COLLOQUIUM MATHEMATICUM

VOL. 104 2006 NO. 1

ON A STEADY FLOW IN A THREE-DIMENSIONAL INFINITE PIPE

BY

PAWEL KONIECZNY (Warszawa)

Abstract. The paper examines the steady Navier—Stokes equations in a three-dimen-
sional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary condi-
tions). The velocity of the fluid is assumed to be constant at infinity. The main results
show the existence of weak solutions with no restriction on smallness of the flux vector
and boundary conditions.

1. Introduction. In this paper we examine the Navier—Stokes system

(v-V)v—vAv+Vp=0 in (2,

(1.1) )
V-v=0 in £,
with the boundary conditions
v-n=0 on Op,
i-T(v,p) 71 =0 on Op,
(1.2) v-T,=0 onOp,

v=0 on Op\Op,,
v=uv, on Op,,
and the following behaviour at infinity:

(13) VU — Uso,1 @S T] — —00,
. UV — VU2 as T — +00,

where the dot - denotes the standard scalar product in R3, v = (vq,v2,v3)

is the velocity of the fluid, p the pressure, v the positive constant viscosity

coefficient; 77, 71 and 75 are the outer normal and tangent vectors to the boun-

dary 042 and v is a constant vector field at infinity, i.e. V0o ; = (Vs0,i, 0,0).

Also
(1.4) T(v,p) =vD(v) — pId
denotes the stress tensor, where Id is the identity matrix and D(v) =

{vij + vjitij=123
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The domain {2 may be represented as 2 = 2p UJ:", 2p,, where 2p C
R3 is a simply connected bounded domain and Q2p, (i=1,...,m) are pipelike
domains, which can be represented (maybe in different coordinates) as 2p, =
P; x Rt, where P, C R? is a bounded domain with smooth boundary. We
also assume that 2p, N _ij = () for i # j. Furthermore Op = U?;l Op,,
where Op, = 0P; x R, Op = 002p \ U1 92p, and Op, is the outlet/inlet
for £2p where the velocity v is prescribed by condition (1.2)5. In this paper
we take m = 2.

The boundary data should satisfy the following compatibility condition:

(1.5) 7)0071|P1’ = 2)0072|P2‘ + S U - 1.
a0
2p, 2pp, 2p 2pp, 2p,
1 1 1 1
T 7
Fig. 1.1

In this paper we prove the existence of weak solutions to problem (1.1)-
(1.3). We achieve this without imposing restrictions on the magnitude of
data. This problem is similar to the classical Leray problem with the Diri-
chlet boundary condition and Poiseuille flow at infinity. The slip boundary
condition 7 - T(v, p) - 7 = 0 describes a model where there is no friction be-
tween the fluid and the surface of the pipe.

Slip boundary conditions are not as popular as Dirichlet conditions, how-
ever, they deserve to be given more interest. One may consider a generaliza-
tion of constraints (1.2)

(1.6) n-v=0, 7-T(v,p)-T+ fv-7=0 on df2p,

where f is the friction coefficient. Equations (1.6) describe a model where
there is a friction between the fluid and the boundary. If f = co one gets from
(1.6) the zero Dirichlet condition, and for f = 0 the slip boundary condition,
where the friction between the fluid and the boundary is negligible.

The last case is related to modelling the flow of a perfect fluid ([12]). The
general form of (1.6) is often applied to describe the motion of polymers,
blood, or the liquid crystal flow (see [7]). Mixed boundary conditions may
be considered as an approximation of the flow, where the velocity of the fluid
in the tangent direction 7o is negligible, i.e. we have perfect slip boundary
conditions with large fluxes (blood is an example).
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From the mathematical point of view our problem can be treated as a
form of Leray’s problem, where the no-slip condition is taken into account.
The existence of solutions is still an open question. The main difficulty is
hidden in the Dirichlet integral SQ Vv : Vv which can be infinite. Using slip
boundary conditions we prove that this integral is finite for any data.

A similar result, i.e. without restrictions on the magnitude of the data,
is obtained in the paper of Ladyzhenskaya and Solonnikov [6], but the Leray
problem is modified (there is no condition on the velocity at infinity) and the
existence of solutions is shown in the distribution sense, i.e. locally in space.

In this paper we obtain

(1.7) v — Voo € HY(),

which allows us to control the behaviour of the fluid at infinity. In the two-
dimensional case and for perfect slip boundary conditions the reader may find
a similar existence result in [8], but for a three-dimensional pipe and Dirichlet
boundary condition there is no such result. Here, we mix slip boundary and
Dirichlet conditions to get the existence of solutions satisfying (1.7). Once
it has been shown, one can obtain higher regularity and also the asymptotic
structure of the vector field v using standard methods (see [9]).

