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ON A STEADY FLOW IN A THREE-DIMENSIONAL INFINITE PIPEBYPAWE� KONIECZNY (Warszawa)Abstrat. The paper examines the steady Navier�Stokes equations in a three-dimen-sional in�nite pipe with mixed boundary onditions (Dirihlet and slip boundary ondi-tions). The veloity of the �uid is assumed to be onstant at in�nity. The main resultsshow the existene of weak solutions with no restrition on smallness of the �ux vetorand boundary onditions.1. Introdution. In this paper we examine the Navier�Stokes system(1.1) (v · ∇)v − ν∆v + ∇p = 0 in Ω,

∇ · v = 0 in Ω,with the boundary onditions
(1.2)

v · ~n = 0 on OP ,

~n ·T(v, p) · ~τ1 = 0 on OP ,

v · ~τ2 = 0 on OP ,

v = 0 on OD\OD0
,

v = v∗ on OD0
,and the following behaviour at in�nity:(1.3) v → v∞,1 as x1 → −∞,

v → v∞,2 as x1 → +∞,where the dot · denotes the standard salar produt in R
3, v = (v1, v2, v3)is the veloity of the �uid, p the pressure, ν the positive onstant visosityoe�ient; ~n, ~τ1 and ~τ2 are the outer normal and tangent vetors to the boun-dary ∂Ω and v∞,i is a onstant vetor �eld at in�nity, i.e. v∞,i = (v∞,i, 0, 0).Also(1.4) T(v, p) = νD(v) − p Iddenotes the stress tensor, where Id is the identity matrix and D(v) =

{vi,j + vj,i}i,j=1,2,3.2000 Mathematis Subjet Classi�ation: 35Q30, 76D05, 76D03.Key words and phrases: Navier�Stokes equations, slip boundary onditions, in�nitepipe, large data and �ux. [33℄



34 P. KONIECZNYThe domain Ω may be represented as Ω = ΩD ∪
⋃m

i=1ΩPi , where ΩD ⊂
R

3 is a simply onneted bounded domain andΩPi (i = 1, . . . ,m) are pipelikedomains, whih an be represented (maybe in di�erent oordinates) as ΩPi =
Pi × R

+, where Pk ⊂ R
2 is a bounded domain with smooth boundary. Wealso assume that ΩPi ∩ ΩPj = ∅ for i 6= j. Furthermore OP =

⋃m
i=1OPi ,where OPi = ∂Pi × R

+, OD = ∂ΩD \
⋃m

i=1 ∂ΩPi and OD0
is the outlet/inletfor ΩD where the veloity v is presribed by ondition (1.2)5. In this paperwe take m = 2.The boundary data should satisfy the following ompatibility ondition:(1.5) v∞,1|P1| = v∞,2|P2| +

\
∂Ω

~v · ~n.
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LFig. 1.1In this paper we prove the existene of weak solutions to problem (1.1)�(1.3). We ahieve this without imposing restritions on the magnitude ofdata. This problem is similar to the lassial Leray problem with the Diri-hlet boundary ondition and Poiseuille �ow at in�nity. The slip boundaryondition ~n ·T(v, p) · ~τ = 0 desribes a model where there is no frition be-tween the �uid and the surfae of the pipe.Slip boundary onditions are not as popular as Dirihlet onditions, how-ever, they deserve to be given more interest. One may onsider a generaliza-tion of onstraints (1.2),(1.6) ~n · v = 0, ~n ·T(v, p) · ~τ + fv · ~τ = 0 on ∂ΩP ,where f is the frition oe�ient. Equations (1.6) desribe a model wherethere is a frition between the �uid and the boundary. If f = ∞ one gets from(1.6) the zero Dirihlet ondition, and for f = 0 the slip boundary ondition,where the frition between the �uid and the boundary is negligible.The last ase is related to modelling the �ow of a perfet �uid ([12℄). Thegeneral form of (1.6) is often applied to desribe the motion of polymers,blood, or the liquid rystal �ow (see [7℄). Mixed boundary onditions maybe onsidered as an approximation of the �ow, where the veloity of the �uidin the tangent diretion τ2 is negligible, i.e. we have perfet slip boundaryonditions with large �uxes (blood is an example).



FLOW IN AN INFINITE PIPE 35From the mathematial point of view our problem an be treated as aform of Leray's problem, where the no-slip ondition is taken into aount.The existene of solutions is still an open question. The main dif�ulty ishidden in the Dirihlet integral TΩ ∇v : ∇v whih an be in�nite. Using slipboundary onditions we prove that this integral is �nite for any data.A similar result, i.e. without restritions on the magnitude of the data,is obtained in the paper of Ladyzhenskaya and Solonnikov [6℄, but the Lerayproblem is modi�ed (there is no ondition on the veloity at in�nity) and theexistene of solutions is shown in the distribution sense, i.e. loally in spae.In this paper we obtain(1.7) v − v∞,i ∈ H1(Ω),whih allows us to ontrol the behaviour of the �uid at in�nity. In the two-dimensional ase and for perfet slip boundary onditions the reader may �nda similar existene result in [8℄, but for a three-dimensional pipe and Dirihletboundary ondition there is no suh result. Here, we mix slip boundary andDirihlet onditions to get the existene of solutions satisfying (1.7). Oneit has been shown, one an obtain higher regularity and also the asymptotistruture of the vetor �eld v using standard methods (see [9℄).Methods used to prove the existene of solutions to problem (1.1)�(1.3)are similar to those suggested by Leray and Hopf, i.e. a proper vetor �eld a,whih is meant to be a �ux arrier, is onstruted. For this vetor �eld a thefollowing onditions are ful�lled:
∇ · a = 0 in Ω,(1.8)
a · ~n = 0 on OP ,(1.9)
a · ~τ2 = 0 on OP ,(1.10)

a = 0 on OD,(1.11)
a = v∗ on OD0

,(1.12)
a→ v∞,i as |x| → ∞.(1.13)This allows us to rewrite the vetor �eld v as(1.14) v = u+ a,and searh for a vetor �eld u ∈ H1(Ω) whih satis�es the following system:(1.15) (u · ∇)u− ν∆u+ ∇p = ν∆a− (u · ∇)a− (a · ∇)u− (a · ∇)u,

(1.16)
∇ · u = 0 in Ω,
u · ~n = 0 on OP ,

~n ·T(u, p) · ~τ1 = −~n · D(a) · ~τ1 on OP ,

u · ~τ2 = 0 on OP ,

u = 0 on OD.



