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ON THE APPROXIMATION OF REAL CONTINUOUS FUNCTIONS
BY SERIES OF SOLUTIONS OF A SINGLE SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

BY

CARSTEN ELSNER (Hannover)

Abstract. We prove the existence of an effectively computable integer polynomial
P(z,tg,...,t5) having the following property. Every continuous function f : R® — R can
be approximated with arbitrary accuracy by an infinite sum

o0
> He(zy,...,35) € CO(R®)
r=1

of analytic functions H,, each solving the same system of universal partial differential
equations, namely

=1,...,9).

5
P(mo';HT, aHT g HT) =0 (O'

6107.“7 8x§

1. Introduction and statement of the result. A differential equa-
tion is said to be universal if every continuous function (defined on the real
line or on an interval) can be approximated by solutions of this single differ-
ential equation with respect to a prescribed distance function. Much work
has been done to improve and to generalize L. A. Rubel’s famous results
concerning C*°(R)-solutions of an ordinary universal differential equation
[13], [14].

THEOREM A [L. A. Rubel; 1981]. There ezists a nontrivial fourth-order
algebraic differential equation (ADE) such that any real continuous function

defined on the real line can be uniformly approximated by C*°(R)-solutions
of this ADE. One such specific ADE is

P(y,, y//’ y///’ y////) — 0’
where P denotes the polynomial
P(x1,x9,x3,24)
= 3xiwon?— 4:17‘%:17%3:4 +6a3rdrswy + 240w, — 12xi’:z:2:n§ — 29x%:z:§x§ +1225.
2000 Mathematics Subject Classification: 34A05, 26E10, 35C05.
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solutions, universality theorems.
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It is still an unanswered question whether such an ADE exists having
analytic solutions approximating uniformly any continuous function on the
real line. But when we restrict the approximation of functions to compact
intervals, the problem of analytic solutions has been solved by M. Bosher-
nitzan [1] in 1986.

THEOREM B [M. Boshernitzan; 1986]. There ezists a nontrivial sizth-
order ADE of the form

PW ", ...,y =0
whose real-analytic solutions (on R) are dense in C(I) for any compact
interval 1.

THEOREM C [M. Boshernitzan; 1986]. There ezists a nontrivial seventh-
order ADE of the form

Py, ... .y") =0
whose real-analytic entire solutions are dense in C(I) for any compact in-
terval I.

THEOREM D [M. Boshernitzan; 1986]. There exists a nontrivial ADE of
order < 19 whose polynomial solutions from Q|x] are dense in C(I) for any
compact interval I.

From Theorems B and C follows the one-dimensional case of the Whit-
ney Approximation Theorem, which states that on compact sets K C R any
continuous function can be uniformly approximated by real-analytic func-
tions defined on R. Moreover, by some famous results of C. E. Shannon [15]
and M. B. Pour-El [12] one can identify the outputs of analog computers
and the solutions of ADEs (provided that some uniqueness conditions for
the solutions of the ADEs are fulfilled). Thus, by Theorems B and C, the
existence of an analog computer is proved whose possible outputs are dense
in the space of continuous functions.

The reader who is interested in the theory of universal equations can
find various contributions to this subject:

1. There is an explicitly given ADE of order four simpler than the one
from Theorem A (with six terms of weight 13) having complex-valued C°-
solutions, whose imaginary parts approximate continuous functions on the
whole real line with arbitrary accuracy [6].

2. Certain complex-valued solutions of the ADE mentioned in item 1 are
also solutions of an explicitly given algebraic functional equation of order
three, i.e. a (universal) functional equation with 39 terms involving deriva-
tives up to order three [7]. This result is based on the concept of local
solutions of functional equations.
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3. There exists a universal ADE of order five whose C°°(RR)-solutions
approximate any continuous function on the real line with arbitrary accu-
racy, and the solutions additionally satisfy arithmetic conditions at algebraic
points [8].

4. Some simpler universal ADE can be found when the solutions satisfy
weaker conditions, i.e. for n-times differentiable solutions [4], [2].

5. There exists an algorithm which produces universal ADEs by starting
from simple differential equations, for which a weak condition on a specific
solution is assumed [9].

In [5] the author proves for a universal ADE that C°°(R)-series of an-
alytic solutions (which are even entire functions) approximate continuous

functions in the norm
o

lgll == | w(@)lg(z)ldz (g € C(R)).
—00
Here w : R — Ry denotes a bounded continuous weight function taking
positive values everywhere, such that

S w(x)de = 1.

The author has proved the following result [5]:

THEOREM E [C. Elsner; 2004]. There ezists a nontrivial autonomous
algebraic differential equation P = 0 of order at most 7, where P denotes
an effectively computable polynomial in at most eight variables, having the
following property. Let f : R — R be a continuous function, and let € > 0.
Then there exists a series H € C*°(R) of analytic functions H, € C¥(R),

H(z)= > Hf(x) (z€R),
—oo<r<oo
such that || f — H||, < e, and each H, solves the differential equation
P(HT,H;,...,Hy)) = 0. Moreover, every analytic function H, on R is
an entire function on C.

An important result concerning universal PDEs is due to R. C. Buck [3]:

THEOREM F [R. C. Buck; 1981]. For every integer n > 2 there exists a
nontrivial algebraic partial differential equation in n variables whose poly-
nomial solutions are dense in the space C(I™) of continuous functions on
the unit cube I™.

The underlying idea in Buck’s proof is the Kolmogorov—Arnold solu-
tion of Hilbert’s Thirteenth Problem. In [1, Theorem 1.9], Buck’s result
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is strengthened, among other things, by replacing the unit cube I™ by an
arbitrary compact set in R".

The goal of this paper is to extend the one-dimensional result from The-
orem E to the s-dimensional case. Moreover, we shall describe an algorithm
to compute the underlying PDE explicitly (by using a computer-algebra
system). It turns out that a specific ordinary ADE of order 6 satisfying the
conditions of Theorem E follows for s = 1 from our result. In order to state
the theorem we need some preliminaries. First, let w : R®* — Ry denote a
bounded continuous weight function taking positive values everywhere, such
that additionally
(1.1) S w(zy,...,zs)dx = 1.

RS

For brevity we write dx for dx ...dzs. Now let

(1.2) lall, == S w(zt,...,xs)|g(x1,...,zs)|dx (g € C(R?)).
RS

We recall the definition of real-analytic functions of several variables (as
given in Definition 1.6.1 in [10]): A function f, with domain an open subset
U C R? and range R, is called real-analytic if for each o € U the function f
may be represented by a convergent power series in some neighborhood of
a. If f is a real-analytic function on U C R® we write f € C*(U). Finally,
C*°(R®) denotes the set of all functions f such that all partial derivatives
fErks) () a,) exist.

We now state the main result of the paper.

