# A CLASS OF QUASITILTED RINGS THAT ARE NOT TILTED 

BY<br>RICCARDO COLPI (Padova), KENT R. FULLER (Iowa City, IA) and ENRICO GREGORIO (Verona)


#### Abstract

Based on the work of D. Happel, I. Reiten and S. Smalø on quasitilted artin algebras, the first two authors recently introduced the notion of quasitilted rings. Various authors have presented examples of quasitilted artin algebras that are not tilted. Here we present a class of right quasitilted rings that not right tilted, and we show that they satisfy a condition that would force a quasitilted artin algebra to be tilted.


Inspired by the papers [9] and [8] on quasitilted artin algebras, in [6] the first two authors began an investigation of the class of rings $R$, called right quasitilted rings, admitting a split torsion theory $(\mathcal{X}, \mathcal{Y})$ in $\operatorname{Mod}-R$ such that $R \in \mathcal{Y}$ and $\operatorname{proj} \operatorname{dim} \mathcal{Y} \leq 1$. A quasitilted artin algebra is one admitting such a torsion theory $\left(\mathcal{X}_{0}, \mathcal{Y}_{0}\right)$ in mod- $R$, and examples of quasitilted artin algebras that are not tilted can be found in [10], for example. In [6] we present an example of a (non-noetherian) right quasitilted ring and state that, together with the third author, we would subsequently show that it is not tilted.

Here we shall verify our statement by presenting a rather large class of right quasitilted rings that are not right tilted. Also, recalling that according to [8] a quasitilted artin algebra is tilted if and only if the torsion free class $\mathcal{Y}_{0}$ in $\bmod -R$ is cogenerated by a (cotilting) module in $\bmod -R$, we shall show that in each of our examples the torsion free class $\mathcal{Y}$ is cogenerated by a cotilting module.

Throughout we use the terminology and notation introduced in [6] and the standard results and terminology of [1], [5] and [11].

1. A class of quasitilted triangular matrix rings. In the following, let $S$ be a non-semisimple hereditary prime two-sided Goldie ring with twosided maximal quotient ring $Q=Q(S)$, and let

$$
R=T(S)=\left[\begin{array}{ll}
Q & Q  \tag{1}\\
0 & S
\end{array}\right]
$$

2000 Mathematics Subject Classification: 16E10, 16G99, 16S50.
Key words and phrases: quasitilted rings.
denote the ring of upper triangular $2 \times 2$ matrices over $Q$ with 2, 2-entries in $S$. (Our example in $[6]$ had $S=\mathbb{Z}$ and $Q=\mathbb{Q}$.) We let

$$
e=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad f=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

in $R$, and we note that if

$$
J=\left[\begin{array}{ll}
0 & Q \\
0 & 0
\end{array}\right]
$$

then $J^{2}=0$ and

$$
f R e=0, \quad f R=f R f \cong S, \quad e R e \cong Q, \quad e R f=e J=J \cong{ }_{Q} Q_{S}
$$

We recall that $Q$ is simple artinian, and $Q=E\left(S_{S}\right)=E\left({ }_{S} S\right)$ is the two-sided injective envelope of $S$, and moreover

$$
Q=\left\{s d^{-1} \mid d \in S \text { is regular, } s \in S\right\}=\left\{d^{-1} s \mid d \in S \text { is regular, } s \in S\right\}
$$

and

$$
\operatorname{End}\left(Q_{S}\right)=\operatorname{End}\left(Q_{Q}\right) \cong Q
$$

canonically. See [11, Chapter 2], for example.
Also, we note that $e R / e J$ is semisimple and $J$ is nilpotent, so we see that

$$
e=e_{1}+\cdots+e_{n}
$$

is a sum of orthogonal primitive idempotents with $e_{1} R \cong e_{i} R$ having unique maximal submodule $e_{i} J$ for all $1 \leq i \leq n$, and

$$
e R=e_{1} R \oplus \cdots \oplus e_{n} R
$$

Using modifications of the arguments in Section 7 of [6] we shall show that each $R=T(S)$ as in (1) is right quasitilted.

