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ON THE APPROXIMATION OF REAL CONTINUOUS FUNCTIONS

BY SERIES OF SOLUTIONS OF A SINGLE SYSTEM

OF PARTIAL DIFFERENTIAL EQUATIONS

BY

CARSTEN ELSNER (Hannover)

Abstract. We prove the existence of an effectively computable integer polynomial
P (x, t0, . . . , t5) having the following property. Every continuous function f : R

s
→ R can

be approximated with arbitrary accuracy by an infinite sum

∞
∑

r=1

Hr(x1, . . . , xs) ∈ C
∞(Rs)

of analytic functions Hr, each solving the same system of universal partial differential
equations, namely

P

(

xσ;Hr,
∂Hr

∂xσ
, . . . ,

∂5Hr

∂x5σ

)

= 0 (σ = 1, . . . , s).

1. Introduction and statement of the result. A differential equa-
tion is said to be universal if every continuous function (defined on the real
line or on an interval) can be approximated by solutions of this single differ-
ential equation with respect to a prescribed distance function. Much work
has been done to improve and to generalize L. A. Rubel’s famous results
concerning C∞(R)-solutions of an ordinary universal differential equation
[13], [14].

Theorem A [L. A. Rubel; 1981]. There exists a nontrivial fourth-order
algebraic differential equation (ADE ) such that any real continuous function
defined on the real line can be uniformly approximated by C∞(R)-solutions
of this ADE. One such specific ADE is

P (y′, y′′, y′′′, y′′′′) = 0,

where P denotes the polynomial

P (x1, x2, x3, x4)

:= 3x41x2x
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It is still an unanswered question whether such an ADE exists having
analytic solutions approximating uniformly any continuous function on the
real line. But when we restrict the approximation of functions to compact
intervals, the problem of analytic solutions has been solved by M. Bosher-
nitzan [1] in 1986.

Theorem B [M. Boshernitzan; 1986]. There exists a nontrivial sixth-
order ADE of the form

P (y′, y′′, . . . , y(6)) = 0

whose real-analytic solutions (on R) are dense in C(I) for any compact
interval I.

Theorem C [M. Boshernitzan; 1986]. There exists a nontrivial seventh-
order ADE of the form

P (y′, y′′, . . . , y(7)) = 0

whose real-analytic entire solutions are dense in C(I) for any compact in-
terval I.

Theorem D [M. Boshernitzan; 1986]. There exists a nontrivial ADE of
order ≤ 19 whose polynomial solutions from Q[x] are dense in C(I) for any
compact interval I.

From Theorems B and C follows the one-dimensional case of the Whit-
ney Approximation Theorem, which states that on compact sets K ⊂ R any
continuous function can be uniformly approximated by real-analytic func-
tions defined on R. Moreover, by some famous results of C. E. Shannon [15]
and M. B. Pour-El [12] one can identify the outputs of analog computers
and the solutions of ADEs (provided that some uniqueness conditions for
the solutions of the ADEs are fulfilled). Thus, by Theorems B and C, the
existence of an analog computer is proved whose possible outputs are dense
in the space of continuous functions.
The reader who is interested in the theory of universal equations can

find various contributions to this subject:

1. There is an explicitly given ADE of order four simpler than the one
from Theorem A (with six terms of weight 13) having complex-valued C∞-
solutions, whose imaginary parts approximate continuous functions on the
whole real line with arbitrary accuracy [6].

2. Certain complex-valued solutions of the ADE mentioned in item 1 are
also solutions of an explicitly given algebraic functional equation of order
three, i.e. a (universal) functional equation with 39 terms involving deriva-
tives up to order three [7]. This result is based on the concept of local
solutions of functional equations.
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3. There exists a universal ADE of order five whose C∞(R)-solutions
approximate any continuous function on the real line with arbitrary accu-
racy, and the solutions additionally satisfy arithmetic conditions at algebraic
points [8].

4. Some simpler universal ADE can be found when the solutions satisfy
weaker conditions, i.e. for n-times differentiable solutions [4], [2].

5. There exists an algorithm which produces universal ADEs by starting
from simple differential equations, for which a weak condition on a specific
solution is assumed [9].

In [5] the author proves for a universal ADE that C∞(R)-series of an-
alytic solutions (which are even entire functions) approximate continuous
functions in the norm

‖g‖ω :=
∞\
−∞

ω(x)|g(x)| dx (g ∈ C(R)).

Here ω : R → R>0 denotes a bounded continuous weight function taking
positive values everywhere, such that

∞\
−∞

ω(x) dx = 1.

The author has proved the following result [5]:

Theorem E [C. Elsner; 2004]. There exists a nontrivial autonomous
algebraic differential equation P = 0 of order at most 7, where P denotes
an effectively computable polynomial in at most eight variables, having the
following property. Let f : R → R be a continuous function, and let ε > 0.
Then there exists a series H ∈ C∞(R) of analytic functions Hr ∈ C

ω(R),

H(x) =
∑

−∞<r<∞

Hr(x) (x ∈ R),

such that ‖f −H‖ω < ε, and each Hr solves the differential equation

P (Hr, H
′
r, . . . , H

(7)
r ) = 0. Moreover , every analytic function Hr on R is

an entire function on C.

An important result concerning universal PDEs is due to R. C. Buck [3]:

Theorem F [R. C. Buck; 1981]. For every integer n ≥ 2 there exists a
nontrivial algebraic partial differential equation in n variables whose poly-
nomial solutions are dense in the space C(In) of continuous functions on
the unit cube In.