Methods used to prove the existence of solutions to problem (1.1)-(1.3)
are similar to those suggested by Leray and Hopf, i.e. a proper vector field a,
which is meant to be a flux carrier, is constructed. For this vector field a the
following conditions are fulfilled:

(1.8) V-a=0 in

(1.9) a-1=0 onOp,
(1.10) a-75=0 on Op,
(1.11) a=0 onOp,
(1.12) a=v" on Op,,
(1.13) a— Voo; as |x| — o0.

This allows us to rewrite the vector field v as
(1.14) v=u+a,
and search for a vector field u € H'(§2) which satisfies the following system:
(1.15) (u-Vu—vAu+Vp=vAa— (u-V)a—(a-V)u—(a-V)u,
V-u=0 1in {2,
u-n=0 onOp,
(1.16) ni-T(u,p)- 71 =—n-D(a)- 71 on Op,
u-7o=0 on Op,

u=0 on Op.
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Thus it is natural to consider the following space V:

DEFINITION 1.1. Set
(117)  V:={fe H'(2,R*):V-f=0, foo, =0,
fiop -1 =0, flo, -T2 =0}

Now we reduce our main problem to finding v € H'(£2) which satisfies
conditions (1.15) and (1.16).

Let us introduce a weak formulation for problem (1.15)-(1.16). Multi-
plying (1.15) by the test function @ € V and performing simple calculations
leads us to the following definition:

DEFINITION 1.2. By a weak solution to problem (1.15)—(1.16) we mean
a vector field v € V' which satisfies
(118) v | D) : Ve + | [(u-VIu+t (u-V)a+(a-V)u- &
N 9]
:—I/SVa:V(P— S(a-V)a-@—u S ii-D(a) 71(P-71)
02 N of2p
forall® € V.

The existence of u is shown by using the standard Galerkin method.
The main difficulty is the construction of the vector field a—it should fulfill
suitable conditions (see Theorem 1.4). We hope that the construction carried
out in this paper will be useful for other problems.

Finally, we formulate the main theorem:

THEOREM 1.3. Assume that 0f2 is smooth. Then for any data satisfy-
ing the compatibility condition (1.5) there exists at least one weak solution
v € HY(02,R3) to problem (1.15)—(1.16) in the sense of Definition 1.2. More-
over, U — Voo € HY(2p,) and

(119) H'U_'Uoo,iHHl(_QPi) < C(UOO,lyvOO,27U*’Q)7
in particular
(1.20) VIV < e(vo0,1, V00,2, V%, 2).

02

The main information delivered by Theorem 1.3 is finiteness of the Diri-
chlet integral for arbitrarily large fluxes. This is accomplished, as mentioned
before, by transferring all the flux information onto the proper smooth vector
field a. Then to construct a vector field u with finite Dirichlet integral one
can use the standard Galerkin method, i.e. show the existence of a solution
uy, in finite-dimensional spaces, choose a proper subsequence u,, and pass
to the limit.
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Moreover, finiteness of the Dirichlet integral allows us to improve the
regularity of solutions using standard techniques (see [8]).

In the definition of a weak solution, a vector field a is used, and to prove
Theorem 1.3 we require it to fulfill some conditions which are stated in the
following theorem:

THEOREM 1.4. For every € > 0 there exists a vector field a satisfying
conditions (1.8)—(1.13) and the following estimate:

(1.21) ‘ S(u'V)a‘UI < ellullfp e
2

for every function uw € V.. Moreover, the following inequalities hold:
(1.22)  [Val200) + [I(a- V)allrze) + IVall 2o

< (Voo,1, V0,2, €, P, Po)
and

(1.23) lla — 'Uoo’i”LQ(QPi) < e(Voo,1, Uso,2, €, P1, Pa).

The vector field a will be constructed in four basic steps:

1. for the bounded region {2p we will use the standard Leray—Hopf con-
struction (the resulting vector field will be denoted by ap);

2. for the unbounded region 2p we will adapt the Leray—Hopf construc-
tion to slip boundary conditions (vector field ap);

3. in the bounded intersection of 2p and 2p of width L we will join ap
and ap in such a way that the resulting field ap_,p will be divergence
free and condition (1.21) will be satisfied;

4. in the unbounded region {2p we modify the previously constructed
vector field ap_.p to be constant at infinity, i.e. v €1, Where e is
the basis vector from the standard orthogonal basis of R3.

Our paper is organized as follows: in the next section we give some pre-
liminary lemmas (in Section 2.1) and prove Theorem 1.3 (in Section 2.2)
assuming the validity of Theorem 1.4. In Section 3 we prove Theorem 1.4 by
constructing the vector field a: in the domain {2p in Section 3.1, in {2p in
Section 3.2, joining ap and ap in Section 3.3, and making the vector field
constant at infinity in Section 3.4.