36 P. KONIECZNYThus it is natural to onsider the following spae V :Definition 1.1. Set
(1.17) V := {f ∈ H1(Ω,R3) : ∇ · f = 0, f|OD

= 0,

f|OP
· ~n = 0, f|OP

· ~τ2 = 0}.Now we redue our main problem to �nding u ∈ H1(Ω) whih satis�esonditions (1.15) and (1.16).Let us introdue a weak formulation for problem (1.15)�(1.16). Multi-plying (1.15) by the test funtion Φ ∈ V and performing simple alulationsleads us to the following de�nition:Definition 1.2. By a weak solution to problem (1.15)�(1.16) we meana vetor �eld u ∈ V whih satis�es
(1.18) ν

\
Ω

D(u) : ∇Φ+
\
Ω

[(u · ∇)u+ (u · ∇)a+ (a · ∇)u] · Φ

= −ν
\
Ω

∇a : ∇Φ−
\
Ω

(a · ∇)a · Φ− ν
\

∂ΩP

~n · D(a) · ~τ1(Φ · ~τ1)for all Φ ∈ V .The existene of u is shown by using the standard Galerkin method.The main di�ulty is the onstrution of the vetor �eld a�it should ful�llsuitable onditions (see Theorem 1.4). We hope that the onstrution arriedout in this paper will be useful for other problems.Finally, we formulate the main theorem:Theorem 1.3. Assume that ∂Ω is smooth. Then for any data satisfy-ing the ompatibility ondition (1.5) there exists at least one weak solution
v ∈ H1(Ω,R3) to problem (1.15)�(1.16) in the sense of De�nition 1.2. More-over , v − v∞,i ∈ H1(ΩPi) and(1.19) ‖v − v∞,i‖H1(ΩPi

) ≤ c(v∞,1, v∞,2, v
∗, Ω),in partiular(1.20) \

Ω

|∇v|2 ≤ c(v∞,1, v∞,2, v
∗, Ω).

The main information delivered by Theorem 1.3 is �niteness of the Diri-hlet integral for arbitrarily large �uxes. This is aomplished, as mentionedbefore, by transferring all the �ux information onto the proper smooth vetor�eld a. Then to onstrut a vetor �eld u with �nite Dirihlet integral onean use the standard Galerkin method, i.e. show the existene of a solution
uk in �nite-dimensional spaes, hoose a proper subsequene unk

and passto the limit.



FLOW IN AN INFINITE PIPE 37Moreover, �niteness of the Dirihlet integral allows us to improve theregularity of solutions using standard tehniques (see [8℄).In the de�nition of a weak solution, a vetor �eld a is used, and to proveTheorem 1.3 we require it to ful�ll some onditions whih are stated in thefollowing theorem:Theorem 1.4. For every ε > 0 there exists a vetor �eld a satisfyingonditions (1.8)�(1.13) and the following estimate:(1.21) ∣
∣
∣

\
Ω

(u · ∇)a · u
∣
∣
∣ ≤ ε‖u‖2

H1(Ω)for every funtion u ∈ V . Moreover , the following inequalities hold :
(1.22) ‖∇a‖L2(∂Ω) + ‖(a · ∇)a‖L2(Ω) + ‖∇a‖L2(Ω)

≤ c(v∞,1, v∞,2, ε, P1, P2)and(1.23) ‖a− v∞,i‖L2(ΩPi
) ≤ c(v∞,1, v∞,2, ε, P1, P2).The vetor �eld a will be onstruted in four basi steps:1. for the bounded region ΩD we will use the standard Leray�Hopf on-strution (the resulting vetor �eld will be denoted by aD);2. for the unbounded region ΩP we will adapt the Leray�Hopf onstru-tion to slip boundary onditions (vetor �eld aP );3. in the bounded intersetion of ΩP and ΩD of width L we will join aDand aP in suh a way that the resulting �eld aP→D will be divergenefree and ondition (1.21) will be satis�ed;4. in the unbounded region ΩP we modify the previously onstrutedvetor �eld aP→D to be onstant at in�nity, i.e. v∞,ie1, where e1 isthe basis vetor from the standard orthogonal basis of R

3.Our paper is organized as follows: in the next setion we give some pre-liminary lemmas (in Setion 2.1) and prove Theorem 1.3 (in Setion 2.2)assuming the validity of Theorem 1.4. In Setion 3 we prove Theorem 1.4 byonstruting the vetor �eld a: in the domain ΩD in Setion 3.1, in ΩP inSetion 3.2, joining aP and aD in Setion 3.3, and making the vetor �eldonstant at in�nity in Setion 3.4.2. Proof of Theorem 1.3. This setion ontains the proof of The-orem 1.3. First we give some preliminaries.2.1. Preliminary lemmas. In this setion we show some auxiliary results,whih will be neessary for the Galerkin method. The �rst one an be foundin [11℄.



38 P. KONIECZNYLemma 2.1. Let X be a �nite-dimensional Hilbert spae, let P : X → Xbe a ontinuous mapping satisfying(2.1) (P (ξ), ξ) > 0 for all ‖ξ‖ = k > 0,where k is some onstant , and (·, ·) is the standard inner produt in X. Thenthere exists ξ ∈ X with ‖ξ‖ ≤ k for whih(2.2) P (ξ) = 0.The seond lemma is the Korn inequality, whih the reader may �ndin [10℄, however in our ase we prove it as an equality:Lemma 2.2. For every u ∈ V we have(2.3) \
Ω

(D(u))2 = 2
\
Ω

|∇u|2.

Proof. Without loss of generality, we assume that u ∈ V ∩C2(Ω). Then\
Ω

(D(u))2 =
\
Ω

3∑

i,j=1

(ui,j + uj,i)
2 = 2

\
Ω

|∇u|2 +
\
Ω

2
3∑

i,j=1

ui,juj,i.Let us take a loser look at the last term:\
Ω

3∑

i,j=1

ui,juj,i = −
\
Ω

3∑

i,j=1

ui,jiuj +
\

∂Ω

3∑

i,j=1

ui,jujni(2.4)
=
\
Ω

(∇ · u)2 −
\

∂Ω

3∑

i=1

ui,i(u · ~n) +
\

∂Ω

3∑

i,j=1

ui,jujni.Now, if we reall that ∇ · u = 0 in Ω and u · ~n = 0 on ∂Ω we get
(2.5) \

Ω

3∑

i,j=1

ui,juj,i =
\

∂Ω

3∑

i,j=1

ui,jujni.