The underlying idea in Buck’s proof is the Kolmogorov–Arnold solu-
tion of Hilbert’s Thirteenth Problem. In [1, Theorem 1.9], Buck’s result



60 C. ELSNER

is strengthened, among other things, by replacing the unit cube In by an
arbitrary compact set in Rn.

The goal of this paper is to extend the one-dimensional result from The-
orem E to the s-dimensional case. Moreover, we shall describe an algorithm
to compute the underlying PDE explicitly (by using a computer-algebra
system). It turns out that a specific ordinary ADE of order 6 satisfying the
conditions of Theorem E follows for s = 1 from our result. In order to state
the theorem we need some preliminaries. First, let ω : Rs → R>0 denote a
bounded continuous weight function taking positive values everywhere, such
that additionally \

Rs

ω(x1, . . . , xs) dx = 1.(1.1)

For brevity we write dx for dx1 . . . dxs. Now let

‖g‖ω :=
\

Rs

ω(x1, . . . , xs)|g(x1, . . . , xs)| dx (g ∈ C(Rs)).(1.2)

We recall the definition of real-analytic functions of several variables (as
given in Definition 1.6.1 in [10]): A function f , with domain an open subset
U ⊂ Rs and range R, is called real-analytic if for each α ∈ U the function f
may be represented by a convergent power series in some neighborhood of
α. If f is a real-analytic function on U ⊂ Rs we write f ∈ Cω(U). Finally,
C∞(Rs) denotes the set of all functions f such that all partial derivatives
f (k1,...,ks)(x1, . . . , xs) exist.

We now state the main result of the paper.

Theorem 1. There exists an effectively computable polynomial
P (x, t0, . . . , t5) ∈ Z[x, t0, . . . , t5] having the following property. Let s ≥ 1
be an integer , let f : Rs → R be a continuous function, and let ε > 0. Then
there exists a series H ∈ C∞(Rs) of analytic functions Hr ∈ C

ω(Rs),

H(x1, . . . , xs) =

∞
∑

r=1

Hr(x1, . . . , xs) (xν ∈ R; ν = 1, . . . , s),(1.3)

such that ‖f −H‖ω < ε, and each Hr solves the system of partial differential
equations

P

(

xσ;Hr,
∂Hr
∂xσ
, . . . ,

∂5Hr
∂x5σ

)

= 0 (σ = 1, . . . , s).(1.4)

A specific polynomial P (x, t0, . . . , t5) is homogeneous of degree 16 in its vari-
ables t0, . . . , t5, and it consists of 575 terms of the form

(1.5) axbtc00 · · · t
c5
5 (a, b, c0, . . . , c5∈Z; b, c0, . . . , c5≥0; c0+ · · ·+ c5=16).
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By standard arguments it follows easily from (1.4) that Hr also satisfies
a system of autonomous partial differential equations of order six.

2. Preliminaries to the proof of Theorem 1: Notation and an

auxiliary result. By n1, . . . , ns we always denote integers. In what follows
we consider any fixed continuous function f : Rs → R. We write f(x) for
f(x1, . . . , xs), and similarly for any function of variables x1, . . . , xs.

Lemma 1 (Weierstrass Approximation Theorem, [11, p. 52]). Let T be a
closed bounded subset of Rs. Then every real-valued continuous function

f(x1, . . . , xs) defined on T is the limit of a uniformly convergent series of
polynomials in variables x1, . . . , xs with real coefficients.

For any ε > 0 put

εn = εn1,...,ns :=
ε

9s · 2|n1|+···+|ns|
(n1, . . . , ns ∈ Z).(2.1)

Then

(2.2)
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

εn =
ε

9s
·
s
∏

σ=1

∑

−∞<nσ<∞

1

2|nσ|
=
ε

9s
·3s =

ε

3s
< ε.

This identity will be used several times during the proof. Applying Lemma 1
to our function f on the set

T =

s
∏

σ=1

[nσ − 1;nσ + 2],

we get a polynomial

(2.3) Yn(x) = Yn1,...,ns(x1, . . . , xs)

=

N
∑

ν1=0

· · ·
N
∑

νs=0

an1,...,ns;ν1,...,νsx
ν1
1 · · ·x

νs
s =

N
∑

ν1=0

· · ·
N
∑

νs=0

an,νx
ν1
1 · · ·x

νs
s

satisfying

|f(x)− Yn(x)| < εn/16 (nσ − 1 ≤ xσ ≤ nσ + 2; σ = 1, . . . , s).(2.4)

Let m denote a positive integer to be defined later, depending on f ,
n1, . . . , ns, and ε. A weight function is given by

gn,m(x) = gn1,...,ns;m(x) :=

s
∏

σ=1

e−(2xσ−2nσ−1)
2m

(x ∈ Rs).(2.5)

Using the real coefficients an,ν from (2.3), we define

yn,ν,m(x) = yn1,...,ns;ν1,...,νs;m(x) := an,νx
ν1
1 · · ·x

νs
s gn,m(x),(2.6)

where nσ ∈ Z, 0 ≤ νσ ≤ N , σ = 1, . . . , s. Moreover, let

Zn,m(x) = Zn1,...,ns;m(x) := Yn(x)gn,m(x),(2.7)
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and
H(x) = H(x1, . . . , xs) :=

∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

Zn,m(x).(2.8)

We shall show that the infinite series (2.8) converges for every x ∈ Rs and
that the terms can be arranged to form the infinite series given in (1.3).
Next we define a positive number δn = δn1,...,ns corresponding to the

integers n1, . . . , ns: Since it is assumed that the function f(x) and the weight
function ω(x) are continuous, one can find a sufficiently small number δn
satisfying

(2.9) max
1≤σ≤s

{ nσ+δn/2\
nσ−δn/2

sup
nτ−1≤xτ≤nτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + 2|f(x)|) dxσ,

nσ+1+δn/2\
nσ+1−δn/2

sup
nτ−1≤xτ≤nτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + 2|f(x)|) dxσ

}

<
εn
8
.