THEOREM 1. There exists an effectively computable polynomial
P(z,tg,...,t5) € Z[z,to,...,ts5] having the following property. Let s > 1
be an integer, let f : R® — R be a continuous function, and let € > 0. Then
there exists a series H € C*°(R®) of analytic functions H, € C*(R?),

(1.3) H(wy,...,xs)=» He(z1,...,25) (neRv=1...,3),
r=1

such that || f — H||, < €, and each H, solves the system of partial differential
equations

OH, O H,
(1.4) P<:UU;HT,8—%,...,8—$(57 =0 (o=1,...,3).
A specific polynomial P(x,tg, ..., t5) is homogeneous of degree 16 in its vari-
ables tg, ..., ts, and it consists of 575 terms of the form

(1.5) axbtso---tg5 (a,b,co,...,c5€Z; byco,...,c5>0; co+ -+ c5=16).
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By standard arguments it follows easily from (1.4) that H, also satisfies
a system of autonomous partial differential equations of order six.

2. Preliminaries to the proof of Theorem 1: Notation and an
auxiliary result. By ni,...,ns; we always denote integers. In what follows
we consider any fixed continuous function f : R® — R. We write f(x) for
f(x1,...,x5), and similarly for any function of variables z1, ..., zs.

LEMMA 1 (Weierstrass Approximation Theorem, [11, p. 52]). Let T be a
closed bounded subset of R®. Then every real-valued continuous function
f(x1,...,x5) defined on T is the limit of a uniformly convergent series of
polynomials in variables x1, ..., xs with real coefficients.

For any € > 0 put

g
(21) 61’1 = gnl,...,ns = m <n17 “e ,ns G Z)
Then
s
€ 1 € .o €
(2.2) ooy ‘En:g'H 3 =8 =g <
—oo<ni<oo —oo<ng<oo o=1—oco<ns<oo

This identity will be used several times during the proof. Applying Lemma 1
to our function f on the set

s
T = H[na_ 1;n0+2]7
o=1

we get a polynomial
(23) Yn(X) = Ynl,‘..,ns (xlv s 7x8)

N N N N
— V1 Vs __ V1 v
- E : o § a’nla--wns;l’l:---astl e :Z:SS - § : e § : ananl e xss
v1=0 0

Vg= v1=0 vs=0
satisfying
(24) |f(x) = Yn(x)| <en/16 (neg—1<z,<n,+2;0=1,...,s).

Let m denote a positive integer to be defined later, depending on f,
ni,...,Ns, and . A weight function is given by

s
2m
(25) gn’m<x) = gnl,...,ns;m<x) — H e—(QIg—Qna—l) (X c RS)
o=1

Using the real coefficients ay, ,, from (2.3), we define

(2.6) Ynwm(X) = Yni o vem (X) 1= anp@i" - 25 gnm (X),
where n, € Z, 0 < v, < N, o0 =1,...,s. Moreover, let

(2.7) Znm(X) = Zny,..n;m(X) = Y (X)gn,m (%),
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and
(28)  HX)=H(z1,...,2):= > -+ > Znm(x)
—oo<n] <oo —oo<ng <00

We shall show that the infinite series (2.8) converges for every x € R® and
that the terms can be arranged to form the infinite series given in (1.3).

Next we define a positive number 6, = 0y, n, corresponding to the
integers ny, ..., ns: Since it is assumed that the function f(x) and the weight
function w(x) are continuous, one can find a sufficiently small number §,
satisfying

Ng—+0n/2
(2.9)  max { | sup w(x)(1+ 2|f(x)]) dz,
1<o<s ny—1<z;<n;+2
no—0n/2 i<r<s
T#0
ne+1+40,/2
€
S sup w(x)(1+2|f(x)|)d:vg} < gn
No+1—5n /2 n7—11§<a:71—<§5n7-+2
T#0
We use 0, to introduce the following closed subsets in R® for nq,...,ns € Z:

(210) In=1In,..n, = [[Ine — 6a/2ine + 1+ 60/2 =t [ Ine-
o=1 o=1

(211)  Jn = Jnymy = [ [0 + 0n/2in0 + 1= 60/2] =t [ ] Jno-
o=1

o=1

3. Overview of the proof: the one-dimensional case, its general-
ization to several dimensions, and additional difficulties. Theorem 1
is a multi-dimensional generalization of the one-dimensional result of [5], but
we have to overcome some additional difficulties. For the convenience of the
reader we first survey the main elements of the proof in [5] and point out
the difficulties appearing in the generalization.

First, the order five of the differential equations (1.4) results from their
explicit computation in Section 4 below. The method of eliminating all pa-
rameters by use of resultants requires extensive computations. These are
done by computer (using Maple). In [5] the general Lemma 1 has been ap-
plied to estimate the order of the differential equation.

The main idea in the one-dimensional case is to approximate a given
continuous function f : R — R piecewise on the intervals

Jp=n+0/2sn+1-6,/2] (n€Z,d,>0)
by polynomials Y,,(z), and additionally introducing a weight function

() = € @2 (e 7, m > 1)
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which takes values very close to 1 for x € J,,. For sufficiently large m it bends
down the polynomial Y;,(z) to arbitrary small values outside the interval

I,=1[n—0,/2;n+ 14 6,/2]

(see Lemmas 6 and 5, eq. (3.13) in [5]). By choosing ), sufficiently small,
the contribution of the integral

| w@)If(2) = Ya(@)gmn()| do

In\Jn
to the whole norm integral
| w(@)|f(x) - H(z)|dz
with
H(x) - Z Yn(x)gm,n(m)

is (roughly speaking) negligible. The detailed arguments can be found in
Section 4 of [5]. The generalization to the s-dimensional case in the final
Section 8 of the present paper requires more technical efforts because of
the specific form of the functions Zy ,,(x) = Ya(X) - gn,m(x), where the
polynomial Y, (x) = Yu(x1,...,2s) approximates the continuous function
f(x) = f(z1,...,x5) on the set Jy, defined in (2.11). To overcome the diffi-
culties we shall separate the integral
n1+1 ns+1
| w(x)‘f(x) -y X Zk,m(x)‘ dx
ni Ns —oo<k) <oo —oo<ks<00
into three parts Iy, I2, I3 according to different terms Z ,,(x). Let
S
Gn = H[nl, n; + 1.
i=1
e For I we consider the single term Zy, ,,(x) which approximates f(x)
on Jy.
e For I, we consider the terms Zy ,,(x) which approximate f(x) in the
neighborhood of J, on those sets Ji where I N Gy, # 0.
e For I3 we consider all the remaining terms Zy ,,(x) where [y NGy, = 0.

The terms belonging to I require the most careful investigation, since the
intersections of Iy and GG, occur with different dimensions.

