+1)-1$ unless $p=2$ and $n \equiv 5(\bmod 6)$, or p is a Mersenne prime and n is odd.

Proof. If $d \mid(n+1)$ and $d \neq 1$, then (p, n, d) satisfies the condition of Lemma 2.3. Hence $\sigma\left(p^{n}\right)$ has a prime factor q_{d} satisfying $o_{p}\left(q_{d}\right)=d$. Thus we have $\omega\left(\sigma\left(p^{n}\right)\right) \geq \#\{d: d \mid(n+1), d>1\}=d(n+1)-1$.

The following is Lemma 2 of Danpat, Hunsucker and Pomerance [3].
Lemma 2.5. If p, q are distinct primes with $q \neq 2$ satisfying $\sigma\left(q^{x}\right)=p^{y}$ for some positive integers x, y, then $p \equiv 1(\bmod q)$ or $a_{q}(p)=1$.

From this lemma and Lemma 2.1, we immediately deduce the following result.

Lemma 2.6. Let p, q be distinct primes satisfying the condition of Lemma 2.5 and $q^{f} \mid \sigma\left(p^{e}\right)$. Then $q^{f-1} o_{q}(p)$ divides $e+1$.

Proof. By Lemma $2.5, p \equiv 1(\bmod q)$ or $a_{q}(p)=1$. If $p \equiv 1(\bmod q)$, then $q^{f} \mid \sigma\left(p^{e}\right)$ implies $q^{f}=q^{f} o_{q}(p) \mid(e+1)$ by Lemma 2.1. If $a_{q}(p)=1$, then $o_{q}(p) \mid(e+1)$ and $v_{q}(e+1) \geq f-a_{q}(p)=f-1$ by Lemma 2.1. In both cases, $q^{f-1} o_{q}(p)$ divides $e+1$.

Moreover, we quote a result of Kanold [6].

LEMMA 2.7. Let $N=p^{\alpha} q_{1}^{2 \beta_{1}} \cdots q_{r}^{2 \beta_{r}}$ be an odd perfect number and l be a common divisor of $2 \beta_{1}+1, \ldots, 2 \beta_{r}+1$. Then $l^{4} \mid N$. Moreover, if l is a power of a prime q, then $p \neq q$.
3. Proof of Theorem 1.1. Let $N=p^{\alpha} q_{1}^{2 \beta} \cdots q_{r}^{2 \beta}$ be an odd perfect number.

First assume that $2 \beta+1=l^{\gamma}$, where l is a prime and γ is a positive integer. Various results recalled in the Introduction allow us to assume that $\beta \geq 8$ without loss of generality.

By Lemma 2.7, $p \neq l$ and $l^{4 \gamma}$ divides N. Hence $l=q_{i_{0}}$ for some i_{0} and $v_{l}(N)=2 \beta$. We divide q_{1}, \ldots, q_{r} into four disjoint sets. Let

$$
\begin{aligned}
S & =\left\{i: q_{i} \equiv 1(\bmod l)\right\} \\
T & =\left\{i: q_{i} \not \equiv 1(\bmod l), i \neq i_{0}, q_{j} \mid \sigma\left(q_{i}^{2 \beta}\right) \text { for some } 1 \leq j \leq r\right\} \\
U & =\left\{i: q_{i} \not \equiv 1(\bmod l), i \neq i_{0}, q_{j} \nmid \sigma\left(q_{i}^{2 \beta}\right) \text { for any } 1 \leq j \leq r\right\}
\end{aligned}
$$

Then $i \in S \cup T \cup U \cup\left\{i_{0}\right\}$ and thus we have

$$
\begin{equation*}
r \leq \# S+\# T+\# U+1 \tag{3}
\end{equation*}
$$

Lemma 3.1.

$$
\# S \leq 2 \beta
$$

Proof. For $i \in S$, we have $l \mid \sigma\left(q_{i}^{2 \beta}\right)$ by Lemma 2.1. Hence

$$
\# S \leq v_{l}\left(\prod_{i \in S} \sigma\left(q_{i}^{2 \beta}\right)\right) \leq v_{l}(2 N)=v_{l}(N)=2 \beta
$$