We use δn to introduce the following closed subsets in Rs for n1, . . . , ns ∈ Z:

In = In1,...,ns :=

s
∏

σ=1

[nσ − δn/2;nσ + 1 + δn/2] =:
s
∏

σ=1

In,σ,(2.10)

Jn = Jn1,...,ns :=

s
∏

σ=1

[nσ + δn/2;nσ + 1− δn/2] =:
s
∏

σ=1

Jn,σ.(2.11)

3. Overview of the proof: the one-dimensional case, its general-

ization to several dimensions, and additional difficulties. Theorem 1
is a multi-dimensional generalization of the one-dimensional result of [5], but
we have to overcome some additional difficulties. For the convenience of the
reader we first survey the main elements of the proof in [5] and point out
the difficulties appearing in the generalization.
First, the order five of the differential equations (1.4) results from their

explicit computation in Section 4 below. The method of eliminating all pa-
rameters by use of resultants requires extensive computations. These are
done by computer (using Maple). In [5] the general Lemma 1 has been ap-
plied to estimate the order of the differential equation.
The main idea in the one-dimensional case is to approximate a given

continuous function f : R→ R piecewise on the intervals

Jn = [n+ δn/2;n+ 1− δn/2] (n ∈ Z, δn > 0)

by polynomials Yn(x), and additionally introducing a weight function

gm,n(x) = e
−(2x−2n−1)2m (m ∈ Z, m ≥ 1)



APPROXIMATION OF CONTINUOUS FUNCTIONS 63

which takes values very close to 1 for x ∈ Jn. For sufficiently largem it bends
down the polynomial Yn(x) to arbitrary small values outside the interval

In = [n− δn/2;n+ 1 + δn/2]

(see Lemmas 6 and 5, eq. (3.13) in [5]). By choosing δn sufficiently small,
the contribution of the integral\

In\Jn

ω(x)|f(x)− Yn(x)gm,n(x)| dx

to the whole norm integral
∞\
−∞

ω(x)|f(x)−H(x)| dx

with

H(x) =

∞
∑

n=−∞

Yn(x)gm,n(x)

is (roughly speaking) negligible. The detailed arguments can be found in
Section 4 of [5]. The generalization to the s-dimensional case in the final
Section 8 of the present paper requires more technical efforts because of
the specific form of the functions Zn,m(x) = Yn(x) · gn,m(x), where the
polynomial Yn(x) = Yn(x1, . . . , xs) approximates the continuous function
f(x) = f(x1, . . . , xs) on the set Jn defined in (2.11). To overcome the diffi-
culties we shall separate the integral

n1+1\
n1

. . .

ns+1\
ns

ω(x)
∣

∣

∣
f(x)−

∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞

Zk,m(x)
∣

∣

∣
dx

into three parts I1, I2, I3 according to different terms Zk,m(x). Let

Gn :=

s
∏

i=1

[ni;ni + 1].

• For I1 we consider the single term Zn,m(x) which approximates f(x)
on Jn.
• For I2 we consider the terms Zk,m(x) which approximate f(x) in the
neighborhood of Jn on those sets Jk where Ik ∩Gn 6= ∅.
• For I3 we consider all the remaining terms Zk,m(x) where Ik∩Gn = ∅.

The terms belonging to I2 require the most careful investigation, since the
intersections of Ik and Gn occur with different dimensions.
The parameters m of the weight functions gn,m(x) depend on the func-

tion f(x) and on n1, . . . , ns. On the one hand, m must be so large that
the approximation problem is solved for f(x) by the sum of all functions
Zn,m(x), on the other hand the series must be infinitely differentiable with
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respect to each variable x1, . . . , xs. As in the one-dimensional case, we solve
this problem by the Weierstrass criterion on uniformly convergent series
(Lemma 8) and its application to a series of partial derivatives (Lemma 7).
For s = 1 the inequality (3.14) in Lemma 5 of [5] plays the main role (which
corresponds to Lemma 4 in the present paper): it provides very small lower
bounds for the kth derivative (k ≥ 1) of the terms an,νx

νgm,n(x), where
an,νx

ν is a monomial from the polynomial Yn(x). The kth derivative be-
comes very small when x keeps a sufficiently large distance to the intervals
Jn and In, in particular for |x−n| ≥ 2

k. There are only finitely many terms
from the series with |x−n| < 2k, and they are k-times differentiable. The kth
derivative of each of the remaining terms is small by the above mentioned
results, and so the whole series is k-times differentiable for every k ≥ 1.
The proof of the bound given in Lemma 4 requires a careful treatment of
all terms (as in the case s = 1 in [5]), since the parameter m of the weight
functions may not depend on k. Nevertheless the kth derivatives at single
points x of terms of the series increase rapidly with k. This makes it im-
possible to identify the series of functions as an analytic function. For the
details of the theory of analytic functions we refer the reader to the book of
Krantz and Parks [10].