2. Proof of Theorem 1.3. This section contains the proof of The-
orem 1.3. First we give some preliminaries.

2.1. Preliminary lemmas. In this section we show some auxiliary results,
which will be necessary for the Galerkin method. The first one can be found
in [11].
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LEMMA 2.1. Let X be a finite-dimensional Hilbert space, let P : X — X
be a continuous mapping satisfying

(2.1) (P(£),6) >0 for all €] = k >0,

where k is some constant, and (-,-) is the standard inner product in X. Then
there exists £ € X with ||£]| < k for which

(2.2) P() = 0.

The second lemma is the Korn inequality, which the reader may find
in [10], however in our case we prove it as an equality:

LEMMA 2.2. For every u € V we have
(2.3) {DW)?=2{|vu?
2 2

Proof. Without loss of generality, we assume that u € V' N C?(£2). Then
3

3
VD) = > (i +u)> =2 Vul+ 2> i juj.

i) 2i,j=1 I7; Q ij=1

Let us take a closer look at the last term:

3 3 3
(2.4) S Z Ui jUG 5 = — S Z U jiUj + S Z U jU;T;

214,5=1 214,j=1 0N 1,j=1
3 3
= S(V . u)2 — S Zum(u . T_i) + S Z Uy, j UG T -
2 082 i=1 002 1,5=1

Now, if we recall that V-« =0 in {2 and u -7 = 0 on 32 we get

3 3
(2.5) S Z ui,juﬂ = S Z umujni.

214,5=1 021,5=1

Since u - 71 = 0 on 92, we have u|p, € T(912) (where T'(042) is the tangent
space), and so

3 3
(2.6) 0=(u-V)(u-M)= > wjuini+ Y ujumij,
ij=1 ij=1

3 3
(27) S Z U U545 = — S Z UiU; T 5.

21,5=1 9214,5=1
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On 02N 2p we have © = 0, and on Op = A2 N 2p we have us = ug = 0,
so we can rewrite the above equality in the following way:

3
(2.8) S Z Uj jUj i = — S UTUINL 1}

Qij=1 Op
but this equals zero, because the geometry of Op is independent of z;. =

LEMMA 2.3. There exists a constant ¢ = ¢(§2) such that for every u € V
the following inequality holds:

(2.9) cVul 2oy = [Jull g o)-

Proof. 1t is sufficient to notice that us = us = 0 and the integral
SPl(acl) u - 71 dxg dzg equals zero where Pj(x1) is the xj-section of Pj;. This
allows us to use Poincaré inequalities, the one with the zero boundary con-
dition and the one with the mean value.

Below are two useful lemmas which can be found in [5]:

LEMMA 2.4. Let 2 C R? be a simply connected domain with boundary of
class C**. For a given vector field v* € C1T(982) and function g € C*(£2)
satisfying the compatibility condition

(2.10) [ o=y
o ]
there erists a vector field w € C1T(082) which satisfies
(2.11) V-w=g in {2,
(2.12) w=2v" on 0.

LEMMA 2.5. Let 2 C R3 be a locally Lipschitz domain. For a given vector
field v* which satisfies the compatibility condition

(2.13) | v eii=0,

on
there exists a vector field w which satisfies
(2.14) V-w=0 in {2,
(2.15) w=0v" on 0.

LEMMA 2.6. Let §2 be a bounded, locally Lipschitz domain. There exists
a constant ¢ = c(§2) such that for every function u € Hi(£2) the following
inequality holds:

u

(2.16) 5

< cllullgy (o),
o) Hy(2)

where §(z) = dist(x, 012).
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Proof. Without loss of generality we show the inequality in the case
where 2 = (0,2¢), 6(x) = 2 and u € C§°(0,2¢c). We have

U2 X
.17 R L R i)

22 dx z dz

Integrating (2.17) over the interval (0, ¢), we get

Cuzm C C
(2.18) | x(?)dng d‘i[l u?(z )] dm—i—Sl%uQ(x)dx
0 0
:—lugzz: ’ clilfxdx
@)+ e

After dividing both sides of the above inequality by (S x%uz (x) dm) 2 e get
the conclusion of the lemma. u

2.2. FExistence of a weak solution. In this section we prove the existence
of a weak solution. We use the standard Galerkin method. Let wq,ws,...
be an orthonormal basis of the space V. We consider the approximation
spaces VN = span{wy,...,wy}. Solutions u” € V will be looked for in
the following form:

N
(2.19) uV = Z cNw;.
i=1

Inserting vV into equation (1.18), and taking wy, as test functions, we get
g q 5

(220) v | D) : Vuy + [[(@" - V)u" + @V - V)a+ (a- V)u] - wy
2 (0]
—VS Va : Vwy, — S(a-V)a.wk—y S ii-D(a) - 7 (wy - 71),
2 02 oNp

which has to be valid for every £k = 1,..., N. Now We observe that (2.20)
is, in fact, an equation for the unknown coefﬁc1ents c . We show that this
equation has a solution. In order to prove it we use Lemma 2.1. Let us
introduce the following mapping P:
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N
(2.21) PN)=3" (y {D@") + D) : Vuy,
2
+S + W - V)a+ (a-V)u¥ + (a-V)a) - wy
0
+ S 7i-D(a) - 7 (wg - Tl))wk.