Lemma 1.1. All direct sums of copies of $e R$ and of $e R / e J$ are injective.
Proof. First we shall show that $e_{1} R$ is injective relative to both $f R$ and $e_{1} R$, so [1, Propositions 16.10 and 16.13] apply. Note that $J=e R f_{f R f}$ $\cong Q_{S}$. First suppose that $I=f I f \leq f R=f R f_{f R f} \cong S_{S}$ and $\gamma: I \rightarrow e_{1} R$. Then $\gamma(I) \leq e_{1} R f=e_{1} J$ and the latter is injective over $f R f$, being a direct summand of $J=e R f$. Thus there is a map $\bar{\gamma}: f R \rightarrow e_{1} J \leq e_{1} R$ that extends $\gamma$. Next suppose that $I \leq e_{1} R, \gamma: I \rightarrow e_{1} R$, and $I \neq e_{1} R$. Then $I \subseteq e_{1} J=e_{1} J f$ and so $\gamma(I) \leq e_{1} R f=e_{1} J$, which is injective over $f R f$. Thus there is a map $\bar{\gamma}: e_{1} J \rightarrow e_{1} J$ that extends $\gamma$. Identifying $J=Q_{S}$ we may consider $\bar{\gamma} \in \operatorname{End}\left(Q_{S}\right)=Q$. Thus there is an $x \in Q$ such that $\bar{\gamma}\left(e_{1} j\right)=x e_{1} j=e_{1} x e_{1} j$ for all $e_{1} j \in e_{1} J$. Now $e_{1} x e_{1} \in e_{1} R e_{1} \cong \operatorname{End}\left(e_{1} R_{R}\right)$ and left multiplication by $e_{1} x e_{1}$ extends $\bar{\gamma}$, and hence $\gamma$.

If $I=f I f$, then $\operatorname{Hom}_{R}(I, e R / e J)=0$, so $e_{1} R / e_{1} J$ is injective relative to $f R=f R f$. Suppose that $I \leq e_{1} R$ and $\gamma: I \rightarrow e_{1} R / e_{1} J$. Then either
$I \leq e_{1} J=e_{1} J f$ and $\gamma=0$, or $I=e_{1} R$. Thus $e_{1} R / e_{1} J$ is injective relative to $e_{1} R$, and, as before, $e_{1} R / e_{1} J$ is injective.

Now we see that both $e R=e_{1} R \oplus \cdots \oplus e_{n} R$ and $e R / e J \cong e_{1} R / e_{1} J$ $\oplus \cdots \oplus e_{n} R / e_{n} J$ are injective. Clearly $e R e e R$ and $e R e e R / e J$ have the descending chain condition on submodules, and in particular on annihilators of subsets of $R$. Thus (see [7, p. 181]), $R$ has the ascending chain condition on annihilators of subsets of $e R$ and $e R / e J$, so direct sums of copies of these modules are injective according to [7, Proposition 3, p. 184].

Let $\mathcal{C}=\left\{e_{1} R / K \mid 0 \neq K \leq e R\right\}$ and let $(\mathcal{X}, \mathcal{Y})$ be the torsion theory generated by $\mathcal{C}$. Thus, letting

$$
\mathcal{Y}=\left\{Y_{R} \mid \operatorname{Hom}_{R}(C, Y)=0 \text { for all } C \in \mathcal{C}\right\}
$$

we have

$$
\mathcal{X}=\left\{X_{R} \mid \operatorname{Hom}_{R}(X, Y)=0 \text { for all } Y \in \mathcal{Y}\right\}
$$

Lemma 1.2. $\mathcal{Y}=\left\{M \mid M \cong e_{1} R^{(\alpha)} \oplus N\right.$ with $\left.N=N f\right\}$. In particular, $R \in \mathcal{Y}$ and proj $\operatorname{dim} \mathcal{Y} \leq 1$.