The parameters m of the weight functions gy ., (x) depend on the func-
tion f(x) and on nq,...,ns. On the one hand, m must be so large that
the approximation problem is solved for f(x) by the sum of all functions
Zn,m(x), on the other hand the series must be infinitely differentiable with
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respect to each variable z1,...,zs. As in the one-dimensional case, we solve
this problem by the Weierstrass criterion on uniformly convergent series
(Lemma 8) and its application to a series of partial derivatives (Lemma 7).
For s = 1 the inequality (3.14) in Lemma 5 of [5] plays the main role (which
corresponds to Lemma 4 in the present paper): it provides very small lower
bounds for the kth derivative (k > 1) of the terms ay 2" gmn(z), where
an ¥ is a monomial from the polynomial Y;,(x). The kth derivative be-
comes very small when x keeps a sufficiently large distance to the intervals
Jy, and I,,, in particular for |x —n| > 2*. There are only finitely many terms
from the series with |z —n| < 2%, and they are k-times differentiable. The kth
derivative of each of the remaining terms is small by the above mentioned
results, and so the whole series is k-times differentiable for every k > 1.
The proof of the bound given in Lemma 4 requires a careful treatment of
all terms (as in the case s = 1 in [5]), since the parameter m of the weight
functions may not depend on k. Nevertheless the kth derivatives at single
points x of terms of the series increase rapidly with k. This makes it im-
possible to identify the series of functions as an analytic function. For the
details of the theory of analytic functions we refer the reader to the book of
Krantz and Parks [10].

With the same final argument as for s = 1 we finish the proof of the
theorem: At every point x the sum of all functions Yy (X)gnm(x) forms an
absolutely convergent series of countably many monomials multiplied by
weight functions (i.e. a series of terms yn,m(X) = an 27" - - T gnm(X)
given by (2.6)). All the functions yn . m(x) satisfy the partial differential
equations, and their sum can be arranged into a series of the form (1.3),

[e.e]
ZHT(:L'l,...,JJS) (r, eRyv=1,...,3),
r=1
as stated in our theorem.
4. A differential equation for H,(x). For brevity we introduce the
following notation:
(4.1) y=yx):= g¥ e~ (2a—2m=17" (neZ,veZ,v>0,meN).
Furthermore, put

Y; = xzyy// + Vy2 _ x2y/27
(4.2) Yy = 2zy(zy' — vy),
Y3 = 23:3y’2 — vzy® — 223yy",

where v corresponds to the function y and its parameter v in (4.1). The
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functions Y; satisfy the identities
(4.3) NY, + MY> + Y3 =0,
(4.4) NY| + MYy +Yy=0
with N :=2n+1 and M := 2m — 1. The equation (4.4) follows immediately
from (4.3) by differentiation. Next, eliminating the parameter N, we get
(4.5) MY1Yy — Y{Ys) + (Y1Y5 — Y{Y3) = 0.
Differentiating with respect to x, one easily proves that
(4.6) MMYy —Y'Ys) + (Y5 - Y{'Y3) =0.
Now we eliminate the parameter M from (4.5), (4.6):
(47) (Y] - YY) (V1YY - Y{'Ys) — (MY3 — Y{'Yo)(V1Y{ - Y{Y3) = 0.
By differentiation it follows that
(4.8) (MY —Y{Ya) - (VY5" + Y]V5 — V/'Y5 — Y{"Y3)
—(NMYs - Y{Y3) MYy +Y{Yy = Y'Y, - ¥{"Y2) = 0.

In order to express all the terms in (4.7), (4.8) by v, z, y,v/,...,y®), we
first compute the derivatives of Y7, Y3, and Y3 from (4.2):

i

Y] = 2wy + 22(yy” — /%) + Py —/y"),
Y =2+ Dyy” +2(v = )y + da(yy” —y'y") + 2* (g™ — "),
V" =6(v = 1)y'y" + 2(v + 3)yy" + 6z (yy™ —y"?)
+22(yy® +y'y — 29"y,
Yq = —2vy(y + 2xy’) + dayy’ + 223 (yy" +y/%),
Yy = —4v2yy +x(yy” + ') + dyy’ + 8x(yy” + %)
+222(yy" + 3y'y"),
Yy = —v(3y” + 3yy" + 2 (3y'y" + yy") + 12(yy" +¢')
+122(yy" + 3y'y") + 2% (yy + 4y + 3y"%);
Yq = —20(y* + 2zyy/) — 627 (yy" — ') — 223wy — o/y"),
Yy = —dvyy + 2y +y%) — 120(yy” — ') — 1227 (yy" — o'y")
— 22 (yy @ — "),
Y4 = —dv(3yy” + 3y + a(yy” +3y'y") — 12(yy" — y'°)
— 362 (yy" — y'y") — 1827 (yy W — y?)
—22%(yy® + o'y — 2y"y").
The results of the following computations can be verified by using a
computer-algebra system. Putting the above terms into (4.7) and (4.8), one



66 C. ELSNER

gets two polynomials of the third degree with respect to the variable v:
7“31/3 + 7“21/2 +riv+ro=0 and 831/3 + 521/2 + s1v 4+ s = 0.

The coefficients r;, s; (i = 0,1,2,3) depend on x,y,v/, ... ,y®). The resultant
of these two polynomials having a common root v vanishes. Hence we get
rs Tro 1 To 0 0
O 73 79 71 19 O
0 0 rs Tro 1 To
S3 S2 S1 So 0 0
0 S§3 S22 S1 SO 0
0 O s3 s9 s1 Sp
4
= 16384275 (—ayy” + 2% — )
6
-2ay” = Bayy'y" + 2ty — 2y + 2%y") - Playy .y ®)

= _1638433173/6 ’ A4($7 Y, yla y”) ’ BG(xv Y, y/7 y”7 y/”) ’ P(l‘, Y, y/7 v 79(5))a
where P is the polynomial introduced in Theorem 1. We have to show that
the terms A(z,y,y',y") and B(z,y,v',y"”,y") do not vanish identically. For

n € Z, m € N one gets
"

Aln,y(z =n),y (x =n),y"(x =n)) = 4n*m(4nm — 2n — 1)e 2,

which is not zero for n # 0 since 4nm — 2n — 1 is an odd number. For n =0
one has

A(Ly(x =1),9'(x =1),y"(x =1)) =4m - (4m — 1) -2 > 0.

The arguments for B(z,y,y’,y”,y") are essentially the same. For n # 0 we
have

B(n,y(x =n),...,y" (x = n))
= 16n°m(4nm? — 6nm + 2n — 2m + 1)e™> #£ 0.
It remains to consider the case when n = 0. One gets
B(1,y(zx=1),...,4"(x =1)) = =16m(2m — 1)% 3 < 0,
which finally proves that
(4.9) P(z,y,y,... ,y(5)) =0.

We know from (7.1) below and from (2.5), (2.6) that any function H,(x)

takes the form
S

2m
(4.10) H(x) = y#l(T),uz(T),m(X) = Qny H $Z”€_(2$”_2n"_1)

o=1
for certain integers vy, ...,vs,m,n1,...,ns. Since P(x;ty,...,t5) is a homo-
geneous polynomial with respect to its variables tg, ..., t5, one easily proves,

by (4.1), (4.9), and (4.10), that H,(x) satisfies the identities (1.4).
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5. Two lemmas concerning the approximation of f

LEMMA 2. Let f : R® — R be a continuous function, and let € > 0. Then

for arbitrary integers ny,...,ns, there is an integer m1, depending at most
on g, ni,...,Nns, and f, such that
€n
5.1 nrm(X)| < ———= XxE€Iln,m>mi, 0<v,...,vs <N).
5:0) om0l < gy Lamzmn, 0 n S N)
LEMMA 3. For arbitrary integers ni,...,ns the polynomial Yy (x) from
(2.3) satisfies the inequality
(5.2) [f(x) = Ya(X)gnm(x)| <en/8  (x € Jn)
for all integers m > ma, where mo depends at most on €, ny,...,ns, and f.