Sine u · ~n = 0 on ∂Ω, we have u|∂Ω ∈ T (∂Ω) (where T (∂Ω) is the tangentspae), and so
(2.6) 0 = (u · ∇)(u · ~n) =

3∑

i,j=1

ujui,jni +

3∑

i,j=1

ujuini,j ,thus(2.7) \
Ω

3∑

i,j=1

ui,juj,i = −
\

∂Ω

3∑

i,j=1

uiujni,j .



FLOW IN AN INFINITE PIPE 39On ∂Ω ∩ ΩD we have u = 0, and on OP = ∂Ω ∩ ΩP we have u2 = u3 = 0,so we an rewrite the above equality in the following way:(2.8) \
Ω

3∑

i,j=1

ui,juj,i = −
\

OP

u1u1n1,1;but this equals zero, beause the geometry of OP is independent of x1.Lemma 2.3. There exists a onstant c = c(Ω) suh that for every u ∈ Vthe following inequality holds:(2.9) c‖∇u‖L2(Ω) ≥ ‖u‖H1(Ω).Proof. It is su�ient to notie that u2 = u3 = 0 and the integralT
P1(x1)

u · ~τ1 dx2 dx3 equals zero where P1(x1) is the x1-setion of P1. Thisallows us to use Poinaré inequalities, the one with the zero boundary on-dition and the one with the mean value.Below are two useful lemmas whih an be found in [5℄:Lemma 2.4. Let Ω ⊂ R
2 be a simply onneted domain with boundary oflass C2+α. For a given vetor �eld v∗ ∈ C1+α(∂Ω) and funtion g ∈ Cα(Ω)satisfying the ompatibility ondition(2.10) \

∂Ω

v∗ · ~n =
\
Ω

gthere exists a vetor �eld w ∈ C1+α(∂Ω) whih satis�es
∇ · w = g in Ω,(2.11)

w = v∗ on ∂Ω.(2.12)Lemma 2.5. Let Ω ⊂ R
3 be a loally Lipshitz domain. For a given vetor�eld v∗ whih satis�es the ompatibility ondition(2.13) \

∂Ω

v∗ · ~n = 0,there exists a vetor �eld w whih satis�es
∇ · w = 0 in Ω,(2.14)

w = v∗ on ∂Ω.(2.15)Lemma 2.6. Let Ω be a bounded , loally Lipshitz domain. There existsa onstant c = c(Ω) suh that for every funtion u ∈ H1
0 (Ω) the followinginequality holds:(2.16) ∥

∥
∥
∥

u

δ

∥
∥
∥
∥

L2(Ω)

≤ c‖u‖H1

0
(Ω),where δ(x) = dist(x, ∂Ω).



40 P. KONIECZNYProof. Without loss of generality we show the inequality in the asewhere Ω = (0, 2c), δ(x) = x and u ∈ C∞
0 (0, 2c). We have

(2.17) u2(x)

x2
= −

d

dx

[
1

x
u2(x)

]

+
1

x

d

dx
u2(x).Integrating (2.17) over the interval (0, c), we get

c\
0

u2(x)

x2
dx =

c\
0

−
d

dx

[
1

x
u2(x)

]

dx+

c\
0

1

x

d

dx
u2(x) dx(2.18)

= −
1

x
u2(x)

∣
∣
∣
∣

c

0

+

c\
0

1

x

d

dx
u2(x) dx

= −
1

c
u2(c) +

c\
0

1

x
2u(x)u′(x) dx

≤

(

4

c\
0

1

x2
u2(x) dx

)1/2( c\
0

u′2(x) dx
)1/2

.

After dividing both sides of the above inequality by (T
1
x2u

2(x) dx
)1/2 we getthe onlusion of the lemma.2.2. Existene of a weak solution. In this setion we prove the existeneof a weak solution. We use the standard Galerkin method. Let w1, w2, . . .be an orthonormal basis of the spae V . We onsider the approximationspaes V N = span{w1, . . . , wN}. Solutions uN ∈ V N will be looked for inthe following form:

(2.19) uN =
N∑

i=1

cNi wi.

Inserting uN into equation (1.18), and taking wk as test funtions, we get(2.20) ν
\
Ω

D(uN ) : ∇wk +
\
Ω

[(uN · ∇)uN + (uN · ∇)a+ (a · ∇)uN ] · wk

= −ν
\
Ω

∇a : ∇wk −
\
Ω

(a · ∇)a · wk − ν
\

∂ΩP

~n · D(a) · ~τ1(wk · ~τ1),

whih has to be valid for every k = 1, . . . , N . Now we observe that (2.20)is, in fat, an equation for the unknown oe�ients cNi . We show that thisequation has a solution. In order to prove it we use Lemma 2.1. Let usintrodue the following mapping P :
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P (uN ) =

N∑

k=1

(

ν
\
Ω

(D(uN ) + D(a)) : ∇wk(2.21)
+
\
Ω

((uN · ∇)uN + (uN · ∇)a+ (a · ∇)uN + (a · ∇)a) · wk

+
\

∂Ω

~n ·D(a) · ~τ1(wk · ~τ1)
)

wk.It is easily seen that the mapping P : V N → V N is ontinuous.Now we will examine (P (uN ), uN )V N , where (·, ·)V N is the inner produtin V N (derived from H1(Ω)). It is not hard to notie that the above equationis equivalent to
(P (uN ), uN )V N = ν

\
Ω

(D(uN ) + D(a)) : ∇uN(2.22)
+
\
Ω

((uN · ∇)(uN + a) + (a · ∇)(uN + a)) · uN

+
\

∂Ω

~n · D(a) · ~τ1(u
N · ~τ1).Let us estimate the right hand side of (2.22). We have(2.23) ν