It is easily seen that the mapping P : VN — V¥ is continuous.

Now we will examine (P(u”),uV)y~, where (-, )y~ is the inner product
in VY (derived from H'(£2)). It is not hard to notice that the above equation
is equivalent to

(2.22)  (P(uN),u™)y~ :VS(D( Ny + D(a)) : Vu¥

—i—S (W +a)+ (a- V)W +a))-u
0

+ S ii-D(a) - 7 (N - 7).
Let us estimate the right hand side of (2.22). We have
(2.23) v | DY) : vl = g S(D(UN))2,

2

and using Lemma 2.2 we conclude that
(2.24) v | DY) - V¥ = a3 )

]

The Schwarz inequality gives

v [ D(a) : V| < C1|1Val 2oy 6”11y
2

(@ )a-u¥| < Goll(a- Dallaou” ey
2

in the first of these inequalities we used Lemma 2.3, namely
(2.25) IVullr2(2) 2 cllull e

for every u € V.
From the basic properties of the functional SQ u - Vv - w we also have

(2.26) S(uN V)V uN =0 and S(a V)V -V =o.
9} 0]
We choose the constant 1 = v/2 and apply Theorem 1.4 to get
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v
2
There is also another part to estimate:
(228) | | -D(0)- AN A)| < Gl Val 2om 6™l 2 0m)
on

N
< Cal|Val| 200 1w | 7102y
where we used the trace theorem.
Summing up the above estimates we get

1%
(229) (P(u™),u)yw 2 [[u" | (e - <§ [u™ |l 1 (2) — C(IVall 2

T lita- Val o + \|VauL2<am>).

Now, if only some constant K satisfies the inequality

v

(2.30) 3 K - C([|IVall 20y + I(a - V)al[r20) + IVall2(a0)) > 0,
then also

(2.31) (P(u™),u™)yn >0 for every |[u” |y~ = K,

and, from Lemma 2.1, there exists uY € V¥ for which P(ud) = 0. Fur-
thermore, the existence of this element and the definition of P : VN — V¥
(see (2.21)) imply the existence of the coefficients c¥ in (2.20), and ul¥ =
SV eNwy,. Additionally, we get an estimate for [julY]| H1(») independent
of N:

(2.32) [ul |1 < K.

The sequence {u’ 72, is bounded in the Hilbert space V, so there exists a
subsequence {ui¥}?° | weakly convergent to, say, u, € V:

(2.33) ult =y, weakly in V as k — oo.

However, we need strong convergence. We cannot use the Rellich theorem,
because the region {2 is unbounded. Let us consider the bounded regions

(2.34) Qo =020{z R : |2y <k} fork=1,2,....

From the sequence {u’*} we choose a subsequence (still denoted by ul*)
strongly convergent in L*(£21) to wu,; this subsequence has a further subse-
quence strongly convergent in L*(2;), and so forth. By a diagonal proce-
dure we choose a subsequence uk strongly convergent in L* to u, in every
region (2;. Let us denote this sequence by {u*}. From strong convergence in

(), we deduce the existence of a function f: N — N for which

(2.35) [/ ®) — | o) < 1/k-
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Our aim is to deal with the nonlinear term in the weak formulation of
our problem. We claim that

(2.36) {/® 7)™ o — | (- V- &
9] 2
for every test function @ € V. Let us calculate:

S(uf(k) V). = S((uf(k) —u) - Vu/® .o 4 S(u* V)ul®) . @,
Q Q Q

In §,(uy- V)u/ ) . & we can justify the passage to the limit directly from
the definition of weak convergence. For the other integral we have

(2.37) ‘ J (@ ® —u) - wyuf® -@‘ 0 ask— oo
2
Indeed, using the Schwarz inequality and triangle inequality we get

(@ ® ) - V)l ® g

2

<] (@ —w) 9@ g 1] § (0 =) D)l 0
Q/

2 "

< Clluf® — Ul L1 () KNPl Loy + CKQ”@”L4(Q;€)7

where K is a constant estimating the norms ”uk”Hl(Q) (see (2.32)), and
2. = 2\ {2 is the complementary region to (2. Recalling (2.35), we can
write