Proof of Lemma 2. We additionally introduce the height of the polyno-
mial Yy (x):
(6.3) Hn=Hp,  n, = max {1, |an,, newvi,.vl} (n1,...,05 €Z).
0<vs<
1<0<s
Moreover, let t, := 22, — 2n, — 1 for 1 < o < s. From x ¢ I, one knows
that there is some o with z, & I, , satisfying

(5.4) lte| = 1225 — 2n5s — 1| > 1 + 6.
The positive number

5.5 M, = 1 Yo
(5.5) n 1= max {1, max s |57 [}
depends on nq,...,ns, f, s and €. Since all the functions :U(’jf’e_t?f tend to zero
for |z,| — oo there are intervals [Ay »; Bn o] such that I » C [Ane; Bnol,
and

€
5.6) |a%le e < >

(:L'o ¢ [AH,O';BH,O']) 0<y, < N)
This inequality remains true when e~ on the left side is replaced by e~te"
for any positive integer m, since z, ¢ In, implies by (5.4) that |t,| > 1.
Moreover, the value
M, = max sup lzbr| (1<o0<5s)
7 OSVUSN :EUG[AH,U;BH,U} 7
is clearly finite, and it depends on n1,...,ns, f, s, 0, €, and on the interval
[An,o; Bn,s), but it does not depend on m. Thus there is a positive integer
my = my(ni,...,ns, f,s,€) such that
2m 13
My~ (Hm)™ =

7 8H,Ms(1+ N)*
(Any term depending on f may also depend on the chosen approximation
polynomial Y;, and on its parameters N, Hy.) For 2, € [Ano; Bno) \ In,o it

(m>mq, 1 <o <s).
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follows by (5.4) that
€n
SHLM3(1+ N)°

(5.7) |22 |e " <

forallm>mq, 0<wvq,...,vs < N.
For x & I, in particular for 25, € In o,, by application of (5.5)—(5.7) we
now have

S
_42m
[Ynwm(X)| < Hn H |z et

o=1
= tn( TT letrle ) ( TL latrle ")
1<0<s 1<0<s
To€ln,o To&ln,o
€
<o T e T sator)
1Zo<s 1 Zo<s 8H,M3(1+ N)
To€ln,o To&ln,o
€ €
< H MS n — n
- UM RHME(1+ N)* 8(1+ N)®
forallm>mq, 0<vq,...,vs < N.

Here we have used the fact that there exists ., satisfying xs, & In,00,
and that H, > 1, M, > 1. =

Proof of Lemma 3. Let x € J,. Then we know by (2.11) that |t,| =
225 —2n, — 1| <1—6, for o =1,...,s. Let

(5.8) Fn:=1+ sup |f(z1,...,24)|
Ne<To<ns+1
1<o<s

Obviously there exists an integer my satisfying

€ m
(5.9) 1- 2S+ZF < e (1=m)™™ (m > mg);
n
it depends on ni,..., ng and on f, s, €. It follows immediately from (5.9)

and from |t,| < 1 — J, that for every o there exists a real number a, such
that

_2m €n
(5.10) e %" =1+a,, where |ay|< o <1l (1<o<s).
Of course, a, depends on ny,...,ns and f, s, x5, €. Then one has
S ) S S
He_tf’ :H(l—i—ag):z H Qpy ooy, =1 1+ a.
o=1 o=1 T=01<p1 < <pr<s

The number « depends on nq,...,ng, f, s, € and x1,...,x,. For |a| we get
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an upper bound from (5.10), namely

s
(5.11) ]oz] = ‘ Z H aﬂl .. .au‘r S (25 _ 1) max ’a0|
T=11<pu < <pr<s 1<o<s

& E
<o 2 1
2st4f 16F,

We now estimate |Yn(x)| on Ju by (2.4) and (5.8):

sup ’Yn| < sup ’Yn($1,...,l's)|
xE€Jn Ne<To<ngs+1
1<o<s
€n
< —+ sup |f(l'1,...,$s)’<Fn.
16 Ne<To<ns+1
1<o<s

Applying (2.4) for a second time, one finally gets, by application of (5.11),
s _42m
1160 =Ya(®)gnm ()] = [ £ = ([T e ) ¥alx)| = 1£(x) = (1 4+ a)Ya(x)|
o=1

I3 €
< |f(x) = Yax)[ +la]- Yax)] < 75 + 16;} Fn

:%n (x € Jn, m > ma).
Thus Lemma 3 is proved. =
6. On a bound for partial derivatives of yn, ., (x). Throughout

this section the continuous function f, the real number £ > 0 and the ap-
proximating polynomial Y;(x) are as in the preceding section.

LEMMA 4. Let ny,...,ns and 0 < vq,...,vs < N be arbitrary integers.
Then there is an integer mg depending on s,n1,...,Ns,V1,...,Vs, [ and €
such that -

6.1 Foks) (x)| < 2
(6.1) A 0 < S
forx € R®, m > mgs, and nonnegative integers ki, . .., ks such that |xsy —ny|

> 9ltko for at least one o with 1 < o < s.

Proof. We express yn ,,m(x) by (2.5), (2.6), and apply (5.3). Then we
get

S
8ka _ _ _1\2m
T

6.2 (k1,eks) (5| —
62) " ol .

n,y,m

o=1
s s

{ H . H } 8(2:; (xzae—(Qa:a—Qna_l)Qm)

o=1 o=
|Zo—ng|>211 R0 o, —ng|<21 ke

< Hn
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In what follows we fix the integers nq,...,ns, k1,..., ks from the lemma.
o 2m .
gkg (zhr e~ (220 =2n0—1) )‘ corresponding to

|25 — ng| < 2'Fe . For brevity we put

We first estimate the term ‘

(6.3) z=25, k=ksyy, V=V, mn=ns t:=2x—2n—1.

Applying the Leibniz rule, we get
k

9 v —(2z—2n—1)*™
(64) |5 (" (2z=2n=1)"")

i k o
. L. . v—k+rkork Y ¢ —tT
E </1> viv—1)---(v—k+xr+1)x 2 5 (e )

rk=max{0,k—v}

< 2k N1 Zk: (i) (In| + 21+’“)N)%(et2’") .

rk=max{0,k—v}

Here we have used the inequality |z| < |n|+2!**, which follows from |z—n| <
21%F and from the fact that v(v —1)--- (v —k 4+ r + 1) < v! < N! for
0 < v —k—+ K+ 1. Below we refer to the proof of Lemma 5, formula (3.14),
in [5]. We have

(3 _t2'm
%(e )
for some integer polynomial P, (oy,—1)(t) of degree x(2m — 1) and of height
bounded by x!(2m)" (see Lemma 4 in [5]). Since k < k and k(2m—1)+1 <
2m(k +1) and [t| = |22 — 2n — 1| < 1+ 2|z —n| < 1+ 22 < 2KF3 we get
| Paam-—1)(D)] < (k(2m — 1) + 1)k!(2m)" max{1, [f**" =}