\
Ω

D(uN ) : ∇uN =
ν

2

\
Ω

(D(uN ))2,and using Lemma 2.2 we onlude that(2.24) ν
\
Ω

D(uN ) : ∇uN ≥ ν‖uN‖2
H1(Ω).The Shwarz inequality gives

∣
∣
∣ν
\
Ω

D(a) : ∇uN
∣
∣
∣ ≤ C1‖∇a‖L2(Ω)‖u

N‖H1(Ω),

∣
∣
∣

\
Ω

(a · ∇)a · uN
∣
∣
∣ ≤ C2‖(a · ∇)a‖L2(Ω)‖u

N‖H1(Ω);in the �rst of these inequalities we used Lemma 2.3, namely(2.25) ‖∇u‖L2(Ω) ≥ c‖u‖H1(Ω)for every u ∈ V .From the basi properties of the funtional TΩ u · ∇v · w we also have(2.26) \
Ω

(uN · ∇)uN · uN = 0 and \
Ω

(a · ∇)uN · uN = 0.We hoose the onstant η = ν/2 and apply Theorem 1.4 to get



42 P. KONIECZNY
(2.27) ∣

∣
∣

\
Ω

(uN · ∇)a · uN
∣
∣
∣ ≤

ν

2
‖uN‖2

H1(Ω).There is also another part to estimate:
∣
∣
∣

\
∂Ω

~n ·D(a) · ~τ1(u
N · ~τ1)

∣
∣
∣ ≤ C3‖∇a‖L2(∂Ω)‖u

N‖L2(∂Ω)(2.28)
≤ C4‖∇a‖L2(∂Ω)‖u

N‖H1(Ω),where we used the trae theorem.Summing up the above estimates we get(2.29) (P (uN ), uN )V N ≥ ‖uN‖H1(Ω) ·

(
ν

2
‖uN‖H1(Ω) − C(‖∇a‖L2(Ω)

+ ‖(a · ∇)a‖L2(Ω) + ‖∇a‖L2(∂Ω))

)

.Now, if only some onstant K satis�es the inequality(2.30) ν

2
K − C(‖∇a‖L2(Ω) + ‖(a · ∇)a‖L2(Ω) + ‖∇a‖L2(∂Ω)) > 0,then also(2.31) (P (uN ), uN )V N > 0 for every ‖uN‖V N = K,and, from Lemma 2.1, there exists uN

∗ ∈ V N for whih P (uN
∗ ) = 0. Fur-thermore, the existene of this element and the de�nition of P : V N → V N(see (2.21)) imply the existene of the oe�ients cNi in (2.20), and uN

∗ =
∑N

k=1 c
N
k wk. Additionally, we get an estimate for ‖uN

∗ ‖H1(Ω) independentof N :(2.32) ‖uN
∗ ‖H1(Ω) ≤ K.The sequene {ui

∗}
∞
i=1 is bounded in the Hilbert spae V , so there exists asubsequene {uik

∗ }∞k=1 weakly onvergent to, say, u∗ ∈ V :(2.33) uik
∗ ⇀ u∗ weakly in V as k → ∞.However, we need strong onvergene. We annot use the Rellih theorem,beause the region Ω is unbounded. Let us onsider the bounded regions(2.34) Ωk = Ω ∩ {x ∈ R

3 : |x1| ≤ k} for k = 1, 2, . . . .From the sequene {uik
∗ } we hoose a subsequene (still denoted by uik

∗ )strongly onvergent in L4(Ω1) to u∗; this subsequene has a further subse-quene strongly onvergent in L4(Ω2), and so forth. By a diagonal proe-dure we hoose a subsequene uik
∗ strongly onvergent in L4 to u∗ in everyregion Ωk. Let us denote this sequene by {uk}. From strong onvergene in

Ωk we dedue the existene of a funtion f : N → N for whih(2.35) ‖uf(k) − u∗‖L4(Ωk) ≤ 1/k.



FLOW IN AN INFINITE PIPE 43Our aim is to deal with the nonlinear term in the weak formulation ofour problem. We laim that(2.36) \
Ω

(uf(k) · ∇)uf(k) · Φ→
\
Ω

(u∗ · ∇)u∗ · Φfor every test funtion Φ ∈ V . Let us alulate:\
Ω

(uf(k) · ∇)uf(k) · Φ =
\
Ω

((uf(k) − u∗) · ∇)uf(k) · Φ+
\
Ω

(u∗ · ∇)uf(k) · Φ.

In TΩ(u∗ ·∇)uf(k) ·Φ we an justify the passage to the limit diretly fromthe de�nition of weak onvergene. For the other integral we have(2.37) ∣
∣
∣

\
Ω

((uf(k) − u∗) · ∇)uf(k) · Φ
∣
∣
∣ → 0 as k → ∞.Indeed, using the Shwarz inequality and triangle inequality we get

∣
∣
∣

\
Ω

((uf(k) − u∗) · ∇)uf(k) · Φ
∣
∣
∣

≤
∣
∣
∣

\
Ωk

((uf(k) − u∗) · ∇)uf(k) · Φ
∣
∣
∣ +

∣
∣
∣

\
Ω′

k

((uf(k) − u∗) · ∇)uf(k) · Φ
∣
∣
∣

≤ C‖uf(k) − u∗‖L4(Ωk)K‖Φ‖L4(Ωk) + CK2‖Φ‖L4(Ω′

k),where K is a onstant estimating the norms ‖uk‖H1(Ω) (see (2.32)), and
Ω′

k = Ω \ Ωk is the omplementary region to Ωk. Realling (2.35), we anwrite
∣
∣
∣

\
Ω

((uf(k) − u∗) · ∇)uf(k) · Φ
∣
∣
∣ ≤ CK‖Φ‖H1(Ω)/k + CK2‖Φ‖H1(Ω′

k).We have(2.38) ‖Φ‖H1(Ω′

k) → 0 as k → ∞,and so(2.39) \
Ω

(uf(k) · ∇)uf(k) · Φ→
\
Ω

(u∗ · ∇)u∗ · Φ as k → ∞.Let us also look at the term(2.40) \
Ω

D(uf(k)) : ∇Φ.From the de�nition of weak onvergene we �nd that as k → ∞,(2.41) \
Ω

D(uf(k)) : ∇Φ→
\
Ω

D(u∗) : ∇Φ.The alulations justifying the passage to the limit in the other termsare simpler than for the nonlinear term.