With the same final argument as for s = 1 we finish the proof of the
theorem: At every point x the sum of all functions Yn(x)gn,m(x) forms an
absolutely convergent series of countably many monomials multiplied by
weight functions (i.e. a series of terms yn,ν,m(x) = an,νx

ν1
1 · · ·x

νs
s gn,m(x)

given by (2.6)). All the functions yn,ν,m(x) satisfy the partial differential
equations, and their sum can be arranged into a series of the form (1.3),

∞
∑

r=1

Hr(x1, . . . , xs) (xν ∈ R; ν = 1, . . . , s),

as stated in our theorem.

4. A differential equation for Hr(x). For brevity we introduce the
following notation:

y = y(x) := xνe−(2x−2n−1)
2m

(n ∈ Z, ν ∈ Z, ν ≥ 0, m ∈ N).(4.1)

Furthermore, put










Y1 := x
2yy′′ + νy2 − x2y′2,

Y2 := 2xy(xy
′ − νy),

Y3 := 2x
3y′2 − 2νxy2 − 2x3yy′′,

(4.2)

where ν corresponds to the function y and its parameter ν in (4.1). The
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functions Yi satisfy the identities

NY1 +MY2 + Y3 = 0,(4.3)

NY ′1 +MY
′
2 + Y

′
3 = 0(4.4)

with N := 2n+1 andM := 2m−1. The equation (4.4) follows immediately
from (4.3) by differentiation. Next, eliminating the parameter N , we get

M(Y1Y
′
2 − Y

′
1Y2) + (Y1Y

′
3 − Y

′
1Y3) = 0.(4.5)

Differentiating with respect to x, one easily proves that

M(Y1Y
′′
2 − Y

′′
1 Y2) + (Y1Y

′′
3 − Y

′′
1 Y3) = 0.(4.6)

Now we eliminate the parameter M from (4.5), (4.6):

(Y1Y
′
2 − Y

′
1Y2)(Y1Y

′′
3 − Y

′′
1 Y3)− (Y1Y

′′
2 − Y

′′
1 Y2)(Y1Y

′
3 − Y

′
1Y3) = 0.(4.7)

By differentiation it follows that

(4.8) (Y1Y
′
2 − Y

′
1Y2) · (Y1Y

′′′
3 + Y

′
1Y
′′
3 − Y

′′
1 Y
′
3 − Y

′′′
1 Y3)

− (Y1Y
′
3 − Y

′
1Y3) · (Y1Y

′′′
2 + Y

′
1Y
′′
2 − Y

′′
1 Y
′
2 − Y

′′′
1 Y2) = 0.

In order to express all the terms in (4.7), (4.8) by ν, x, y, y′, . . . , y(5), we
first compute the derivatives of Y1, Y2, and Y3 from (4.2):

Y ′1 = 2νyy
′ + 2x(yy′′ − y′

2
) + x2(yy′′′ − y′y′′),

Y ′′1 = 2(ν + 1)yy
′′ + 2(ν − 1)y′

2
+ 4x(yy′′′ − y′y′′) + x2(yy(4) − y′′

2
),

Y ′′′1 = 6(ν − 1)y
′y′′ + 2(ν + 3)yy′′′ + 6x(yy(4) − y′′

2
)

+x2(yy(5) + y′y(4) − 2y′′y′′′);

Y ′2 = −2νy(y + 2xy
′) + 4xyy′ + 2x2(yy′′ + y′

2
),

Y ′′2 = −4ν(2yy
′ + x(yy′′ + y′

2
)) + 4yy′ + 8x(yy′′ + y′

2
)

+ 2x2(yy′′′ + 3y′y′′),

Y ′′′2 = −4ν(3y
′2 + 3yy′′ + x(3y′y′′ + yy′′′)) + 12(yy′′ + y′

2
)

+ 12x(yy′′′ + 3y′y′′) + 2x2(yy(4) + 4y′y′′′ + 3y′′
2
);

Y ′3 = −2ν(y
2 + 2xyy′)− 6x2(yy′′ − y′

2
)− 2x3(yy′′′ − y′y′′),

Y ′′3 = −4ν(2yy
′ + x(yy′′ + y′

2
))− 12x(yy′′ − y′

2
)− 12x2(yy′′′ − y′y′′)

− 2x3(yy(4) − y′′
2
),

Y ′′′3 = −4ν(3yy
′′ + 3y′

2
+ x(yy′′′ + 3y′y′′))− 12(yy′′ − y′

2
)

− 36x(yy′′′ − y′y′′)− 18x2(yy(4) − y′′
2
)

− 2x3(yy(5) + y′y(4) − 2y′′y′′′).

The results of the following computations can be verified by using a
computer-algebra system. Putting the above terms into (4.7) and (4.8), one
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gets two polynomials of the third degree with respect to the variable ν:

r3ν
3 + r2ν

2 + r1ν + r0 = 0 and s3ν
3 + s2ν

2 + s1ν + s0 = 0.

The coefficients ri, si (i = 0, 1, 2, 3) depend on x, y, y
′, . . . , y(5). The resultant

of these two polynomials having a common root ν vanishes. Hence we get

0 = det















r3 r2 r1 r0 0 0
0 r3 r2 r1 r0 0
0 0 r3 r2 r1 r0
s3 s2 s1 s0 0 0
0 s3 s2 s1 s0 0
0 0 s3 s2 s1 s0















= −16384x17y6 · (−xyy′′ + xy′
2
− yy′)

4

· (2xy′
3
− 3xyy′y′′ + xy2y′′′ − 2yy′

2
+ 2y2y′′)

6
· P (x, y, y′, . . . , y(5))

=: −16384x17y6 ·A4(x, y, y′, y′′) ·B6(x, y, y′, y′′, y′′′) · P (x, y, y′, . . . , y(5)),

where P is the polynomial introduced in Theorem 1. We have to show that
the terms A(x, y, y′, y′′) and B(x, y, y′, y′′, y′′′) do not vanish identically. For
n ∈ Z, m ∈ N one gets

A(n, y(x = n), y′(x = n), y′′(x = n)) = 4n2m(4nm− 2n− 1)e−2,

which is not zero for n 6= 0 since 4nm− 2n− 1 is an odd number. For n = 0
one has

A(1, y(x = 1), y′(x = 1), y′′(x = 1)) = 4m · (4m− 1) · e−2 > 0.