< 2m(k + 1)k (2m)" max{1, |t|**™}

< (k’ + 1)!(2m)k+122mk‘(k‘+3)'

_t2'm

= ’PK(Qm—l)(t)e | < |Pf£(2m—1)(t)|

Putting this inequality into the right side of (6.4), we get the inequality

ak v —(22—2n—1)>™
@(:ﬂ e (2z—2n—1) )

k
< 2FN(|n| + 20N > (i) (k + 1)!(2m)F1g2mk(k+3)
k=0
N
)

= 4FN1(|n| + 2"7F) 7 (k + 1)!(2m) FH122mREFS);

using it we estimate the terms corresponding to |z, —n,| < 2'7*s on the right
side of (6.2). Putting K :=1+max{ki,...,ks} and M :=max{|n1],...,|ns|},
we have proved the following result.
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LEMMA 5. Under the conditions of Lemma 4,
(65) Iyt ()] < Hod™ NI (M +255)N (K 4 1)1 (2m) <+
S

« 22msK(K+3) H

ko
0 ( Ve 7(2mgf2ng71)2m
xroe )|-

Ozl 7
o

\xg—ng\221+kf’

The hypothesis of Lemma 4 guarantees the existence of at least one index
o such that |z, — ng| > 21+ks,

LEMMA 6. Under the conditions of Lemma 4,

(6.6) W:= Hy - 45K N1S(M + 2K N (F¢ 4 1)15(2m) Kstsg2msK(K+3)

aka Vo  —(226—2ne—1)2" €n
ulr T St (mzm)

for any o satisfying |z, — ny| > 2% In particular, for such o we have

X

ko m
2 et <1z

ke (zboe
Obviously, Lemma 4 follows from Lemmas 5 and 6. It remains to prove
Lemma 6. For brevity we shall use again the abbreviations given in (6.3).
The main idea is to keep the constant mg independent of k1, ..., ks. For this
purpose it is necessary to distinguish several cases.

Case 1: 1 < K < N. From the binomial theorem one easily deduces
that

(6.7) (M—|— 21+K)sN < 25N(1 + M)SNQSN(1+K) < (2 +2M)SN28N(N+1)-
We follow the lines of the proof of Lemma 5 in [5] and omit some details.

Put pp,(z) == HaNP(2 + oM)*N2sN(N+1) v Expanding that polynomial
at n + 1/2 we write

v 14
P (@) =Y Anyp 2z —n— 1/2)" =) At =1 T, (1)
p=0 n=0

By h(T,,) := maxo<u<y |Any,u| we denote the height of the polynomial
T, (t) which depends on n (in particular on n), and on s, N, f, e, but not
on m. Proceeding as in the proof of Lemma 5 in [5], we now get, instead of
[5, (3.19)]:
(6.8) W < {2(N + D)(T,,)|t|Ne ?" /%)

X{lGK(K + 2)!mK+l‘t’2Km45K(K + 1)!S<2m)KS+822msK(K+3)€—t2m/2}'
As in [5], one can find a positive integer my4 depending on N and J,, satisfying

N < (14 82)*™  (m > my),
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where 0, is defined by (2.9). Therefore one has, following the arguments
from [5],
(6:9) 2N+ 1)(T, ) [tV e "2 < 2N+ 1T, ) (1 + 5y) N e (HH00" 2

! . 2N —(8)""/2 < __En
<2(N + 1).Oglangh(Tn,,,) (146n)e < S0+ N

which holds for m > ms for some positive integer ms > my4 not depending
on ki,..., ks, and for [t| > 1+d,. Note that the hypothesis |z —n| > 217F >
2k 4 1/2 implies that |2z — 2n| — 1 > 2'**. This gives |t| = |22 — 2n — 1| >
21tk > 9> 14§, for all integers k£ > 0. It remains to prove the inequality
(6.10) 16™ (K42)lmTH2KmysK (| 4-1)1%(2m) s tsg2ms K(K+3) =87 /2

for K > 1,t = 2K m > mg := max{s, 16} (see the corresponding argu-
ments for (3.22) and (3.23) in [5]). Since m > s, (6.10) follows immediately
from

(611) 16K(K—f-2)!mK+1t2Km4mK(K—f-1)!m(2m)m(K+1)22m2K(K+3)6_t2m/2
<1,

where K > 1, t = 21K m > mg. We shall see below that the inequality
(6.11) is fulfilled by proving a stronger one stated in case 2.

CASE 2: N < K. The arguments are essentially the same as in case 1.
Put
Prw(x) = HoN'(2 + 2M)*N z¥,

and let W be given as in (6.6). Since N < K we replace the inequality (6.7)
by (M + 21+E)*N < (2 4 20)*N2sK(K+1) Then (6.8) takes the form

(6.12) W < {2(N + D)(T, ) [t[Ne /%)
> {16K(K + 2)!mK+1|t’2Km4SK(K + 1)!8(2m)Ks+822m5K(K+3)
% 25K(K+1)e—t2m/2}

with a modified integer polynomial 7}, ,. As in (6.9) we get

6.13 2N + )h(T,, )| Ne /2 < 2
(6.13) (N + DT )1V < tn g,
which again holds for m > my for some positive integer m7 not depending
on ky, ..., ks, and for [t| > 1+ dy,. For m > mg we have m > s, and therefore

it suffices to show that

(6.14) 165 (K + 2)lm KT 12KmgmE (K 1)1m (2mymE D g2m K (K+3)

% 2mK(K+1)e—t2m/2 <1

with K > 1, t = 217K m > mg3 := max{ms, mg, m7}. Obviously, (6.14)
implies (6.10). When (6.14) is proved, we will have deduced the inequality
from (6.6) by (6.8), (6.9) and (6.11)—(6.14). This will prove the lemma.
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In order to verify (6.14) we again distinguish two cases.

CasE 2.1: m < K. Let t = 25K%1 and m > 9. Then we get, using
KYK <5 for K > 1,

4™ > 143360 > 28672 - KX > 28672!/ K K4/K
and therefore
4mE > 28672K*.
Since K + 3 < 4K for K > 1, we get 4™5+1) > 4mK 5 119(K + 3)*, or
7-8- (K +3)t —22mEF)-1 o,
This gives
Klog16 + (K +2)* + (K + 1)K + 2K*(K +1)log 2 + 8K*(K + 1)*

+2K3(K 4 3)log2 + K2(K + 1) log2 — 2?mE+D=1
since the first seven terms on the left side are bounded by 8(K + 3)* each.
Using the hypothesis m < K and A > log A for A > 1, it follows that
(6.15) Klogl16+ (K +2)log(K +2) + (K +1)logm + 2mK (K + 1) log 2

+m(K + 1) log(8m(K + 1)) + 2m*K (K + 3) log 2

+mK (K 4 1)log2 — 22mE+D)=1 <,
Another form of this inequality is
16K (K + 2)K+2mK+1t2Km4m(K+1)(K + 1)m(K+1) (Qm)m(K+1)

% 22m2K(K+3)2mK(K+l)e—t2m/2 <1

Since A4 > A! for all integers A > 1, (6.14) follows immediately.