44 P. KONIECZNYWe proved that there exists a funtion u∗ ∈ V whih satis�es(2.42) ν
\
Ω

D(u∗) : ∇Φ+
\
Ω

[(u∗ · ∇)u∗ + (u∗ · ∇)a+ (a · ∇)u∗] · Φ

= −ν
\
Ω

∇a : ∇Φ−
\
Ω

(a · ∇)a · Φ− ν
\

∂ΩP

~n · D(a) · ~τ1(Φ · ~τ1)for every test funtion Φ ∈ V .Additionally, we have an estimate on the norm of u∗:(2.43) ‖u∗‖H1(Ω) ≤ K,where the onstant K depends only on a, Ω and the onditions imposed onthe solution.Consequently, we have
‖v − v∞,i‖H1(ΩPi

) = ‖u+ a− v∞,i‖H1(ΩPi
)(2.44)

≤ ‖u‖H1(ΩPi
) + ‖a− v∞,i‖H1(ΩPi

) ≤ C,where the onstant C is as in the assertion of Theorem 1.3.3. Proof of Theorem 1.4. As mentioned in the introdution, our on-strution will be divided into four steps, eah desribed in a separate sub-setion.3.1. A vetor �eld in ΩD. In this setion we will prove the followingtheorem:Theorem 3.1. For every εD > 0 and for every vetor �eld v∗ given on
∂Ω and satisfying the ompatibility ondition (1.5) there exists a vetor �eld
aD whih satis�es the following onditions:

∇ · aD = 0 in ΩD,

aD = v∗ on ∂ΩDand(3.1) \
ΩD

|u · ∇aD · u| ≤ εD‖u‖2
H1

0
(ΩD)for every u ∈ H1

0 (ΩD).A method �rst introdued by Leray and then lari�ed by Hopf is adaptedhere. We will need a funtion ϕε(t) desribed as follows:Definition 3.2. Let ϕε : R
+ → R be de�ned by

(3.2) ϕε(t) =







1 for t < γ2(ε),

ε ln(γ(ε)/t) for γ2(ε) ≤ t < γ(ε),

0 for t ≥ γ2(ε),where γ(ε) = exp(−1/ε).



FLOW IN AN INFINITE PIPE 45Using ϕε we an de�ne a funtion Φε:Definition 3.3. Let Φε : Ω → R be de�ned as follows:(3.3) Φε(x) = (m ∗ ϕε)(δ(x)),where δ(x) = dist(x, ∂ΩD), m is a standard molli�er with support in theinterval (−γ2/2, γ2/2), and ϕε is the funtion from De�nition 3.2.The following properties of Φε will be used:Fat 3.4.(1) Φε ∈ C∞(ΩD),(2) Φε ≤ 1 for every x ∈ ΩD,(3) Φε = 1 for x ∈ ΩD suh that δ(x) ≤ γ2(ε)/2,(4) Φε = 0 for x ∈ ΩD suh that δ(x) ≥ 2γ(ε),(5) |∇Φε| ≤ ε/δ(x).Now let a′D be the vetor �eld from Lemma 2.5 with the vetor �eld v∗given on the boundary. Sine ΩD is simply onneted, the vetor �eld a′Dan be represented as(3.4) a′D = ∇×Afor some vetor �eld A whih also satis�es(3.5) ‖A‖H2(ΩD) ≤ c‖v∗‖H1/2(∂Ω).Consider the vetor �eld aD(ε) de�ned as follows:(3.6) aD(ε) = ∇× (ΦεA).Using the properties of Φε we have aD |∂Ω = v∗, and also ∇ · aD = 0. Fur-thermore(3.7) |aD| = |∇ × (ΦεA)| ≤ 2(|∇Φε| |A| + |Φε∇×A|).From the Shwarz inequality and the properties of the form TΩ v · ∇u ·wwe ompute:
∣
∣
∣

\
Ω

u · ∇aD · u
∣
∣
∣ =

∣
∣
∣

\
Ω

u · ∇u · aD

∣
∣
∣ ≤ ‖u‖H1(Ω)

∣
∣
∣

\
Ω

|u|2|aD|2
∣
∣
∣

1/2
.Next, we have

∣
∣
∣

\
Ω

|u|2|aD|2
∣
∣
∣

1/2
≤

∣
∣
∣

\
Ω

|u|2|2(|∇Φε| |A| + |Φε∇×A|)|2
∣
∣
∣

1/2

≤ c(A)

∣
∣
∣
∣

\
Ω

ε

∣
∣
∣
∣

u

δ

∣
∣
∣
∣

2

+
( \

Ω

|u|4
)1/2( \

Ωε

|∇ ×A|4
)1/2

∣
∣
∣
∣

1/2
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≤ c(A)ε‖u‖H1

0
(Ω) + c(A)‖u‖L4(Ω)

( \
Ωε

|∇ ×A|4
)1/2

≤ ‖u‖H1

0
(Ω)σ(ε),where σ(ε) is a ontinuous real funtion with σ(ε) → 0 as ε→ 0, and(3.8) Ωε = {x ∈ ΩD : δ(x) < 2γ(ε)}.Our laim then follows after taking ε small enough.3.2. A vetor �eld in ΩP . In this subsetion we will prove the followingtheorem:Theorem 3.5. Given εP , in Σ := P1 × R there exists a vetor �eld aPwhih satis�es the following onditions:

∇ · aP = 0 in Σ,
aP · ~n = 0 on ∂Σ,
aP · ~τ2 = 0 on ∂Σ,\

I(x1)

aP · ~n = v∞,1|P1|.Moreover
supp aP ⊂ ΣεP = {x ∈ Σ : dist(x, ∂Σ) ≤ εP }and(3.9) ∣

∣
∣

\
Σ

u · ∇aP · u
∣
∣
∣ ≤ εP ‖u‖

2
H1(Σ)for every u ∈ H1(Σ) for whih(3.10) ∇ · u = 0 in Σ, u · ~τ2 = 0 on ∂Σ, u · ~n = 0 on ∂Σ.First, let us introdue the following de�nition:Definition 3.6. Let Ψε : Σ → R be de�ned as follows:(3.11) Ψε(x) = (m ∗ ϕ′

