COLLOQUIUM MATHEMATICUM

A NOTE ON A CLASS OF HOMEOMORPHISMS BETWEEN BANACH SPACES

BY
PIOTR FIJAŁKOWSKI (Łódź)

Abstract

This paper deals with homeomorphisms $F: X \rightarrow Y$, between Banach spaces X and Y, which are of the form $$
F(x):=\widetilde{F} x^{(2 n+1)}
$$

where $\widetilde{F}: X^{2 n+1} \rightarrow Y$ is a continuous $(2 n+1)$-linear operator.

1. Introduction. Let us assume that X, Y are real Banach spaces, and n a non-negative integer. Let $\widetilde{F}: X^{2 n+1} \rightarrow Y$ be a continuous $(2 n+1)$-linear operator, and let $F: X \rightarrow Y$ be defined by

$$
\begin{equation*}
F(x):=\widetilde{F} x^{(2 n+1)} \tag{1}
\end{equation*}
$$

Suppose F is surjective and satisfies, for some constant $C>0$, the condition

$$
\begin{equation*}
C\|x\|^{2 n}\|h\| \leq\|F(x+h)-F(x)\| \tag{2}
\end{equation*}
$$

for $x, h \in X$. Then it is easy to see that F is a homeomorphism from X onto Y. Note that F which does not satisfy (2) may be a homeomorphism. The mapping $F: C([0,1], \mathbb{R}) \rightarrow C([0,1], \mathbb{R})$ where $F(x):=x^{2 n+1}$ is a simple example.

Nevertheless, the above described class is important because of the following two theorems from [3]:

Theorem 1. Assume $T: X \supset U \rightarrow Y$ is a $C^{2 n+1}$-mapping from an open neighbourhood U of a point $x_{0} \in X$ into Y. Suppose that the derivatives of T satisfy the condition

$$
T^{(k)}\left(x_{0}\right)=0
$$

for all $1 \leq k \leq 2 n$. For $x \in X$, let

$$
F(x):=T^{(2 n+1)}\left(x_{0}\right) \cdot x^{(2 n+1)} /(2 n+1)!
$$

and suppose that F maps X onto Y and satisfies condition (2) for some constant $C>0$. Then T is a local homeomorphism in a neighbourhood of x_{0},

[^0]that is, there exist neighbourhoods $V \subset U$ of x_{0} and W of $T\left(x_{0}\right)$ such that $T \mid V$ is a homeomorphism from V onto W.

Theorem 2. Assume that the norm of X is of class $C^{2 n+1}$ away from zero. Suppose that $F: X \rightarrow Y$ is of the form (1), with a continuous $(2 n+1)$ linear operator $\widetilde{F}: X^{2 n+1} \rightarrow Y$, and does not satisfy condition (2). Then there exists a $C^{2 n+1}$-mapping $r: X \rightarrow Y$ with $r(x)=o\left(\|x\|^{2 n+1}\right)$ for which the mapping $T: X \rightarrow Y$, where $T(x):=f(x)+r(x)$, is not a local homeomorphism in a neighbourhood of zero.
2. Main results. In [3] the following theorem is proved:

Theorem 3. Suppose that $F: X \rightarrow Y$ is of the form (1) with a continuous $(2 n+1)$-linear operator $\widetilde{F}: X^{2 n+1} \rightarrow Y$. Assuming the invertibility of F, condition (2) holds if and only if there exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
C_{1}\|x\|^{2 n}\|h\| \leq\left\|F^{\prime}(x) . h\right\| \tag{3}
\end{equation*}
$$

for $x \in X$ and

$$
\begin{equation*}
F^{\prime}(x) \cdot X=Y \quad \text { for } x \neq 0 \tag{4}
\end{equation*}
$$

It is trivial that (2) implies the injectivity of F, so we can assume only the surjectivity of F in the $" \Rightarrow$ " part of Theorem 3 . We shall show that, in a particular case, one can weaken the assumption in the " \Leftarrow " part of the theorem.

Theorem 4. Suppose that $F: X \rightarrow Y$ is of the form (1) with a continuous $(2 n+1)$-linear operator $\widetilde{F}: X^{2 n+1} \rightarrow Y$. Assume that $\operatorname{dim} X \geq 3$ and F satisfies conditions (3), (4) and is proper, that is, the pre-image under F of any compact set in Y is compact. Then F is invertible.

Proof. Observe that $F(x)=0$ if and only if $x=0$. Indeed, this follows from (3) and the equality

$$
F(x)=F^{\prime}(x) \cdot x /(2 n+1)
$$

Hence, it sufices to prove the invertibility of the mapping

$$
F \mid X \backslash\{0\}: X \backslash\{0\} \rightarrow Y \backslash\{0\}
$$

We shall use the following theorem (see [1, Global Inversion Theorem 1.8]):

TheOrem 5. Let f be a continuous mapping from a metric space M into a metric space N. Assume that f is proper and locally invertible, that is, invertible in a neighbourhood of any point of M. Suppose that M is
arcwise connected and N is simply connected, that is, N is arcwise connected and every closed path in N is homotopic to a constant. Then f is a homeomorphism from M onto N.

It is clear that $F \mid X \backslash\{0\}: X \backslash\{0\} \rightarrow Y \backslash\{0\}$ is proper. The local invertibility of $F \mid X \backslash\{0\}$ follows from (3) and (4) by the Local Inversion Theorem. The metric spaces $M=X \backslash\{0\}$ and $Y \backslash\{0\}$ satisfy the assumptions of Theorem 4. Thus $F \mid X \backslash\{0\}: X \backslash\{0\} \rightarrow Y \backslash\{0\}$ is invertible. Consequently, $F: X \rightarrow Y$ is invertible.