Lemma 3.2.

$$
\# T \leq(2 \beta)^{2}
$$

Proof. If $i \in T$, then $q_{j} \mid \sigma\left(q_{i}^{2 \beta}\right)$ for some $j \in S$. Hence $\sum_{j \in S} v_{q_{j}}\left(\sigma\left(q_{i}^{2 \beta}\right)\right)$ ≥ 1 for $i \in T$. By Lemma 3.1 we have

$$
\begin{aligned}
\# T & \leq \sum_{i \in T} \sum_{j \in S} v_{q_{j}}\left(\sigma\left(q_{i}^{2 \beta}\right)\right)=\sum_{j \in S} v_{q_{j}}\left(\prod_{i \in T} \sigma\left(q_{i}^{2 \beta}\right)\right) \\
& \leq \sum_{j \in S} v_{q_{j}}(2 N)=\sum_{j \in S} v_{q_{j}}(N) \leq(2 \beta)^{2} .
\end{aligned}
$$

Lemma 3.3.

$$
\# U \leq 1
$$

Proof. If $i \in U$ and q is a prime dividing $\sigma\left(q_{i}^{2 \beta}\right)$, then $q=p$ since $q \mid 2 N$, $\sigma\left(q_{i}^{2 \beta}\right)$ is odd, and $q \neq q_{j}$ for any j. Thus $\sigma\left(q_{i}^{2 \beta}\right)=p^{\zeta_{i}}$ for some positive integer ζ_{i}.

We shall show $q_{i}^{2 \beta} \mid \sigma\left(p^{\alpha}\right)$. If q_{i} divides $\sigma\left(q_{j}^{2 \beta}\right)$ for some j, then q_{i} divides $2 \beta+1=l^{\gamma}$ or $1<o_{q_{i}}\left(q_{j}\right) \mid(2 \beta+1)=l^{\gamma}$ by Lemma 2.1. The former case cannot occur since $q_{i} \neq q_{i_{0}}=l$. If $1<o_{q_{i}}\left(q_{j}\right) \mid(2 \beta+1)=l^{\gamma}$, then $o_{q_{i}}(p)=l^{t}$
for some integer $t>0$ and therefore $q_{i} \equiv 1(\bmod l)$, which is inconsistent with the assumption $q_{i} \in U$. Since $q_{i}^{2 \beta}|N| \sigma(N)$, we conclude that $q_{i}^{2 \beta} \mid \sigma\left(p^{\alpha}\right)$.

We can apply Lemma 2.6 with $(q, f, e)=\left(q_{i}, 2 \beta, \alpha\right)$ and deduce that $q_{i}^{2 \beta-1}$ divides $(\alpha+1) / 2$ since q_{i} is odd and $\alpha \equiv 1(\bmod 4)$. Hence $(\alpha+1) / 2$ must be divisible by $\prod_{i \in U} q_{i}^{2 \beta-1}$ and therefore $d(\alpha+1) \geq 2(2 \beta)^{\# U}$. By Lemma 2.4, we have $\omega\left(\sigma\left(p^{\alpha}\right)\right) \geq 2(2 \beta)^{\# U}-1$.

On the other hand, we have $\omega\left(\sigma\left(p^{\alpha}\right)\right) \leq \omega(N)+1$ since $\sigma\left(p^{\alpha}\right) \mid 2 N$. Thus, from Lemmas 3.1 and 3.2 we obtain

$$
2(2 \beta)^{\# U}-1 \leq \omega(N)+1 \leq \# S+\# T+\# U+3 \leq \# U+(2 \beta)^{2}+2 \beta+3
$$

Since $\# U \leq(2 \beta)^{\# U-1} \leq(2 \beta)^{\# U} / 16$ by the assumption that $\beta \geq 8$, we have

$$
\begin{equation*}
\frac{31}{16}(2 \beta)^{\# U} \leq 2(2 \beta)^{\# U}-\# U \leq(2 \beta)^{2}+2 \beta+4 \leq \frac{21}{16}(2 \beta)^{2} \tag{4}
\end{equation*}
$$

and therefore $\# U \leq 1$.
By Lemmas 3.1-3.3 and by (3), we have $\omega(N) \leq r+1 \leq 4 \beta^{2}+2 \beta+3$, which is the desired result.