ε)(δ(x)),where δ(x) = dist(x, ∂Σ) and m is the standard molli�er with support in
(−γ2(ε)/2, γ2(ε)).It is obvious from the de�nition that(1) Ψε ∈ C∞(Σ),(2) Ψε(x) = 0 for x ∈ Ω suh that δ(x) ≥ 2γ(ε) or δ(x) ≤ γ2(ε).Now, denoting by I(x1) = P1(x1) the x1-setion of the region P1 at somepoint x1 and de�ning(3.12) Kε =

\
I(x1)

Ψε(x) dx2 dx3,



FLOW IN AN INFINITE PIPE 47we �nd that(1) Kε is independent of x1,(2) Kε > c, where c is a onstant independent of ε.We an now de�ne the vetor �eld aP :Definition 3.7. Set(3.13) aP (x) =

(
|P1|v∞,1

Kε
Ψε(x), 0, 0

)

.Before we start the proof of Theorem 3.5 we should remark that theompatibility ondition at in�nity is satis�ed:(3.14) \
I(x1)

aP · ~n = v∞,1|P1|,and also(3.15) ∇ · aP = 0.Proof of Theorem 3.5. First, we notie that for u satisfying(3.16) u · ~τ2 = 0, u · ~n = 0 on ∂Σ,one has(3.17) u2, u3 ∈ H1
0 (Σ).Denote the ith oordinate of the vetor �eld aP by a(i)

P . We alulate\
Σ

u · ∇aP · u =
\
Σ

u · ∇aP · u =
\
Σ

u2
∂a

(1)
P

∂x2
u1 +

\
Σ

u3
∂a

(1)
P

∂x3
u1(3.18)

= −
\
Σ

u2,2a
(1)
P u1 −

\
Σ

u2a
(1)
P u1,2 +

\
∂Σ

u2a
(1)
P u1

−
\
Σ

u3,3a
(1)
P u1 −

\
Σ

u3a
(1)
P u1,3 +

\
∂Σ

u3a
(1)
P u1

= −
\
Σ

u2a
(1)
P u1,2 −

\
Σ

u3a
(1)
P u1,3.Now, we get(3.19) ∣

∣
∣

\
Σ

u · ∇aP · u
∣
∣
∣ ≤

∣
∣
∣

\
Σ

u2a
(1)
P u1,2

∣
∣
∣ +

∣
∣
∣

\
Σ

u3a
(1)
P u1,3

∣
∣
∣.Realling that |P1|v∞,1/Kε ≤ M(v∞, |P1|) for a onstant M independentof ε and using the properties of Ψε(x), we estimate the �rst integral on theright hand side of (3.19):

∣
∣
∣

\
Σ

u2a
(1)
P u1,2

∣
∣
∣ ≤ Kε

∣
∣
∣
∣

\
Σ

u2

δ
u1,2

∣
∣
∣
∣
≤ Kε

( \
Σ

(
u2

δ

)2)1/2( \
Σ

u2
1,2

)1/2
.(3.20)



48 P. KONIECZNYFrom (3.17) and Lemma 2.6 we get
∣
∣
∣

\
Σ

u2a
(1)
P u1,2

∣
∣
∣ ≤ Kε‖u‖2

H1(Σ).In a similar way we estimate the seond integral in (3.19). Choosing ε smallenough we get the laim of our theorem.3.3. Joining the vetor �elds aP and aD. In this setion we will show howto join the previously onstruted �elds aP and aD in suh a way that theresulting vetor �eld aP→D is divergene free and preserves proper estimates.Theorem 3.8. For every onstant εPD > 0 and the vetor �eld v∗ fromTheorem 3.1 there exists a vetor �eld aP→D de�ned in Ω whih satis�es thefollowing onditions:
∇ · aP→D = 0 in Ω,

aP→D = v∗ on OD,

aP→D · ~n = 0 on OP ,

aP→D · ~τ2 = 0 on OP ,and the estimate(3.21) ∣
∣
∣

\
Ω

u · ∇aP→D · u
∣
∣
∣ ≤ εPD‖u‖2

H1(Ω).Let us assume, without loss of generality, that our onstrution is arriedout in the domain P1 × (0, L) (see Fig. 1.1 in the introdution).Our aim is to onstrut a vetor �eld whih smoothly joins the vetor�elds aD and aP . In this onstrution a funtion π desribed below will behelpful.Definition 3.9. Let θ < L/2 be a onstant and π : (0, L) → R be asmooth funtion satisfying the following onditions:(3.22) |π′| < 2/(L− 2θ), π|(0,θ) ≡ 1, π|(L−θ,L) ≡ 0.Then we also have(3.23) π′|(0,θ) ≡ 0, π′|(L−θ,L) ≡ 0.Let us take a loser look at the vetor �eld w de�ned as follows:(3.24) w(x1, x2, x3) := π(x1)aP (x1, x2, x3) + (1 − π(x1))aD(x1, x2, x3).It satis�es
w = 0 on OD ∩OP ,(3.25)

∇ · w = π∇ · aP + (1 − π)∇ · aD + π′(a
(1)
P − a

(1)
D )(3.26)

= π′(a
(1)
P − a

(1)
D )



FLOW IN AN INFINITE PIPE 49and we need to orret it to make it divergene free in the domain Σ :=
ΩD ∩ΩP = P1 × (0, L). In the following we use the notation(3.27) g := a

(1)
P − a

(1)
D .Lemma 3.10. There exists w suh that

∇ · w = g in Σand
∣
∣
∣

\
Σ

u · ∇π′w · u
∣
∣
∣ ≤ c(Σ, εD, εP )‖u‖2

H1(Σ),

∇ · π′w = π′g in Σ,where εD and εP are the onstants from Theorems 3.1 and 3.5. Additionally(3.28) c(Σ, εD, εP ) → 0 as εD, εP → 0.To prove this lemma we will need the following:Lemma 3.11. There exists a overing of the boundary ∂P1 with openretangles whose sides are parallel to the axes of the basi oordinate systemand with open retangles whose sides form a π/4 angle with these basi axes,suh that two orners of these retangles are inside P1, and the other twoare outside P1, determining a diretion�from the inside to the outside ofthe domain. Furthermore, in eah retangle the distane funtion δ(x, ∂P1)is dereasing in the diretion determined above.Remark 3.12. For an illustration of the above situation see the followingpitures:

Fig. 3.1Proof of Lemma 3.10. The retangles from Lemma 3.11 over not onlythe boundary ∂P1, but also some of its neighbourhood. Let us assume that
supp g is a subset of this neighbourhood. This assumption an be made, bythe properties of the �elds aP and aD (see the onstrution).From this overing we hoose a �nite subovering. Let ηk be a smoothpartition of unity and gk := ηkg.