Remark 1. Let us inspect the case of $\operatorname{dim} X \leq 2$. The case of $\operatorname{dim} X=$ $\operatorname{dim} Y=0$ is trivial since the unique F is the zero mapping. In the case $\operatorname{dim} X=\operatorname{dim} Y=1, F$ is of the form

$$
F(x)=\alpha x^{2 n+1}
$$

hence it satisfies conditions (3), (4), and is invertible if $\alpha \neq 0$. The case of $\operatorname{dim} X=\operatorname{dim} Y=2$ is more interesting. Consider the mapping $F: \mathbb{C} \rightarrow \mathbb{C}$,

$$
F(x)=x^{2 n+1}
$$

where the space \mathbb{C} of complex numbers is treated as a real (two-dimensional) Banach space. We see that F satisfies conditions (3), (4). Nevertheless, for $n \geq 1$, it is not invertible.

REmark 2. In the case of $\operatorname{dim} X=\operatorname{dim} Y<\infty$, if F satisfies condition (4), then $F^{\prime}(x)$ is invertible for $x \neq 0$, and condition (3) holds. Indeed, we have

$$
\inf _{x, h \neq 0}\left\|F^{\prime}(x) \cdot h\right\|\|x\|^{-2 n}\|h\|^{-1}=\inf _{x, h \neq 0}\left\|F^{\prime}(x /\|x\|) \cdot h /\right\| h\| \|=: C_{1}>0
$$

since the function $(x, h) \mapsto\left\|F^{\prime}(x) . h\right\|$ is positive on the Cartesian square of the unit sphere, which is compact.

In this case, by (3),

$$
C_{1}\|x\|^{2 n+1} \leq\left\|F^{\prime}(x) \cdot x\right\|=(2 n+1)\|F(x)\|
$$

Hence the pre-image under F of a compact set is bounded, and being closed, it is compact. Thus F is proper. From Theorem 4 and Remark 1, for the case of $\operatorname{dim} X \neq 3, F$ is a homeomorphism from X onto Y.

Now, we shall show that conditions (3), (4) imply the surjectivity of F also in the case of infinite-dimensional spaces:

TheOrem 6. Suppose that $F: X \rightarrow Y$ is of the form (1) with a continuous $(2 n+1)$-linear operator $\widetilde{F}: X^{2 n+1} \rightarrow Y$. Assume that F satisfies conditions (3), (4). Then F is surjective.

Proof. Without loss of generality, we may assume that $\operatorname{dim} X>1$. Using the above argument, it suffices to prove that $F \mid X \backslash\{0\}: X \backslash\{0\} \rightarrow Y \backslash\{0\}$
is surjective. The local invertibility of $F \mid X \backslash\{0\}$ implies that $F(X \backslash\{0\})$ is open in $Y \backslash\{0\}$. Let $\left(y_{j}\right)$ be a sequence of points from $F(X \backslash\{0\})$ tending to a point $y_{0} \in Y \backslash\{0\}$. By Propositions 2 and 3 from [4], there exists $R>0$ such that every ball with centre at y_{j} and radius R is included in $F(X \backslash\{0\})$. Thus, it is easy to see that $y_{0} \in F(X \backslash\{0\})$.

Then the set $F(X \backslash\{0\})$ is open and closed in the connected space $Y \backslash\{0\}$, hence $F(X \backslash\{0\})=Y \backslash\{0\}$, which ends the proof.

The above considerations lead to the following non-trivial problem:
Problem 1. Find (if any) a continuous $(2 n+1)$-linear mapping

$$
\widetilde{F}: X^{2 n+1} \rightarrow Y
$$

where X, Y are infinite-dimensional Banach spaces and $n \geq 1$, such that, for $F(x):=\widetilde{F} x^{(2 n+1)}$, conditions (3) and (4) hold and $F: X \rightarrow Y$ is not injective.

REFERENCES

[1] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Stud. Adv. Math. 34, Cambridge Univ. Press, Cambridge, 1993.
[2] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
[3] P. Fijałkowski, Local inversion theorem for singular points, Nonlinear Anal. 54 (2003), 341-349.
[4] -, On a domain of invertibility of a differentiable mapping, Quaest. Math. 26 (2003), 163-170.
[5] H. Frankowska, High order inverse function theorems, Analyse non linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), suppl., 283-303.
[6] -, Some inverse mapping theorems, ibid. 7 (1990), no. 3, 183-234.
[7] K. A. Grasse, A higher-order sufficient condition for local surjectivity, Nonlinear Anal. 10 (1986), 87-96.
[8] W. H. Greub, Multilinear Algebra, Springer, New York, 1967.
[9] R. Macchia, On the local invertibility of a differentiable function around a critical vpoint, Boll. Un. Mat. Ital. A (5) 15 (1978), 61-65.
[10] M. F. Sukhinin, The local invertibility of a differentiable mapping, Uspekhi Mat. Nauk 25 (1970), no. 5, 249-250 (in Russian).
[11] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: fijalkowski@math.uni.lodz.pl

[^0]: 2000 Mathematics Subject Classification: 46G05, 46T20, 15A69.
 Key words and phrases: homeomorphism, multilinear operator, invertibility, local invertibility.