CASE 2.2: K < m. Now m > 16 implies that 4™K > 4™ > 28672m*.
Using the same arguments as in case 2.1, we get

7.8 (m+3)* —22mE+D-1 <
from which one can deduce that
mlog16 + (m+ 2)* + (m + 1)m + 2m%(m + 1) log 2 + 8m?(m + 1)*
+2m3(m + 3)log 2 + m%(m + 1) log 2 — 22ME+D=1 ¢,
By the hypothesis K < m one easily estimates the left side in order to obtain

(6.15) again. As shown in case 2.1, (6.14) follows from (6.15). Lemmas 4 and
6 are proved. m

7. Definition of the approximation function H(x). We recall that
the degree N of the polynomial Y;(x) depends on ni,...,ng, f,s,e. If we
keep f, s and ¢ fixed, the set of functions

Y i ={vn1, mevnvem(X) in1, ... ,ns €Z,0<1q,...,vs < N}
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is countable. The parameter m is chosen when ni,...,ns are given, and
depends on them. There exist two 1 : 1 mappings

wi : N—=7Z° (i=1,2), u(r)=(ni,...,ns), po(r)=1,...,0s)
such that

(7.1)  Hr(X) = Yu,(m)ipa(r)yim(X)  (r€N), Y ={H,(x):7r €N}

Since gnm(x) and an a7 -+ 2% are analytic functions on R® for arbitrary
m>1,ny,....,ng € Z,0 < vq,...,vs < N, it follows that H,.(x) is an
analytic function on R® for any integer » € N. In what follows let m be
given by

(7.2) m = max{mi, ma, ms},

so that m depends on nq,...,ns, f,s, and €. Finally, put
o0

(7.3) H(x) =) Hy(x) (x€R).
r=1

Now we shall first show that for every x € R® and for arbitrary non-
negative integers ki, ..., ks the series ) Hﬁkl’“"ks)(x) converges absolutely.
Then we shall prove that H € C°°(R?®). Finally, it remains to investigate
how the function H approximates the given continuous function f on R?
with respect to the norm || - || ,. This will be done in the following section.

In order to prove the absolute convergence of the series (7.3) we introduce
the set

S

(74) Ln kK = Ln1,...,ns;k1,...,k5 = H[na _ 2k0+1; Ne + 2ka+1]'

)

o=1

Then, by the inequality (6.1) from Lemma 4 and the identity (2.2), we get

S IEE R~ 3 R ()
r=1 r=1
xeL,u.l('r);kl ,,,,, ks
> > k1,...,ks
- Z1 |H7§k1’m7ks)(x)‘ = Zl ’y,t(ul(r);uz()r);m(x”

x¢ZL xZL

p1(r)iky,...ks w1 (r)ikys. ks

= > S )

—00<ny,...,ns<00 0<vy,...,us <N
ngn,k

13 13
> > aNTSs 2w <
8(1+ N) 8
—oo<Nny,...,ns <00 O0<yy,...,us <N —00<N1,...,Nsg <00
ngn,k

IA
OO.I L)
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Hence

(e} (e}

o< YT EE R ] 4 <o
r=1 r=1

XEL ) (r)iky o ks

Obviously the last sum has finitely many terms. We have proved that the
series ) H,Ekl""’ks)(x) converges absolutely. Therefore we may rearrange
the terms arbitrarily. To prove that H belongs to C*°(R*) we shall need two
lemmas from real analysis.

LEMMA 7. For any real numbers a < b let f, : [a;b]° — R (n =
1,2,...) be a sequence of partially differentiable functions such that the se-
ries Yy oo fn(X) converges for at least one x = x¢. Additionally, assume
that all the series

[e.e]

3 ag;(;) 1<o<s)

n=1

converge uniformly on [a;b]°. Then Y 7| fn(X) converges uniformly on
[a; 0] to a function f : [a;b]° — R which is partially differentiable with

respect to each variable x1,...,xs. Furthermore,
af(x) 0 fn(x)
. —_ = —_ < g <s).
(7.5) O, g 0. (1<o<ys)

LEMMA 8 (The Weierstrass criterion). For any A C R® let f, : A — R
(n=1,2,...) be such that |fn(x)| < ¢ for all n > 1 and x € A, where ¢y,
are some positive numbers not depending on x. Additionally, assume that the

series Y oo | cn converges. Then the series Y - fn(X) converges uniformly
on A.

Let K := ki + --- 4+ ks. Now we shall show by an inductive argu-

ment that > 7 Hﬁkl""’ks)(x) represents a partially differentiable function
}I(k:l:---vks)()()7 and

aH(kl"“’kS)(x) 00 aHr(k‘l ..... ks)(x)

for all x € R® and K > 0. Proceeding step by step, we put K = 0 at the
beginning and then repeat the arguments for K = 1,2,.... For brevity we
introduce the notation

HI) (x) := HFk) (x).
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Let a < b. For x € [a;b]® and 1 < ¢ < s we have

o o) (o = (K)

ox ox
r=1 g r—1 o

718
Ly (7)k1 sk —1 1k kg g 5o okes (@301 D

i": oH") (x)
0ry

The first sum on the right side of (7.7) consists of finitely many terms.
The terms of the second sum can be estimated by Lemma 4: The condition
Ly (1)1 o1 Atk g 1,k (1[@5 0] = 0 and the hypothesis x € [a; b]” imply
that x & L, r),k1,---,ka—1,l+ka,kg+1,---, .- This means that for some og with
1 < o9 < s, either

|Tgg — Ngy| = 280 (if o9 £ 0)  or  |Toy — Noy| = 2802 (if 0 = o).
Additionally we need (7.2). Therefore the conditions of Lemma 4 are satisfied
when the second sum in (7.7) is estimated by (6.1), (7.1), and (2.2). For x €
la; b]* and for integers r satisfying Ly, 1)k, ... kg1 1-4ky o1,k () 10507 =0
we have

‘ aHT(K) (x) Eu(r)
0z4 8(1+ N(pa(r)))®’
and
— € (r) € (r)
2 ST N =2 507 N @)

. S_
Ly ()b e sbr —1 1 g g1 5o shis D[050] =0

alIDJD VD DI Ui e

cyns))®

—oo<n] <o —oo<ns<oo 0< <N 0<vs<N
€n
= g ... E — < < oQ.
8 8
—oo<n1<oo —00< N <00

Hence, by Lemma 8, the second sum on the right side of (7.7) converges
uniformly on [a;b]°, and therefore the sum on the left side has the same
property. Thus we may apply Lemma 7, which proves that the function
defined by

[e.o]

(7.8) HO ) =S HO () (x € [a:0]°)
r=1
is partially differentiable with respect to each variable z1,...,zs, and that

(7.6) holds. In particular the sum on the right side of (7.8) converges abso-
lutely on [a;b]®, which has been shown before. Since the set [a;b]® can be
chosen arbitrarily large, we have proved that H € C*°(RR?).
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8. Approximation of f(x) by H(x). The goal of this section is to
estimate || f — HJ| . For this purpose we first express H(x) by the multiple
sum (2.8):

8.1) If—Hll, = | wx)|f(x)— H(x)|dx

RS

n1+1 ns+1
- Y Y T e
—oo<ni<oo —oo<ns<oo N1 Ns
x’f(x)— DY ka(x)‘dx

—oo<k) <00 —oco<ks<o0

77/1+1 ns+1
< > Y § e T em{lf6) - Zamx)|
—oo<n1<oo —oo<ng<oo ni Ng
+ Z [ Zny+in,enstism (X)|

—1<i1,is<+1

P24 4i2>0

Y Y ]ka(x)\}dx

—oo<k)<oo —oo<ks<o0
ko'?éno'*lyno':no'+1
o=1,...,s
=1+ I+ Is.