Proof. Note that if $x \in M$, then $x e_{i} R=y e_{1} R$ where $y=x e_{i} u e_{1}$ with $e_{1} r \mapsto e_{i} u e_{1} r$ an isomorphism $e_{1} R \rightarrow e_{i} R$. Let $Y \in \mathcal{Y} . \operatorname{As~}_{\operatorname{Hom}_{R}}\left(e_{1} R / K, Y\right)$ $=0$ whenever $0 \neq K \leq e_{1} R$, it follows for $x \in Y$ that $x e_{1} \neq 0$ implies $x e_{1} R \cong e_{1} R$. Thus,

$$
Y=\sum_{A} w_{\alpha} e_{1} R+\sum_{L} b_{\lambda} f R
$$

with each $w_{\alpha} e_{1} R \cong e_{1} R$. Now let $H \subseteq A$ be maximal with $\left\{w_{\alpha} e_{1} R \mid \alpha \in H\right\}$ independent, so that $P=\bigoplus_{H} w_{\alpha} e_{1} R \cong e_{1} R^{(H)}$ is an (injective by Lemma 1.1) projective direct summand of $\sum_{I} w_{\alpha} e_{1} R$. But if some $w_{\beta} e_{1} R \nsubseteq P$ and $\sum_{A} w_{\alpha} e_{1} R=P \oplus L$, then the projection $x e_{1} R$ of $w_{\beta} e_{1} R$ on $L$ would have $x e_{1} \neq 0$ and $x e_{1} R \nexists e_{1} R$. Thus $Y \cong e_{1} R^{(H)} \oplus N$ with $N=N f$.

Suppose $M=e_{1} R^{(\alpha)} \oplus N$ with $N=N f$. If $0 \neq \gamma \in \operatorname{Hom}_{R}\left(e_{1} R / K, M\right)$, then $\operatorname{Im} \gamma \subseteq e_{1} R^{(\alpha)}$ and $\operatorname{Im} \gamma \nsubseteq e_{1} J^{(\alpha)}=e_{1} J^{(\alpha)} f$, and so for some projection $\pi_{\alpha}$, the composite $\pi_{\alpha} \gamma: e_{1} R / K \rightarrow e_{1} R$ is a split epimorphism. Thus $K=0$ and $M \in \mathcal{Y}$.

Clearly now $R \in \mathcal{Y}$, and proj $\operatorname{dim}\left(e_{1} R^{(\alpha)} \oplus N f\right) \leq 1$ since $e_{1} R^{(\alpha)}$ is projective and proj $\operatorname{dim} N f \leq 1$ as it is an $f R=f R f \cong S$-module.

It only remains to show that $(\mathcal{X}, \mathcal{Y})$ splits, in order to prove
Proposition 1.3. The ring $R=T(S)$ is right quasitilted with torsion theory $(\mathcal{X}, \mathcal{Y})$.

Proof. Let $X \in \mathcal{X}$. Since every direct sum of copies of $e_{1} R / e_{1} J$ is injective by Lemma 1.1, we see, as in the proof of Lemma 1.2, that $X / X J \cong$ $e_{1} R / e_{1} J^{(\alpha)} \oplus N$ with $N=N f$. But then $N \in \mathcal{X} \cap \mathcal{Y}=0$. Thus, since $J$ is
nilpotent, there exist $t_{\alpha} \in X \backslash X J$ such that $\sum t_{\alpha} e_{1} R=X$, and so there is an exact sequence

$$
0 \rightarrow K \rightarrow e_{1} R^{(\alpha)} \rightarrow X \rightarrow 0
$$

If $Y \in \mathcal{Y}$, then we have an exact sequence

$$
0=\operatorname{Ext}_{R}^{1}\left(Y, e_{1} R^{(\alpha)}\right) \rightarrow \operatorname{Ext}_{R}^{1}(Y, X) \rightarrow \operatorname{Ext}_{R}^{2}(Y, K)=0
$$

where the first equality is by Lemma 1.1 and the second is because proj $\operatorname{dim} \mathcal{Y}$ $\leq 1$.

Following the artin algebra tradition, we say that a ring $R$ is right tilted with torsion theory $(\mathcal{X}, \mathcal{Y})$ in $\operatorname{Mod}-R$ if there is a hereditary ring $H$ with a tilting module $V_{H}$ such that $R=\operatorname{End}\left(V_{H}\right)$ and $\mathcal{X}=\operatorname{Ker}\left(-\otimes_{R} V\right)$. (See [4] for noetherian examples of such rings.) In any case if $V_{H}$ is a tilting module with $R=\operatorname{End}\left(V_{H}\right)$, then ${ }_{R} V$ is a tilting module and so is finitely presented, so that $\operatorname{Ker}\left(\otimes_{R} V\right)$ is closed under direct products.