‘ F (@™ =) - )/ W) &) < CK||®] 1 (o) /b + CK?||] 111 (21

0]
We have
and so
(2.39) S(uf(k) S VATTEAL Y g S(u* V)uy - @ as k — oo.
0 [0
Let us also look at the term
(2.40) | DW/®): ve.
02
From the definition of weak convergence we find that as k — oo,
(2.41) | DW/®):ve - | D(u.) : VO.
1} 10}

The calculations justifying the passage to the limit in the other terms
are simpler than for the nonlinear term.
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We proved that there exists a function u, € V which satisfies

(2.42) v S D(uy) : V& + S [(ts - V)us + (us - V)a+ (a- V)uy] - @
Q Q
=—v|Va:Vo-(a-V)a-&—v | ii-D(a) - 7(P 7)
2 2 oNp
for every test function @ € V.

Additionally, we have an estimate on the norm of u,:
(2.43) [l () < K,
where the constant K depends only on a, {2 and the conditions imposed on
the solution.
Consequently, we have
(2.44) v = vooillmr(op,) = lu+a = vooillmi(op,)
< llullg(ap,) + lla = vooillpr(ap,) < C,

where the constant C is as in the assertion of Theorem 1.3.

3. Proof of Theorem 1.4. As mentioned in the introduction, our con-
struction will be divided into four steps, each described in a separate sub-
section.

3.1. A wvector field in 2p. In this section we will prove the following
theorem:

THEOREM 3.1. For every ep > 0 and for every vector field v* given on
OS2 and satisfying the compatibility condition (1.5) there exists a vector field
ap which satisfies the following conditions:

V-ap=0 in 2p,
ap =v* on 02p
and
(3.1) | Ju-Vap-ul < 5D||u|y§,é(%)
2p
for every u € H(2p).
A method first introduced by Leray and then clarified by Hopf is adapted

here. We will need a function ¢.(t) described as follows:

DEFINITION 3.2. Let . : Rt — R be defined by

1 for t < 42(e),
(3.2) we(t) =< eln(y(e)/t) for v2() <t < v(e),
0 for t > 72(e),

where y(g) = exp(—1/¢).
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Using ¢. we can define a function &,:

DEFINITION 3.3. Let &, : {2 — R be defined as follows:
(3-3) be(x) = (m* ) (0()),
where 0(z) = dist(z,02p), m is a standard mollifier with support in the
interval (—v2/2,+%/2), and ¢ is the function from Definition 3.2.

The following properties of @, will be used:

Fact 3.4.

) P € COO(QD)v

) @. <1 for every x € 2p,

) @ =1 for x € £2p such that 6(x)
) @ =0 for x € £2p such that 6(x)
) [V, < e/5(z).

(€)/2,

<42
> 29(e),

(1
(2
(3
(4
(5

Now let a’, be the vector field from Lemma 2.5 with the vector field v*
given on the boundary. Since 2p is simply connected, the vector field a/,
can be represented as

(3.4) ap=VxA

for some vector field A which also satisfies

(3.5) [All52(2p) < cllv*llmz00):
Consider the vector field ap(e) defined as follows:

(3.6) ap(e) =V x (PA).

Using the properties of &, we have apjpp = v*, and also V - ap = 0. Fur-
thermore

(3.7) lap| = |V x (@.4)] < 2(|V.| |A] + 8.V x Al).

From the Schwarz inequality and the properties of the form SQ v-Vu-w
we compute:

‘ S u~Va,D-u‘ = ‘ Su : Vu-aD’ < HUHHl(Q)‘ S ]u!QIaDIQ‘I/Q.
02 2 2

Next, we have

§ fulan?] " < | § luPi20ve. 4] + 2.9 < app]
2 02
2 / J2|1/2
< ()| fel5] + (] |uy4)1 2( [ v x A|4)1 ’
0] 9] £
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1\ /2
< c(A)ellullmy ey + e(A) ull sy ( § 1V Al
2

< ull a0 (€),
where o(¢) is a continuous real function with o(¢) — 0 as ¢ — 0, and
(3.8) Q. ={xeNp:0(x)<2y(e)}.
Our claim then follows after taking € small enough.
3.2. A vector field in {2p. In this subsection we will prove the following
theorem:
THEOREM 3.5. Given ep, in X := P; X R there exists a vector field ap
which satisfies the following conditions:
Vieap=0 in X,
ap-n=0 ondX,
ap-To=0 ondX,
S ap -1 = Voo, |P1].
I(z1)

Moreover

suppap C X, = {z € X : dist(z,0X) < ep}
and
(39) |§u-Vap-u| < epllulfp s

X
for every u € HY(X) for which

(3.10) Vu=0 X, wu-7%=0 ondX, wu-n=0 ondX.
First, let us introduce the following definition:
DEFINITION 3.6. Let ¥, : X — R be defined as follows:

(3.11) e (x) = (m* ¢L)(6(2)),
where 0(z) = dist(z,0%) and m is the standard mollifier with support in
(=7*(€)/2.7%(e)).