The arguments for B(x, y, y′, y′′, y′′′) are essentially the same. For n 6= 0 we
have

B(n, y(x = n), . . . , y′′′(x = n))

= 16n3m(4nm2 − 6nm+ 2n− 2m+ 1)e−3 6= 0.

It remains to consider the case when n = 0. One gets

B(1, y(x = 1), . . . , y′′′(x = 1)) = −16m(2m− 1)2e−3 < 0,

which finally proves that

P (x, y, y′, . . . , y(5)) = 0.(4.9)

We know from (7.1) below and from (2.5), (2.6) that any function Hr(x)
takes the form

Hr(x) = yµ1(r),µ2(r),m(x) = an,ν

s
∏

σ=1

xνσσ e
−(2xσ−2nσ−1)

2m

(4.10)

for certain integers ν1, . . . , νs,m, n1, . . . , ns. Since P (x; t0, . . . , t5) is a homo-
geneous polynomial with respect to its variables t0, . . . , t5, one easily proves,
by (4.1), (4.9), and (4.10), that Hr(x) satisfies the identities (1.4).
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5. Two lemmas concerning the approximation of f

Lemma 2. Let f : Rs → R be a continuous function, and let ε > 0. Then
for arbitrary integers n1, . . . , ns, there is an integer m1, depending at most
on ε, n1, . . . , ns, and f , such that

|yn,ν,m(x)| ≤
εn

8(N + 1)s
(x 6∈ In, m ≥ m1, 0 ≤ ν1, . . . , νs ≤ N).(5.1)

Lemma 3. For arbitrary integers n1, . . . , ns the polynomial Yn(x) from
(2.3) satisfies the inequality

|f(x)− Yn(x)gn,m(x)| < εn/8 (x ∈ Jn)(5.2)

for all integers m ≥ m2, where m2 depends at most on ε, n1, . . . , ns, and f .

Proof of Lemma 2. We additionally introduce the height of the polyno-
mial Yn(x):

Hn = Hn1,...,ns := max
0≤νσ≤N
1≤σ≤s

{1, |an1,...,ns;ν1,...,νs |} (n1, . . . , ns ∈ Z).(5.3)

Moreover, let tσ := 2xσ − 2nσ − 1 for 1 ≤ σ ≤ s. From x 6∈ In one knows
that there is some σ with xσ 6∈ In,σ satisfying

|tσ| = |2xσ − 2nσ − 1| ≥ 1 + δn.(5.4)

The positive number

Mn := max
1≤σ≤s

{1, max
0≤νσ≤N

sup
xσ∈In,σ

|xνσσ |}(5.5)

depends on n1, . . . , ns, f , s and ε. Since all the functions x
νσ
σ e
−t2σ tend to zero

for |xσ| → ∞ there are intervals [An,σ;Bn,σ] such that In,σ ⊂ [An,σ;Bn,σ],
and

|xνσσ |e
−t2σ <

εn
8HnM sn(1 +N)

s (xσ 6∈ [An,σ;Bn,σ], 0 ≤ νσ ≤ N).(5.6)

This inequality remains true when e−t
2
σ on the left side is replaced by e−t

2m
σ

for any positive integer m, since xσ 6∈ In,σ implies by (5.4) that |tσ| > 1.
Moreover, the value

Mσ = max
0≤νσ≤N

sup
xσ∈[An,σ;Bn,σ]

|xνσσ | (1 ≤ σ ≤ s)

is clearly finite, and it depends on n1, . . . , ns, f , s, σ, ε, and on the interval
[An,σ;Bn,σ], but it does not depend on m. Thus there is a positive integer
m1 = m1(n1, . . . , ns, f, s, ε) such that

Mσe
−(1+δn)

2m

<
εn

8HnM sn(1 +N)
s (m ≥ m1, 1 ≤ σ ≤ s).

(Any term depending on f may also depend on the chosen approximation
polynomial Yn and on its parameters N , Hn.) For xσ ∈ [An,σ;Bn,σ] \ In,σ it
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follows by (5.4) that

|xνσσ |e
−t2mσ <

εn
8HnM sn(1 +N)

s(5.7)

for all m ≥ m1, 0 ≤ ν1, . . . , νs ≤ N .

For x 6∈ In, in particular for xσ0 6∈ In,σ0 , by application of (5.5)–(5.7) we
now have

|yn,ν,m(x)| ≤ Hn

s
∏

σ=1

|xνσσ |e
−t2mσ

= Hn

(

∏

1≤σ≤s
xσ∈In,σ

|xνσσ |e
−t2mσ
)(

∏

1≤σ≤s
xσ 6∈In,σ

|xνσσ |e
−t2mσ
)

≤ Hn
(

∏

1≤σ≤s
xσ∈In,σ

|xνσσ |
)

(

∏

1≤σ≤s
xσ 6∈In,σ

εn
8HnM sn(1 +N)

s

)

≤ HnM
s
n

εn
8HnM sn(1 +N)

s =
εn

8(1 +N)s

for all m ≥ m1, 0 ≤ ν1, . . . , νs ≤ N .