50 P. KONIECZNYWe will arry out the onstrution of the �eld w in eah retangle sepa-rately; then we will add all wk's to get a vetor �eld(3.29) w =
∑

k

wk.The following properties will hold:(3.30) \
Ω

(u · ∇)w · u =
∑

k

\
Ω

(u · ∇)wk · u,

(3.31) ∇ · w =
∑

k

∇ · wk =
∑

k

gk = g.Without loss of generality we assume that the onstrution for eah wkis done in oordinates where the origin is as in one of the pitures below:
3

X 2

0

X

X
3

X 2

0

Fig. 3.2In the �rst ase the vetor �eld wk is desribed in the following way:
w

(1)
k (x) = 0,(3.32)

w
(2)
k (x) =

x3\
0

gk(x1, x2 − x3 + t, t) dt,(3.33)
w

(3)
k (x) =

x3\
0

gk(x1, x2 − x3 + t, t) dt.(3.34)This �eld has its support inluded in the retangle. As the support of thefuntion g gets loser to the boundary, the support of wk also gets loser tothe boundary.Lemma 3.13.(1) wk ∈ C∞(Ω),(2) ∇ · wk = gk.Now we get the estimates from the laim of Lemma 3.10.Let Pk be the kth retangle multiplied by the interval (0, L), and P ′
k bethe kth retangle multiplied by (θ, L− θ), where θ > 0 is the onstant fromDe�nition 3.9. Let us alulate:
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(3.35)
\

Pk

|u|2|π′wk|
2 dx =

\
Pk

|u|2
∣
∣
∣

x3\
0

π′gk(x1, x2 − x3 + t, t) dt
∣
∣
∣

2
dx

=
\

Pk

|u|2
∣
∣
∣

x3\
0

ηkπ
′(x1)(a

(1)
P − a

(2)
D )(x1, x2 − x3 + t, t) dt

∣
∣
∣

2
dx

≤
\

Pk

π′|u|2
∣
∣
∣

x3\
0

(a
(1)
P − a

(2)
D )(x1, x2 − x3 + t, t) dt

∣
∣
∣

2
dx

≤
\

Pk

π′|u|2
∣
∣
∣

x3\
0

(|a
(1)
P | + |a

(2)
D |)(x1, x2 − x3 + t, t) dt

∣
∣
∣

2
dx

≤ c(π′)
\

P ′

k

|u|2
∣
∣
∣

x3\
0

p1(x1, x2 − x3 + t, t) dt
∣
∣
∣

2
dx

≤ c(π′)
\

P ′

k

|u|2
∣
∣
∣

x3\
0

p2(x1, x2 − x3 + t, t) dt
∣
∣
∣

2
dx,

where
p1 = |ε/δ| + 2(|∇Φε| |A| + |Φε∇×A|),(3.36)
p2 = |ε/δ| + 2(|ε/δ| |A| + |Φε∇×A|).(3.37)From the properties of our retangles we get(3.38) x3\

0

1

δ(x1, x2 − x3 + t, t)
dt ≤ x3

1

δ(x1, x2, x3)
,We also have(3.39) \

P ′

k

|u|2|π′wk| dx ≤ c(L,A,K)
( \

P ′

k

|u|2|ε/δ|2 dx

+
\

P ′

k

|u|2
x3\
0

|Φε∇×A|2(x1, x2 − x3 + t, t) dt dx
)

.

We estimate the seond integral on the right hand side of (3.39) in a similarway to that in the Dirihlet ase. Namely, for ε small enough (dependingon η)(3.40) \
P ′

k

|u|2
x3\
0

|Φε∇×A|(x1, x2 − x3 + t, t) dt dx ≤ η‖u‖2
H1(Ω).An estimate for the former integral is ahieved in a similar way to theprevious one. We balane the term 1/δ(x) with the funtion u, but the



52 P. KONIECZNYfuntion u may not be zero near P1 × {0} ∪ P1 × {L}. However, in our asewe are away from the singularities near P1 × {0} ∪ P1 × {L} (thanks to θ).Setting ε small enough we get the required estimate.The ase with the retangle sides not parallel to the axes is almost iden-tial to that desribed above. We will just give the de�nition for wk:
w

(1)
k (x) = 0,(3.41)

w
(2)
k (x) =

x2\
0

gk(x1, t, x3) dt,(3.42)
w

(3)
k (x) = 0.(3.43)In that way we get a vetor �eld(3.44) w =

∑

k

wk,whih satis�es the assertion of Lemma 3.10 (the number of retangles is�nite).Now we have a divergene free vetor �eld(3.45) w = πaP + (1 − π)aD − π′w.Unfortunately, it may not be zero on the boundary, so we need to orret itin a suitable way. Let us formulate this in the following lemma:Lemma 3.14. For(3.46) w = πaP + (1 − π)aD − π′wthere exists a vetor �eld v whih satis�es
∇ · v = 0 in Σ,

v = w on OD ∩OP .Moreover , for every funtion u ∈ H1(Σ) with its trae on ∂Σ\(P1 × {0} ∪
P1 × {L}) equal to zero, the estimate(3.47) ∣

∣
∣

\
Σ

u · ∇v · u
∣
∣
∣ ≤ c(ε)‖u‖2

H1(Σ)holds, where c(ε) → 0 as ε→ 0.Proof. Let v(x1) be the two-dimensional vetor �eld from Lemma 2.4for the boundary onditions v∗ = w(x1) and the funtion g ≡ 0. Then
v(x1) = (0, v(x1)) is a well de�ned divergene free vetor �eld. We also have(3.48) ∇ · (π′v) = 0.The vetor �eld v an be written as(3.49) v = ∇×Wfor some vetor �eld W .