It is obvious from the definition that

(1) V. € C=(2),

(2) W.(x) = 0 for x € £2 such that §(x) > 27y(g) or d(x) < ~+2(e).
Now, denoting by I(x1) = Pi(x1) the xi-section of the region P, at some
point 1 and defining
(3.12) K.= | 0.(x)drydas,

I(z1)
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we find that

(1) K. is independent of z1,
(2) K. > ¢, where c is a constant independent of .

We can now define the vector field ap:

DEFINITION 3.7. Set

(3.13) ap(z) = ('Plll{ﬂ Wg(x),0,0>.

Before we start the proof of Theorem 3.5 we should remark that the
compatibility condition at infinity is satisfied:

(3.14) S ap - 1M = vVso1|P1,
I(z1)

and also
(3.15) V-ap=0.

Proof of Theorem 3.5. First, we notice that for u satisfying
(3.16) u-7=0, wu-7=0 ondX,
one has
(3.17) ug, uz € Hy(X).
Denote the ith coordinate of the vector field ap by ag). We calculate

1 1
(3.18) Su~Vap~u:Su-Vap-u:S Gagg) 1+SU38G%)u
z z z

(1)

—SuQQaP Ul — Sugap U2 + S ugaP U1

X
(1)
us 3aP Uy — U3CLP ur 3+ \ usap ug
x X ox

SUQCLP U2 — Su?,ap U1,3-
X b))
Now, we get

(3.19) ‘ S u-Vap - u’ < ‘ S uQag)uLg‘ + ’ S U3ag)u173‘.
b5 B x

Recalling that |P;|vee1/Ke < M(voo, |P1]) for a constant M independent
of £ and using the properties of ¥, (x), we estimate the first integral on the

right hand side of (3.19):
2\ 1/2
(3.20) ’ S Ugag)ul’g‘ < Ke i% ur 2| < K£<£ <%> ) (iu%z) 1/2.

X
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From (3.17) and Lemma 2.6 we get

| Jusafuna| < Kelluldn s,
X

In a similar way we estimate the second integral in (3.19). Choosing & small
enough we get the claim of our theorem. =

3.3. Joining the vector fields ap and ap. In this section we will show how
to join the previously constructed fields ap and ap in such a way that the
resulting vector field ap_, p is divergence free and preserves proper estimates.

THEOREM 3.8. For every constant epp > 0 and the vector field v* from
Theorem 3.1 there exists a vector field ap_.p defined in {2 which satisfies the
following conditions:

V-ap_p=0 in {2,
ap_p=v*" on Op,
ap_p-1n=0 on Op,
ap_p-T =0 onOp,
and the estimate
(3.21) ‘ u-Vap_p-u| <epplullfp g
2

Let us assume, without loss of generality, that our construction is carried
out in the domain P; x (0, L) (see Fig. 1.1 in the introduction).

Our aim is to construct a vector field which smoothly joins the vector
fields ap and ap. In this construction a function 7 described below will be
helpful.

DEFINITION 3.9. Let # < L/2 be a constant and 7 : (0,L) — R be a
smooth function satisfying the following conditions:

(3.22) |7TI| < 2/(L - 20), 7T|(0’9) = 1, W\(LfB,L) =0.
Then we also have

Let us take a closer look at the vector field w defined as follows:
(3.24)  w(xy,z2,x3) :=7(z1)ap(x1,x2,23) + (1 — 7(z1))ap(x1, 2, x3).
It satisfies
(3.25) w=0 onOpnNOp,

(3.26) V-w:7TV'(1P+(1—7T)V'GD+7T/(CL%) —ag))
1 _ (1))

=7'(ap’ —ap
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and we need to correct it to make it divergence free in the domain Y :=
2pNN2p =P x(0,L). In the following we use the notation

(3.27) g = ag) — a(Dl).
LEMMA 3.10. There exists w such that
V-w=g wmlX
and

[Ju-ve'm - u| < e en.ep)ulldn s,
X

V-rw=1ng inX,
where ep and ep are the constants from Theorems 3.1 and 3.5. Additionally

(3.28) C(E,ED,EP)—)O as ep,ep — 0.
To prove this lemma we will need the following:

LEMMA 3.11. There exists a covering of the boundary OP; with open
rectangles whose sides are parallel to the azxes of the basic coordinate system
and with open rectangles whose sides form a w/4 angle with these basic azxes,
such that two corners of these rectangles are inside P;, and the other two
are outside Py, determining a direction—jfrom the inside to the outside of
the domain. Furthermore, in each rectangle the distance function §(x,0P))
is decreasing in the direction determined above.