Here we have used the fact that there exists xσ0 satisfying xσ0 6∈ In,σ0 ,
and that Hn ≥ 1, Mn ≥ 1.

Proof of Lemma 3. Let x ∈ Jn. Then we know by (2.11) that |tσ| =
|2xσ − 2nσ − 1| ≤ 1− δn for σ = 1, . . . , s. Let

Fn := 1 + sup
nσ≤xσ≤nσ+1
1≤σ≤s

|f(x1, . . . , xs)|.(5.8)

Obviously there exists an integer m2 satisfying

1−
εn
2s+4Fn

< e−(1−δn)
2m

< 1 (m ≥ m2);(5.9)

it depends on n1, . . . , ns and on f , s, ε. It follows immediately from (5.9)
and from |tσ| ≤ 1 − δn that for every σ there exists a real number ασ such
that

e−t
2m
σ = 1 + ασ, where |ασ| <

εn
2s+4Fn

< 1 (1 ≤ σ ≤ s).(5.10)

Of course, ασ depends on n1, . . . , ns and f , s, xσ, ε. Then one has

s
∏

σ=1

e−t
2m
σ =

s
∏

σ=1

(1 + ασ) =

s
∑

τ=0

∏

1≤µ1<···<µτ≤s

αµ1 · · ·αµτ =: 1 + α.

The number α depends on n1, . . . , ns, f , s, ε and x1, . . . , xs. For |α| we get
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an upper bound from (5.10), namely

|α| =
∣

∣

∣

s
∑

τ=1

∏

1≤µ1<···<µτ≤s

αµ1 · · ·αµτ

∣

∣

∣ ≤ (2s − 1) max
1≤σ≤s

|ασ|(5.11)

< 2s
εn
2s+4Fn

=
εn
16Fn

.

We now estimate |Yn(x)| on Jn by (2.4) and (5.8):

sup
x∈Jn

|Yn| ≤ sup
nσ≤xσ≤nσ+1
1≤σ≤s

|Yn(x1, . . . , xs)|

≤
εn
16
+ sup
nσ≤xσ≤nσ+1
1≤σ≤s

|f(x1, . . . , xs)| < Fn.

Applying (2.4) for a second time, one finally gets, by application of (5.11),

|f(x)−Yn(x)gn,m(x)| =
∣

∣

∣f(x)−
(

s
∏

σ=1

e−t
2m
σ

)

Yn(x)
∣

∣

∣ = |f(x)− (1 + α)Yn(x)|

≤ |f(x)− Yn(x)|+ |α| · |Yn(x)| <
εn
16
+
εn
16Fn

Fn

=
εn
8
(x ∈ Jn, m ≥ m2).

Thus Lemma 3 is proved.

6. On a bound for partial derivatives of yn,ν,m(x). Throughout
this section the continuous function f , the real number ε > 0 and the ap-
proximating polynomial Yn(x) are as in the preceding section.

Lemma 4. Let n1, . . . , ns and 0 ≤ ν1, . . . , νs ≤ N be arbitrary integers.
Then there is an integer m3 depending on s, n1, . . . , ns, ν1, . . . , νs, f and ε
such that

|y(k1,...,ks)n,ν,m (x)| <
εn

8(1 +N)s
(6.1)

for x ∈ Rs, m ≥ m3, and nonnegative integers k1, . . . , ks such that |xσ−nσ|
≥ 21+kσ for at least one σ with 1 ≤ σ ≤ s.

Proof. We express yn,ν,m(x) by (2.5), (2.6), and apply (5.3). Then we
get

(6.2) |y(k1,...,ks)
n,ν,m (x)| =

∣

∣

∣

∣

an,ν

s
∏

σ=1

∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m

)

∣

∣

∣

∣

≤ Hn

∣

∣

∣

∣

{

s
∏

σ=1
|xσ−nσ|≥21+kσ

·
s
∏

σ=1
|xσ−nσ|<21+kσ

} ∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m

)

∣

∣

∣

∣
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In what follows we fix the integers n1, . . . , ns, k1, . . . , ks from the lemma.

We first estimate the term
∣

∣

∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m
)
∣

∣ corresponding to

|xσ − nσ| < 2
1+kσ . For brevity we put

x = xσ, k = kσ, ν = νσ, n = nσ, t := 2x− 2n− 1.(6.3)

Applying the Leibniz rule, we get

(6.4)

∣

∣

∣

∣

∂k

∂xk
(xνe−(2x−2n−1)

2m

)

∣

∣

∣

∣

=

∣

∣

∣

∣

k
∑

κ=max{0,k−ν}

(

k

κ

)

ν(ν − 1) · · · (ν − k + κ+ 1)xν−k+κ2κ
∂

∂tκ
(e−t

2m
)

∣

∣

∣

∣

≤ 2kN !
k
∑

κ=max{0,k−ν}

(

k

κ

)

(|n|+ 21+k)
N
∣

∣

∣

∣

∂

∂tκ
(e−t

2m
)

∣

∣

∣

∣

.