The numbers I, I, Is correspond to the three terms inside the curly brack-
ets.

a) An upper bound for I. The following inequalities follow from (2.4),
(2.5), and (2.7):

(82) | Zkm (%) < Yi(x)] < 1+ [f(x)]
fork, — 1<z, <k,+2,0=1,...,s. Hence

ni+1 ns+1

L= ) - > bV wEf) = Zam ()| dx

—oo<ni<oo —oo<ns<oo N1 Ns
. ni+ui Ns+us
= > D > | o | w®If) = Zamx)dx,
—oo<n1 <00 —00<Ns<00 (ty,uy) M1+t1 ns+is
o=1,...,s
where every pair (ty,u,) for ¢ =1,...,s in the sum " is one of the three

pairs

(0,0n/2), (0n/2,1—=0n/2), (1—10n/2,1).
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Therefore the sum Y " consists of 3° terms. For convenience we introduce
two polynomials:

(t)‘— 1_% t2+ 1_5_" t_|_5_“
PO=157 7 27 4 2

q(t) ::—<%—%>t2+ (%—%)H— (1—%“).

In particular one has

tlop) | al)
-1 n/2
(8.3) 0 On/
0| 6,/2 |1—26,/2
+11—6,/2 1
Thus we get

1 1 nitq(vi)  nsta(vs)
I = Z Z Z Z S S w(x)
—oo<n1 <00 —oo<ns<oo vi=—1 vs=—1 n1+p(v1) ns+p(vs)
X | f(X) = Znm(x)] dx
1 1 matq(v1)  mstq(vs)
:{ ) RREITEED DD DT DI TR
—oo<n1 <o —o0o<ns<oo v=—1 vs=—1 ny+p(v1) ns+p(vs)
v+ +v2>0

ni+1-06,/2 ns+1—08,/2

YT | el - Zam)ldx.

—oo<n1 <00 —00<Ns<00  ny+6,/2 ns+on /2

The integrands of the first multiple sum in {} can be estimated trivially by
(8.2), whereas an upper bound for the integrands of the right multiple sum
is given by Lemma 3, since x € J, by (2.11). So we have

nitq(vi)  ns+q(vs)

84) L< D oo > 21:21: | wx

—oo<ny <o —oo<ns<oo vi=—1 vg=—1 'n,lJ,»p(’Ul) 'n,SJ,»p(US)
v 402>0

X (1+2|f(x)]) dx
ni+1—0n/2 ns+1—06n/2

+ Y % i w(x)%ldx.

—oo<n1 <o —00<Ns<O  nji+dy,/2 ns+dn/2
If v% 4+ vf > 0, then there exists o with v, # 0 and, by (8.3),
q(ve) — p(vg) = On/2.
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Moreover, for every 7 (1 < 7 < s) we have

0 < (nr + q(v7)) — (nr + pl(r)) = a(vr) = plus) < 1.
Assuming additionally v, = —1, we have

ni+q(vi)  nst+q(vs)
oo b w2 fx)) dx
ni+p(vi)  ns+p(vs)
ni+q(v1)  nstq(vs)

< S S sup w(x)(1+2[f(x)]) dx

ni1+p(v1) ns+p(vs) n.r711§<m;—<§5nr+2

T#o

na+6n/2

< S sup w(x)(1 +2|f(x)]) dz,-.
" nr—1<z;<n,+2
g 1<7<s
T#0

For v, = +1 the arguments are the same, leading to a similar integral with
lower limit n, + 1 — §,,/2 and upper limit n, + 1. Applying the definition
(2.9) of oy, we have proved that

nitq(vi)  nstq(vs) -
| | wma+2r&))dx < gf‘
ni+p(vi)  ns+p(vs)

for all v? +--- +v2 > 0, v, = —1,0,+1. Now we easily find an upper bound
for I; from (8.4), namely

1 1
he Yo X Y Y S lemag
—oo<n1 <o —oo<ng<oco ~vi=—1 Vg=— RS
v+ +v2>0

= D > {3 —1)en/8+en/8}

—oo<n1<oo —00< N <00
= E E 3%en/8=¢/8.
—oo<n1 <oo —00<ns <00

Here we have applied the identities (1.1) and (2.2). Thus we have proved
the following lemma:

LEMMA 9. We have

1 1 matq(v1)  mstq(vs)
L= Y > > 0 e
—oo<n1 <o —oo<ng<oo v1=—1 vs=—1n1+p(v1) ns+p(vs)

X | f(X) = Znm(x)|dx < /8.
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b) An upper bound for I. Next we investigate the second term in (8.1):

ni+1 ns+1

85 L= > ... > || ek

—oo<ny <00 —oo<Nns<oo MNi Ns
x Z | Z i mgtism (X)] dX
—1<i1,..,8s<+1
P24 4i2>0
n1+1 ns+1 ni+l1 ns+1
= Z Z Z Z S S w(x)
—oo<n] <o —o0o<ns<oo ki=ni—1 ks=ngs—1 n1 N

(k1o (R 1)

X ’Z/ﬁ,...,k;s,m(xﬂ dx.

In what follows we consider all the 3° —1 domains Iy forn; —1 < k; <n;+1,
i=1,...,8 (ki,...,ks) # (n1,...,ns), where Iy is given by (2.10) for n = k.
Let

S
Gn = H[TL@, n; + 1]
i=1
We separate the domain Gy, of integration from (8.5) into parts overlapping
with [y and the remaining ones. For this purpose we define

ni+1 ns+1
Jae= | oo | w(x)|Zk,m(x)|dx:{ |+ }w(x)|zk,m(x)|dx.
n1 N GnNlx  Gn\Ix

First we deal with G, N Ix. From the hypothesis n; — 1 < k; < n; + 1 for
1 =1,...,s we know that this is a nonempty set. Then one deduces from
(k1,...,ks) # (n1,...,ns) and from (2.10) the existence of at least one o
such that the projection of G,NI onto the x,-axis gives an interval of length
0x/2. It follows that k, # n,. Consequently, we have either n, = k, + 1
or ny, = k; — 1. There exists a subset Ly k (of dimension s — 1) such that
either

(86) Gn NI = [ng; Ng + (51(/2] X Ln7k with k, = n, — 1
or
(8.7) GaNIx=[ne+1—0k/2;n,+ 1] X Lyx with k; = n, + 1.