REMARK 3.12. For an illustration of the above situation see the following
pictures:

Fig. 3.1

Proof of Lemma 3.10. The rectangles from Lemma 3.11 cover not only
the boundary 0Py, but also some of its neighbourhood. Let us assume that
supp g is a subset of this neighbourhood. This assumption can be made, by
the properties of the fields ap and ap (see the construction).

From this covering we choose a finite subcovering. Let 7, be a smooth
partition of unity and gi := nrg.
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We will carry out the construction of the field w in each rectangle sepa-
rately; then we will add all wy’s to get a vector field

(3.29) > .
k

gl
I

The following properties will hold:

(3.30) Vu-vyw-u=> | V)w -,
2 k 2

(3.31) Vo=» VW= gr=g.
k k

Without loss of generality we assume that the construction for each wy,
is done in coordinates where the origin is as in one of the pictures below:

X
3

Fig. 3.2

In the first case the vector field wy, is described in the following way:

(3.32) o (z) =0,

3

(3.33) @) (@) = | gr(wr, 22 — a3+ 1, 8) dt,
0
3 T

(3.34) w0 (x) = | gr(er, @2 — 3+ t,1) dt.
0

This field has its support included in the rectangle. As the support of the
function g gets closer to the boundary, the support of wy also gets closer to
the boundary.

LEmMmA 3.13.

(1) m € C(9),

(2) V-0 = g

Now we get the estimates from the claim of Lemma 3.10.

Let Py be the kth rectangle multiplied by the interval (0, L), and P} be
the kth rectangle multiplied by (6, L — ), where 6 > 0 is the constant from
Definition 3.9. Let us calculate:
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T3 9
(3.35) S |u|? |7 wy | dx = X |u]2‘ S 7' (21, w0 — 23 + 1, 1) dt‘ dx
Pk Pk 0

T3 9
= S || S nkw’(xl)(ag) - a(DQ))(:El,a:Q —x3+t,t) dt‘ dx
Py 0
T 2 2
< S ﬂ"lu|2‘ S (aga) - ag)))($1,$2 —x3+t,t) dt‘ dz
Py 0
Toa 2 2
< S ﬂ"lu|2’ S (|a§D)| + |CL§))|)($1,$2 — w3 +1,t) dt‘ dx
Py 0

<c(n') | |uf?

T3 9
> SP1($1,$2—$3+t,t)dt‘ dx
Py

T3 9
< c(n) S |u|2‘ Spg(ajl,ajg —x3+t,t) dt‘ dx,

P
where
(3.36) p1 = |¢/8] + 2|V, |A] + 8. x AJ),
(3.37) p2 = [e/6] +2(le/| | Al + |V x A]).
From the properties of our rectangles we get
3

(3.38) | ! dt < x3 ——

' o Oz, mp —xz + 1) T ® 5(x1, w9, w3)

We also have

(3.39) | Jul|n"wy| dz < e(L, A, K)( | [ul?le/6) da

P P,
T3
+ | Jul? § 122V x AP (21,22 — 25 + 1, 1) dtd:r).
P,é 0

We estimate the second integral on the right hand side of (3.39) in a similar
way to that in the Dirichlet case. Namely, for ¢ small enough (depending

on 1)

3
(3.40) | [ul? § 2.V x A1, 25 — 23+ t,1) dt da < nl|ull3: o).
P 0
An estimate for the former integral is achieved in a similar way to the
previous one. We balance the term 1/6(z) with the function w, but the
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function u may not be zero near P; x {0} U P; x {L}. However, in our case
we are away from the singularities near P; x {0} U P; x {L} (thanks to 0).
Setting ¢ small enough we get the required estimate.
The case with the rectangle sides not parallel to the axes is almost iden-
tical to that described above. We will just give the definition for wy:

(3.41) o (z) =0,
2

(342) w§132)($) = S gk(xlvtax3) dt?
0

(3.43) ¥ (z) = 0.

In that way we get a vector field

(3.44) W= W,
k
which satisfies the assertion of Lemma 3.10 (the number of rectangles is

finite). =
Now we have a divergence free vector field
(3.45) w=map+ (1 —7w)ap — 7'w.

Unfortunately, it may not be zero on the boundary, so we need to correct it
in a suitable way. Let us formulate this in the following lemma:

LeMMA 3.14. For
(3.46) w=map+ (1 —map — 7w
there exists a vector field v which satisfies
V=0 1inkX,
v=w onOpNOp.

Moreover, for every function u € HY(X) with its trace on OX\(P; x {0} U
Py x {L}) equal to zero, the estimate

(3.47)

Ju- Vo u| <o) lullf
b)
holds, where c¢(e) — 0 as e — 0.