To see that our ring $R=T(S)$ in (1) is not right tilted, we shall show that a split tilting torsion theory $\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$ in $\operatorname{Mod}-R$ with $R_{R} \in \mathcal{Y}^{\prime}$ and proj $\operatorname{dim} \mathcal{Y}^{\prime} \leq 1$ cannot have $\mathcal{X}^{\prime}$ closed under direct products.

Now let

$$
t=e t f=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

so that $t S \leq J=e R f$ over both $S$ and $R$.
Lemma 1.4. There is a cardinal number $\alpha$ such that

$$
\operatorname{proj} \operatorname{dim}(e R / t S)^{\alpha}=2
$$

Proof. Suppose to the contrary that proj $\operatorname{dim}(e R / t S)^{\alpha} \leq 1$ for every cardinal $\alpha$. Then in the exact sequences

$$
0 \rightarrow t S^{\alpha} \rightarrow e R^{\alpha} \rightarrow(e R / t S)^{\alpha} \rightarrow 0
$$

$t S^{\alpha} \cong S^{\alpha}$ must be projective as a right $R$-module, and so as a right $S$ module. But according to Theorem 3.3 of [3] this would entail $S$ being a right perfect ring. That is impossible since, being a non-artinian prime ring, the socle $\operatorname{Soc}_{S} S$ is zero (see, for example, [1, Exercise 14.11(2)]).

Note that this last lemma shows that $R$ is not right hereditary.
Proposition 1.5. The ring $R=T(S)$ is not right tilted.
Proof. Since it is indecomposable, $e_{1} R / e_{1} t S$, and hence $e R / t S$, belongs to either $\mathcal{X}^{\prime}$ or $\mathcal{Y}^{\prime}$. Now $\mathcal{Y}^{\prime}$ is closed under products and proj $\operatorname{dim} \mathcal{Y}^{\prime} \leq 1$, so the latter is impossible by Lemma 1.4. Thus to see that $\mathcal{X}^{\prime}$ cannot be closed under direct products we need only show that $e R \in \operatorname{Cogen}(e R / t S)$. Clearly $\operatorname{Rej}_{e R / t \mathcal{S}}(e R)=\bigcap\{\operatorname{Ker} \gamma \mid \gamma: e R \rightarrow e R / t S\} \subseteq t S$, so it will suffice to show that any $t n$ with $n \in S$ belongs to the kernel of some $\gamma: e R \rightarrow e R / t S$.

Now $t n S \cong n S$ is $S$-isomorphic to a direct summand of $S$, so $\operatorname{tn} S$ is $R$ isomorphic to a direct summand of $t S$. Thus there is an $R$-homomorphism $g: \operatorname{tn} S \rightarrow t S$ which, since $e R$ is injective, extends to a map $h: e R \rightarrow e R$. But then $\operatorname{tn} \in \operatorname{Ker} \pi h$, where $\pi: e R \rightarrow e R / t S$ is the natural epimorphism.
2. Cotilting cogenerator for $\mathcal{Y}$. Let

$$
R=T(S)=\left[\begin{array}{ll}
Q & Q \\
0 & S
\end{array}\right]
$$

be the ring (1) of Section 1 with quasitilting torsion theory $(\mathcal{X}, \mathcal{Y})$ where $\mathcal{Y}=\left\{M \mid M \cong e_{1} R^{(\alpha)} \oplus N\right.$ with $\left.N=N f\right\}$. We shall show that (in contrast to the artin algebra case [8]) even though $R$ is not right tilted, $\mathcal{Y}=\operatorname{Cogen} U$ for a certain cotilting module $U_{R}$.

If $C_{0}$ is any injective cogenerator in Mod-S, then letting $C_{R}=\left[\begin{array}{ll}0 & C_{0}\end{array}\right]$ we see that $C=C f$ is injective over $f R f$ and cogenerates every $N=N f$ in Mod- $R$.