Next we assume that $2 \beta+1=l_{1}^{\gamma_{1}} l_{2}^{\gamma_{2}} \cdots l_{s}^{\gamma_{s}}$ with $s \geq 2$, where l_{1}, \ldots, l_{s} are distinct primes. By Lemma 2.7, $l_{i}^{4 \gamma_{i}}$ divides N for each i. This clearly implies that there are at least $s-1$ primes among the l_{i} 's each of which is equal to q_{j} for some j. Hence we may assume that $l_{i}=q_{i}$ for $i=1, \ldots, s-1$.

Let $S=\left\{i: q_{i} \equiv 1\left(\bmod l_{1}\right)\right\}$. As in the prime-power case, we derive that $\# S \leq 2 \beta$. By Lemma 2.4, each $\sigma\left(q_{j}^{2 \beta}\right)$ has at least one prime factor q with $o_{q}\left(q_{j}\right)=d$ for any $d>1$ dividing $2 \beta+1$. If we denote by w the number of divisors of $2 \beta+1$ divisible by l_{1}, then $w=\gamma_{1}\left(\gamma_{2}+1\right) \cdots\left(\gamma_{s}+1\right) \geq 2^{s-1}$. Thus each $\sigma\left(q_{j}^{2 \beta}\right)$ has at least $2^{s-1}-1$ prime factors $\equiv 1\left(\bmod l_{1}\right)$ and different from p, namely, belonging to S.

Hence we conclude that $r \leq 2 \beta \# S /\left(2^{s-1}-1\right) \leq(2 \beta)^{2}$ and therefore $\omega(N) \leq 4 \beta^{2}+1$, which is more than we desired. This completes the proof of the first part of Theorem 1.1.

To obtain the second part of our theorem it remains to apply the result of Nielsen [11], who has shown that $M \leq(d+1)^{4^{l}}$ for any positive integer n, d, M, l satisfying $\sigma(M) / M=n / d$ and $\omega(M)=l$.

REFERENCES

[1] A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70-80 and 130-137.
[2] G. L. Cohen and R. J. Williams, Extensions of some results concerning odd perfect numbers, Fibonacci Quart. 23 (1985), 70-76.
[3] G. G. Dandapat, J. L. Hunsucker and C. Pomerance, Some new results on odd perfect numbers, Pacific J. Math. 57 (1975), 359-364.
[4] L. E. Dickson, On the cyclotomic functions, Amer. Math. Monthly 12 (1905), 86-89.
[5] P. Hagis Jr. and W. L. McDaniel, A new result concerning the structure of odd perfect numbers, Proc. Amer. Math. Soc. 32 (1972), 13-15.
[6] H.-J. Kanold, Untersuchungen über ungerade vollkommene Zahlen, J. Reine Angew. Math. 183 (1941), 98-109.
[7] -, Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme, I, ibid. 187 (1950), 169-182.
[8] W. L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math. (Basel) 21 (1970), 52-53.
[9] W. L. McDaniel and P. Hagis Jr., Some results concerning the non-existence of odd perfect numbers of the form $p^{a} M^{2 \beta}$, Fibonacci Quart. 13 (1975), 25-28.
[10] T. Nagell, Introduction to Number Theory, 2nd ed., Chelsea, New York, 1964.
[11] P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), \#A14.
[12] R. Steuerwald, Verschärfung einer notwendigen Bedingung für die Existenz einen ungeraden vollkommenen Zahl, Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Abt. 1937, no. 2, 69-72.
[13] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto, 606-8502, Japan
E-mail: tyamada@math.kyoto-u.ac.jp

Received 30 November 2004;
revised 16 May 2005

[^0]: 2000 Mathematics Subject Classification: 11A05, 11A25.
 Key words and phrases: odd perfect number.