Proof. Let v(x1) be the two-dimensional vector field from Lemma 2.4

for the boundary conditions v* = w(z;) and the function ¢ = 0. Then
v(x1) = (0,v(z1)) is a well defined divergence free vector field. We also have
(3.48) V- (n'7) = 0.

The vector field U can be written as

(3.49) 1=V xW

for some vector field W.
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REMARK 3.15. Of course the compatibility condition (2.10) for v is sa-
tisfied.

Let
(3.50) Ve =7 (V x W),

Let us recall that suppn’ C (0,L — 6). As in the previous sections (see
Lemmas 3.1 and 3.5), singularities are removed by v or 7. =

Finally, the vector field
(3.51) ap_p =map+ (1 —7m)ap — 7'w — 7.,
for ep and ep small enough, satisfies the following conditions:
V-ap_p=0 in §2,
(3.52) ap—p =0 on 912,

‘ S w-Vap_p-u| < €PDHUH%P(Q)‘

Thus, Theorem 3.8 has been proved.

3.4. Transition to a constant vector field. Now we would like to make
the vector field a constant at infinity. This is the last step in the construction
of the vector field a from Theorem 1.4.

The construction is stated in the following lemma:

LEMMA 3.16. For every constant D and vector fields ap, a1 (defined in
Py xR) there exists a smooth vector field ap_., which satisfies the following
conditions:

V'CLPHOOIO iTLP1XR,
ap—oo =0 on 0X,
AP—oo = AP forxz1 > D,

APp—oo = Qo1 for x1 < 0.

Proof. Let us take a closer look at the vector field ar = map+(1—7)a00,1.
Its divergence equals

(3.53) V- tr =7 (Voo — W),

for a constant ¢ and a function 7’ : (0, D) — (0, 1) satisfying
(3.54) 7 (0)=7'(1)=0, |7'|<2/D.

Let

(3.55) g = Voo1 — ..

We will try to find a vector field w satisfying
(3.56) V-w=—-g inl.
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We also have
(3.57) ©'V-w=nV-(0,w)=V-(7(0,w) =V - (r'w).

Notice that the function g does not depend on 1, and neither does w. Let
v be a vector field satisfying

(3.58) V-v=0 in X,
(3.59) vt=—-w ondX\ (I(0)UI(D)).
The compatibility condition is satisfied:
(3.60) | 7-i=0
802(x1)

Now, let ap_,» be defined by
(3.61) Ap_soo = Ay + 7w + 7'T.

This field satisfies

V- -ap_o =0 in P x R,
ap_oo =0 on 90X,
AP_oo = AP for x1 > D,

AP—oo = Uoo,1 for 1 < 0. m

LEMMA 3.17. Given n > 0, there exists D (the constant from Lem-
ma 3.16) such that the vector field ap_., defined above satisfies

(3.62)

S U-Vap_oo U‘ < 577”“”%{1(9)
(9]

for every function u € HY(X)NV.
Proof. Using (3.61) we have
(3.63) Hu-Vap_)OO-u’SH%Vaw-u’—l—Hu-Vw’ﬁ-u‘
Q Q Q

+ ‘ Su-Vw’ﬁ‘u‘.
Q
We estimate the first integral:

(3.64) ‘gu : vaﬂ-u( - ‘
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< 2/D)llar — asslleqs) | [ul + | fu- Vap-u|+ | fu- Va4
X X X

< (2/D)llap — acolle)llullin sy + 2nllul7n s)-

The vector fields ap and a1 are smooth with a finite supy;, norm, so, taking
D large enough, we get

(3.65) S u-Vag - u‘ < 37]Hu||?{1(2).
2]
We can estimate the next integral by

(366) | fu Vr'm-u| = |{u- Vu- 7] < c|Vul 2  § |u|2|7r’w|2)1/2
X X X

1/2
< clIVul () 2/ D)@l ey  § 1ul?)
X

< 2¢/D)l[@l sy llull? 5.

The vector field w is smooth and has a finite norm ||W||¢(x), so, taking D
large enough, we obtain the desired estimate

(3.67) ‘ S w-Vr'w - u‘ < 77||u|\§{1(2).
X
In a similar way we get

(3.68) ( Su-vw’@.u‘ < nllull? (-
)

Summing inequalities (3.65)—(3.68), we obtain (3.62). =

To finish the proof of Theorem 1.4 we notice that all parts of the vector
field a have been constructed. They are gathered in the following definition
of the vector field a:

ap(x) for z € 2p \ 2p,
(3.69) a(z):= < ap_p,i(z) forx e 2pp,
ap—oo,i(z) for x € 2p,

Estimates (1.21) and (1.22) also hold if proper constants, occurring in

the construction, were chosen small enough. Thus, the proof of Theorem 1.4
is finished.
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