FLOW IN AN INFINITE PIPE 53Remark 3.15. Of ourse the ompatibility ondition (2.10) for v is sa-tis�ed.Let(3.50) vε := π′(∇× ψεW ).Let us reall that suppπ′ ⊂ (θ, L − θ). As in the previous setions (seeLemmas 3.1 and 3.5), singularities are removed by u or π′.Finally, the vetor �eld(3.51) aP→D = πaP + (1 − π)aD − π′w − vε,for εP and εD small enough, satis�es the following onditions:
(3.52) ∇ · aP→D = 0 in Ω,

aP→D = 0 on ∂Ω,
∣
∣
∣

\
Ω

u · ∇aP→D · u
∣
∣
∣ ≤ εPD‖u‖2

H1(Ω).Thus, Theorem 3.8 has been proved.3.4. Transition to a onstant vetor �eld. Now we would like to makethe vetor �eld a onstant at in�nity. This is the last step in the onstrutionof the vetor �eld a from Theorem 1.4.The onstrution is stated in the following lemma:Lemma 3.16. For every onstant D and vetor �elds aP , a∞,1 (de�ned in
P1 ×R) there exists a smooth vetor �eld aP→∞ whih satis�es the followingonditions:

∇ · aP→∞ = 0 in P1 × R,

aP→∞ = 0 on ∂Σ,
aP→∞ = aP for x1 ≥ D,

aP→∞ = a∞,1 for x1 ≤ 0.Proof. Let us take a loser look at the vetor �eld aπ = πaP +(1−π)a∞,1.Its divergene equals(3.53) ∇ · aπ = π′(v∞,1 − cΨε),for a onstant c and a funtion π′ : (0, D) → (0, 1) satisfying(3.54) π′(0) = π′(1) = 0, |π′| ≤ 2/D.Let(3.55) g = v∞,1 − cΨε.We will try to �nd a vetor �eld w satisfying(3.56) ∇ · w = −g in Σ.



54 P. KONIECZNYWe also have(3.57) π′∇ · w = π′∇ · (0, w) = ∇ · (π′(0, w)) = ∇ · (π′w).Notie that the funtion g does not depend on x1, and neither does w. Let
v be a vetor �eld satisfying

∇ · v = 0 in Σ,(3.58)
v = −w on ∂Σ \ (I(0) ∪ I(D)).(3.59)The ompatibility ondition is satis�ed:(3.60) \

∂Ω(x1)

v · ~n = 0.

Now, let aP→∞ be de�ned by(3.61) aP→∞ = aπ + π′w + π′v.This �eld satis�es
∇ · aP→∞ = 0 in P1 × R,

aP→∞ = 0 on ∂Σ,
aP→∞ = aP for x1 ≥ D,

aP→∞ = a∞,1 for x1 ≤ 0.Lemma 3.17. Given η > 0, there exists D (the onstant from Lem-ma 3.16) suh that the vetor �eld aP→∞ de�ned above satis�es(3.62) ∣
∣
∣

\
Ω

u · ∇aP→∞ · u
∣
∣
∣ ≤ 5η‖u‖2

H1(Ω)for every funtion u ∈ H1(Σ) ∩ V .Proof. Using (3.61) we have
∣
∣
∣

\
Ω

u · ∇aP→∞ · u
∣
∣
∣ ≤

∣
∣
∣

\
Ω

u · ∇aπ · u
∣
∣
∣ +

∣
∣
∣

\
Ω

u · ∇π′w · u
∣
∣
∣(3.63)

+
∣
∣
∣

\
Ω

u · ∇π′v · u
∣
∣
∣.We estimate the �rst integral:

∣
∣
∣

\
Ω

u · ∇aπ · u
∣
∣
∣ =

∣
∣
∣

\
Σ

u · ∇(πaP + (1 − π)a∞,1)u
∣
∣
∣(3.64)

=
∣
∣
∣

\
Σ

u1π
′(aP − a∞,1)u1 +

\
Σ

πu · ∇aP · u

+
\
Σ

(1 − π)u · ∇a2 · u
∣
∣
∣
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≤ (2/D)‖aP − a∞,1‖C(Σ)

\
Σ

|u|2 +
∣
∣
∣

\
Σ

u · ∇aP · u
∣
∣
∣ +

∣
∣
∣

\
Σ

u · ∇a2 · u
∣
∣
∣

≤ (2/D)‖aP − a∞,1‖C(Σ)‖u‖
2
H1(Σ) + 2η‖u‖2

H1(Σ).The vetor �elds aP and a∞,1 are smooth with a �nite supΣ norm, so, taking
D large enough, we get(3.65) ∣

∣
∣

\
Ω

u · ∇aπ · u
∣
∣
∣ ≤ 3η‖u‖2

H1(Σ).We an estimate the next integral by
∣
∣
∣

\
Σ

u · ∇π′w · u
∣
∣
∣ =

∣
∣
∣

\
Σ

u · ∇u · π′w
∣
∣
∣ ≤ c‖∇u‖L2(Σ)

( \
Σ

|u|2|π′w|2
)1/2(3.66)

≤ c‖∇u‖L2(Σ)(2/D)‖w‖C(Σ)

( \
Σ

|u|2
)1/2

≤ (2c/D)‖w‖C(Σ)‖u‖
2
H1(Σ).The vetor �eld w is smooth and has a �nite norm ‖w‖C(Σ), so, taking Dlarge enough, we obtain the desired estimate(3.67) ∣

∣
∣

\
Σ

u · ∇π′w · u
∣
∣
∣ ≤ η‖u‖2

H1(Σ).In a similar way we get(3.68) ∣
∣
∣

\
Σ

u · ∇π′v · u
∣
∣
∣ ≤ η‖u‖2

H1(Σ).Summing inequalities (3.65)�(3.68), we obtain (3.62).To �nish the proof of Theorem 1.4 we notie that all parts of the vetor�eld a have been onstruted. They are gathered in the following de�nitionof the vetor �eld a:
(3.69) a(x) :=







aD(x) for x ∈ ΩD \ΩP ,

aP→D,i(x) for x ∈ ΩDPi ,

aP→∞,i(x) for x ∈ ΩPi ,Estimates (1.21) and (1.22) also hold if proper onstants, ourring inthe onstrution, were hosen small enough. Thus, the proof of Theorem 1.4is �nished.Aknowledgements. The results presented in this paper were obtainedduring my work on my master thesis. I would like to thank my thesis super-visor Piotr Bogusªaw Muha for his enouragement and guidane. I wouldalso like to thank Piotr Rybka for helpful omments whih improved thereadability of the paper.
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