Here we have used the inequality |x| < |n|+21+k, which follows from |x−n| <
21+k, and from the fact that ν(ν − 1) · · · (ν − k + κ + 1) ≤ ν! ≤ N ! for
0 < ν − k + κ+ 1. Below we refer to the proof of Lemma 5, formula (3.14),
in [5]. We have

∣

∣

∣

∣

∂

∂tκ
(e−t

2m
)

∣

∣

∣

∣

= |Pκ(2m−1)(t)e
−t2m| ≤ |Pκ(2m−1)(t)|

for some integer polynomial Pκ(2m−1)(t) of degree κ(2m− 1) and of height
bounded by κ!(2m)κ (see Lemma 4 in [5]). Since κ ≤ k and k(2m− 1)+1 ≤
2m(k + 1) and |t| = |2x− 2n− 1| ≤ 1 + 2|x− n| ≤ 1 + 2k+2 ≤ 2k+3 we get

|Pκ(2m−1)(t)| ≤ (k(2m− 1) + 1)k!(2m)
kmax{1, |t|k(2m−1)}

≤ 2m(k + 1)k!(2m)kmax{1, |t|2km}

≤ (k + 1)!(2m)k+122mk(k+3).

Putting this inequality into the right side of (6.4), we get the inequality
∣

∣

∣

∣

∂k

∂xk
(xνe−(2x−2n−1)

2m

)

∣

∣

∣

∣

≤ 2kN !(|n|+ 21+k)
N
k
∑

κ=0

(

k

κ

)

(k + 1)!(2m)k+122mk(k+3)

= 4kN !(|n|+ 21+k)
N
(k + 1)!(2m)k+122mk(k+3);

using it we estimate the terms corresponding to |xσ−nσ| < 2
1+kσ on the right

side of (6.2). Putting K :=1+max{k1, . . . , ks} andM :=max{|n1|, . . . , |ns|},
we have proved the following result.
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Lemma 5. Under the conditions of Lemma 4,

(6.5) |y(k1,...,ks)
n,ν,m (x)| ≤ Hn4

sKN !s(M + 21+K)
sN
(K + 1)!s(2m)Ks+s

× 22msK(K+3)
s
∏

σ=1
|xσ−nσ|≥21+kσ

∣

∣

∣

∣

∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m

)

∣

∣

∣

∣

.

The hypothesis of Lemma 4 guarantees the existence of at least one index
σ such that |xσ − nσ| ≥ 2

1+kσ .

Lemma 6. Under the conditions of Lemma 4,

W : = Hn · 4
sKN !s(M + 21+K)

sN
(K + 1)!s(2m)Ks+s22msK(K+3)(6.6)

×

∣

∣

∣

∣

∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m

)

∣

∣

∣

∣

≤
εn

8(1 +N)s
(m ≥ m3)

for any σ satisfying |xσ − nσ| ≥ 2
1+kσ . In particular , for such σ we have

∣

∣

∣

∣

∂kσ

∂xkσσ
(xνσσ e

−(2xσ−2nσ−1)
2m

)

∣

∣

∣

∣

≤ 1 (m ≥ m3).

Obviously, Lemma 4 follows from Lemmas 5 and 6. It remains to prove
Lemma 6. For brevity we shall use again the abbreviations given in (6.3).
The main idea is to keep the constant m3 independent of k1, . . . , ks. For this
purpose it is necessary to distinguish several cases.

Case 1: 1 ≤ K ≤ N . From the binomial theorem one easily deduces
that

(M + 21+K)sN ≤ 2sN (1 +M)sN2sN(1+K) ≤ (2 + 2M)sN2sN(N+1).(6.7)

We follow the lines of the proof of Lemma 5 in [5] and omit some details.

Put pn,ν(x) := HnN !
s(2 + 2M)sN2sN(N+1)xν . Expanding that polynomial

at n+ 1/2 we write

pn,ν(x) =

ν
∑

µ=0

An,ν,µ2
µ(x− n− 1/2)µ =

ν
∑

µ=0

An,ν,µt
µ =: Tn,ν(t).

By h(Tn,ν) := max0≤µ≤ν |An,ν,µ| we denote the height of the polynomial
Tn,ν(t) which depends on n (in particular on n), and on s,N, f, ε, but not
on m. Proceeding as in the proof of Lemma 5 in [5], we now get, instead of
[5, (3.19)]:

(6.8) W ≤ {2(N + 1)!h(Tn,ν)|t|
Ne−t

2m/2}

×{16K(K + 2)!mK+1|t|2Km4sK(K + 1)!s(2m)Ks+s22msK(K+3)e−t
2m/2}.

As in [5], one can find a positive integerm4 depending onN and δn satisfying

2N < (1 + δn)
2m (m ≥ m4),
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where δn is defined by (2.9). Therefore one has, following the arguments
from [5],

(6.9) 2(N+1)!h(Tn,ν)|t|
Ne−t

2m/2≤ 2(N+1)!h(Tn,ν)(1 + δn)
2Ne−(1+δn)

2m/2

≤ 2(N + 1)! max
0≤ν≤N

h(Tn,ν) · (1 + δn)
2Ne−(1+δn)

2m/2 ≤
εn

8(1 +N)s
,

which holds for m ≥ m5 for some positive integer m5 ≥ m4 not depending
on k1, . . . , ks, and for |t| ≥ 1+δn. Note that the hypothesis |x−n| ≥ 2

1+k >
2k + 1/2 implies that |2x− 2n| − 1 ≥ 21+k. This gives |t| = |2x− 2n− 1| ≥
21+k ≥ 2 ≥ 1 + δn for all integers k ≥ 0. It remains to prove the inequality

16K(K+2)!mK+1t2Km4sK(K+1)!s(2m)Ks+s22msK(K+3)e−t
2m/2<1(6.10)

for K ≥ 1, t = 21+K , m ≥ m6 := max{s, 16} (see the corresponding argu-
ments for (3.22) and (3.23) in [5]). Since m ≥ s, (6.10) follows immediately
from

(6.11) 16K(K+2)!mK+1t2Km4mK(K+1)!m(2m)m(K+1)22m
2K(K+3)e−t

2m/2

< 1,

where K ≥ 1, t = 21+K , m ≥ m6. We shall see below that the inequality
(6.11) is fulfilled by proving a stronger one stated in case 2.