Proposition 2.1. Let $R=T(S)$ and let $C=C f$ be an $R$-module such that $C f$ is an injective cogenerator in Mod-fRf, and let $U=e_{1} R \oplus C$. Then $\mathcal{Y}=\operatorname{Cogen} U$, and $U$ is a cotilting module in the sense that Cogen $U=$ $\operatorname{Ker} \operatorname{Ext}_{R}^{1}(-, U)$.

Proof. Clearly $C$ cogenerates every $N=N f$ in $\operatorname{Mod}-R$, and so by
 Indeed, since $e_{1} R^{(\alpha)}$ is projective and $e_{1} R$ and $C_{f R f}$ are injective,

$$
\operatorname{Ext}_{R}^{1}\left(e_{1} R^{(\alpha)} \oplus N f, e_{1} R \oplus C\right)=\operatorname{Ext}_{R}^{1}(N f, C) \cong \operatorname{Ext}_{f R f}^{1}(N f, C)=0
$$

Finally, if $M=X \oplus Y$ with $X \in \mathcal{X}$, and $Y \in \mathcal{Y}$, then since $X \in \operatorname{Gen}\left(e_{1} R\right)$ there is an exact sequence

$$
0 \rightarrow K \rightarrow e_{1} R^{(\beta)} \xrightarrow{\pi} X \rightarrow 0
$$

with $e_{1} R^{(\beta)} \xrightarrow{\pi} X \rightarrow 0$ a projective cover, and $0 \neq K \subseteq e_{1} J^{(\beta)}$. Thus $K=K f \in \operatorname{Cogen} C$ and we have an exact sequence

$$
0=\operatorname{Hom}_{R}\left(e_{1} R^{(\beta)}, C\right) \rightarrow \operatorname{Hom}_{R}(K, C) \rightarrow \operatorname{Ext}_{R}^{1}(X, C)
$$

showing that $M \in \mathcal{Y}$ whenever $\operatorname{Ext}_{R}^{1}(M, U)=0$.
If $R$ is a hereditary prime noetherian (HNP) ring, it follows from [2, Lemma 1] and [1, Exercise 14.11(2)] that the injective $S$-module $Q / S$ is a cogenerator. Thus $J / t S$ is injective over $f R f$ and cogenerates every $N=N f$ in Mod- $R$, so that when $R$ is an HNP ring we may choose $C=J / t S$ in Proposition 2.1.

Finally one is led to wonder which right quasitilted rings are right tilted. For example, is " $\mathcal{X}$ closed under direct products and $\mathcal{Y}$ cogenerated by a cotilting module" enough?

## REFERENCES

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer, 2nd ed., 1992.
[2] V. P. Camillo and J. Cozzens, A theorem on Noetherian hereditary rings, Pacific J. Math. 45 (1973), 35-41.
[3] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457473.
[4] R. R. Colby and K. R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (1990), 1585-1615.
[5] —, 一, Equivalence and Duality for Module Categories, Cambridge Tracts in Math. 161, Cambridge Univ. Press, 2004.
[6] R. Colpi and K. R. Fuller, Tilting objects in abelian categories and quasitilted rings, Trans. Amer. Math. Soc., to appear.
[7] C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.
[8] D. Happel and I. Reiten, An introduction to quasitilted algebras, An. Ştiinţ. Univ. Ovidus Constanţa Ser. Mat. 4 (1996), 137-149.
[9] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575.
[10] F. Huard and S. P. Liu, Tilted string algebras, J. Pure Appl. Algebra 153 (2000), 151-164.
[11] B. Stenström, Rings of Quotients, Grundlehren Math. Wiss. 217, Springer, 1975.

Università di Padova
Via Belzoni
35131 Padova, Italy
E-mail: colpi@math.unipd.it
Università di Verona
Ca' Vignal, Strada Le Grazie
33100 Verona, Italy
E-mail: gregorio@sci.univr.it

University of Iowa
Iowa City, IA 52242, U.S.A.
E-mail: kfuller@math.uiowa.edu