Any point x = (z1,...,zs) from the domain of integration in .Jy, x satisfies
n; <ax; <m;+1fori=1,...,s. Moreover k; € {n; —1,n;,n;+1} for each i.
Hence we get the inequalites

(88) ki—lgnigxiﬁni+1:(ni—l)+2§ki+2 (i:1,...,s),
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which allow us (by application of (2.4), (2.5), and (2.7)) to estimate |f(x) —
Yk (x)| for x € Gn N Iy:

(8.9) [ Zem(X)] < V()| < T+ [f(X)] (x € GnN k).

First assume that (8.6) holds. Applying (8.9) and (8.8), we then have

ng+5k/2
| 0@ Zimx)dx= | | w®)|Zm(x)dx
GnuNIy No Ln,k
ng+5k/2
< | | e+ dx
No Ln,k
ng+6k/2
< I 1 sw w0+ fx))dx
Ne L K kT71S1T§k7'+2
n, 1<7<s
TH#C
ng+5k/2
€k
< sup w1+ |7(0)) dag <
o kr—1<z <k, +2 8
o 1<7<s
T#0

Here the upper bound ey /8 follows from (2.9) (by setting n, = ko + 1),
whereas the last but one term results from Lyx C Gn, n; < 23 < n; + 1
and dx = dx1 - - - dxs. When (8.7) holds, one gets the same upper bound by
using similar arguments:

| w)| Ziem(x)] dx

GuNIly
ne+1
€k
< | sup W)L+ |f(x)]) dee < =
T#0

with n, = k, — 1. Altogether we have proved that

(8.10) | w0 Zigm ()] dx < =
GaNlIy

fork = (k1,...,ks) withn; —1 < k; <n;+1and (k1,...,ks) # (n1,...,ns).
Next we treat the domain Gy, \ I from the second integral of Jy k. For this
purpose we need some preliminaries. Let x € Gy, \ Ix. Then using x ¢ Iy,
(2.7), (2.3), (2.6), and Lemma 2, one gets
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N N
B.11) | Zem ()] = [Yic(¥) g1, (x)] = } Do D a2l gm (%)

1/1:0 I/SZO
N N N N c c
Kk &k
<D erm(I < D Y SN1IF 8
v1=0 vs=0 v1=0 vs=0

for all m > my and x & I,. We recall that the degree N and m; depend on
f,eand ki,...,ks. It follows that

S w(X)| Zk,m(x)| dx < S w(x) %{ dx < Tk S w(x)dx = £k
Gn\Ix Gn\Ix RS

Together with (8.10), this shows that Jn k < €x/8+¢ck/8 = £k /4. Then from
(8.5) we get

n1+1 ns+1
B YooYy e )
—oo<ny <o —00<ns<oo k1=n1—1 ks=ns—1
(k1 yeooikis) 2 (01 s
1 ni+1 ns+1
S D DD DD S gs.zw T
—oo<ny <o —oco<ns<0 ki=ni—1 ks=ns—
1 € €
=1 2 2 mgmmema—1 e
—oo<n1<oco —00<ns <00
That gives

LEMMA 10. We have

ni1+1 ns+1

I, = Z Z S S w(x)

—oo<n1 <00 —oo<Nns<oo N1 Ns
€
X § | Zn+in,..mstism (X)] dx < 1
—1<iy,...is<+1

i3 +..+i2>0

c) An upper bound for Is. The coordinates x, of any point x € Gy, satisfy
ne < xy <ngtlforo=1,...,s From the hypotheses k, # ny,—1,ns,ns+1
(c=1,...,s) for k, in I3 we get

e when ky <n, —2: 2o >ng = (g —2) +2 > ko +2;

e when ky >ny+2: 2o <ny,+1=Mny+2)—1<k, -1

Consequently, x ¢ Iy in each case, which follows immediately from (2.10).
Again we may apply (8.11), (2.2), and (1.1):
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ni+1 ns+1

Iy = Z Z S S w(x)

—oo<n]<oo —oo<ns<oo Nni Ns
X g _ E | Zx,m (x)] dx
—oo<ky <00 —oo<ks<oo
ko #ns—1,n0,ns+1
(0217"'73)

ni+1 ns+1

< Z . Z S S w(x)
—oo<ni <00 —oo<ns<oo N1 Ns
X Z e Z €_k dx
—oo<k1<oo —oo<ks <00 8
c ni+1 ns+1
< = . A d
B 8 oo<Zn1<oo oo;<oo T§1 TLSS W(X) :
= % S w(x)dx = %
RS

LEMMA 11. We have
TL1+1 ns+1

Iy = Z Z S S w(x)

—oo<n <00 —o00o<Nns<oo0 N1 Ns
e
X E E | Ze,m (x)] dx < 3
—oo<k) <00 —oo<ks<00
k/'o'?éno'_]-ynayno"i‘l
(o=1,...,8)

Collecting together the results from Lemmas 9-11, one finally has
\f—H|,=L++13<c/8+¢c/i+¢c/8=¢/2<e.
This completes the proof of Theorem 1.

REFERENCES

[1] M. Boshernitzan, Universal formulae and universal differential equations, Ann. of
Math. 124 (1986), 273-291.

[2] K. Briggs, Another universal differential equation, ArXiv: math.CA/02 111 42;
http: //members.lycos.co.uk/keithmbriggs/

[3] R. C. Buck, The solutions of a smooth PDE can be dense in C[I], J. Differential
Equations 41 (1981), 239-244.

[4] R.J. Duffin, Rubel’s universal differential equation, Proc. Nat. Acad. Sci. U.S.A. 78
(1981), 4661-4662.

[5] C. Elsner, On a universal differential equation for the analytic terms of C°°-super-
positions on the real line, J. Math. Anal. Appl. 295 (2004), 315-330.

[6] —, A universal differential equation of degree siz, ibid. 244 (2000), 533-541.



C. ELSNER

[10]
[11]

[12]

[13]
[14]

[15]

C. Elsner, On a universal functional equation of degree six, Comm. Appl. Nonlinear
Anal. 9 (2002), no. 3, 23-29.

—, On a linear transcendence measure for the solutions of a universal differential
equation at algebraic points, J. Math. Anal. Appl. 279 (2003), 684-699.

—, On a method to transform algebraic differential equations into universal equa-
tions, Abh. Math. Sem. Univ. Hamburg 74 (2004), 33-48.

S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhiuser,
Basel, 1992.

M. A. Neumark, Normierte Algebren, Harri Deutsch, Thun—Frankfurt am Main,
1990.

M. B. Pour-El, Abstract computability and its relation to the general purpose analog
computer (some connections between logic, differential equations, and analog com-
puters), Trans. Amer. Math. Soc. 199 (1974), 1-28.

L. A. Rubel, A universal differential equation, Bull. Amer. Math. Soc. 4 (1981),
345-349.

—, Uniform approzimation by rational functions which all satisfy the same algebraic
differential equation, J. Approx. Theory 84 (1996), 123-128.

C. E. Shannon, Mathematical theory of the differential analyzer, J. Math. Phys. 20
(1941), 337-354.

Institut fir Mathematik

Universitat Hannover

Welfengarten 1

D-30167 Hannover, Germany

E-mail: elsner@math.uni-hannover.de

Received 30 July 2004;
revised 2 June 2005 (4476)