Case 2: N < K. The arguments are essentially the same as in case 1.
Put

pn,ν(x) := HnN !
s(2 + 2M)sNxν ,

and let W be given as in (6.6). Since N < K we replace the inequality (6.7)

by (M + 21+K)
sN
≤ (2 + 2M)sN2sK(K+1). Then (6.8) takes the form

(6.12) W ≤ {2(N + 1)!h(Tn,ν)|t|
Ne−t

2m/2}

× {16K(K + 2)!mK+1|t|2Km4sK(K + 1)!s(2m)Ks+s22msK(K+3)

× 2sK(K+1)e−t
2m/2}

with a modified integer polynomial Tn,ν . As in (6.9) we get

2(N + 1)!h(Tn,ν)|t|
Ne−t

2m/2 ≤
εn

8(1 +N)s
,(6.13)

which again holds for m ≥ m7 for some positive integer m7 not depending
on k1, . . . , ks, and for |t| ≥ 1+δn. For m ≥ m6 we have m ≥ s, and therefore
it suffices to show that

(6.14) 16K(K + 2)!mK+1t2Km4mK(K + 1)!m(2m)m(K+1)22m
2K(K+3)

× 2mK(K+1)e−t
2m/2 < 1

with K ≥ 1, t = 21+K , m ≥ m3 := max{m5,m6,m7}. Obviously, (6.14)
implies (6.10). When (6.14) is proved, we will have deduced the inequality
from (6.6) by (6.8), (6.9) and (6.11)–(6.14). This will prove the lemma.
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In order to verify (6.14) we again distinguish two cases.

Case 2.1: m ≤ K. Let t = 2K+1 and m ≥ 9. Then we get, using
K4/K < 5 for K ≥ 1,

4m ≥ 143360 ≥ 28672 ·K4/K ≥ 286721/KK4/K

and therefore
4mK ≥ 28672K4.

Since K + 3 ≤ 4K for K ≥ 1, we get 4m(K+1) > 4mK > 112(K + 3)4, or

7 · 8 · (K + 3)4 − 22m(K+1)−1 < 0.

This gives

K log 16 + (K + 2)2 + (K + 1)K + 2K2(K + 1) log 2 + 8K2(K + 1)2

+2K3(K + 3) log 2 +K2(K + 1) log 2− 22m(K+1)−1 < 0,

since the first seven terms on the left side are bounded by 8(K + 3)4 each.
Using the hypothesis m ≤ K and A ≥ logA for A ≥ 1, it follows that

(6.15) K log 16 + (K + 2) log(K + 2) + (K + 1) logm+ 2mK(K + 1) log 2

+m(K + 1) log(8m(K + 1)) + 2m2K(K + 3) log 2

+mK(K + 1) log 2− 22m(K+1)−1 < 0.

Another form of this inequality is

16K(K + 2)K+2mK+1t2Km4m(K+1)(K + 1)m(K+1)(2m)m(K+1)

× 22m
2K(K+3)2mK(K+1)e−t

2m/2 < 1.

Since AA ≥ A! for all integers A ≥ 1, (6.14) follows immediately.

Case 2.2: K < m. Now m ≥ 16 implies that 4mK ≥ 4m ≥ 28672m4.
Using the same arguments as in case 2.1, we get

7 · 8 · (m+ 3)4 − 22m(K+1)−1 < 0,

from which one can deduce that

m log 16 + (m+ 2)2 + (m+ 1)m+ 2m2(m+ 1) log 2 + 8m2(m+ 1)2

+2m3(m+ 3) log 2 +m2(m+ 1) log 2− 22m(K+1)−1 < 0.

By the hypothesisK < m one easily estimates the left side in order to obtain
(6.15) again. As shown in case 2.1, (6.14) follows from (6.15). Lemmas 4 and
6 are proved.

7. Definition of the approximation function H(x). We recall that
the degree N of the polynomial Yn(x) depends on n1, . . . , ns, f, s, ε. If we
keep f , s and ε fixed, the set of functions

Y := {yn1,...,ns;ν1,...,νs;m(x) : n1, . . . , ns ∈ Z, 0 ≤ ν1, . . . , νs ≤ N}
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is countable. The parameter m is chosen when n1, . . . , ns are given, and
depends on them. There exist two 1 : 1 mappings

µi : N→ Zs (i = 1, 2), µ1(r) = (n1, . . . , ns), µ2(r) = (ν1, . . . , νs)

such that

Hr(x) = yµ1(r);µ2(r);m(x) (r ∈ N), Y = {Hr(x) : r ∈ N}.(7.1)

Since gn,m(x) and an,νx
ν1
1 · · ·x

νs
s are analytic functions on Rs for arbitrary

m ≥ 1, n1, . . . , ns ∈ Z, 0 ≤ ν1, . . . , νs ≤ N , it follows that Hr(x) is an
analytic function on Rs for any integer r ∈ N. In what follows let m be
given by

m := max{m1,m2,m3},(7.2)

so that m depends on n1, . . . , ns, f, s, and ε. Finally, put

H(x) =

∞
∑

r=1

Hr(x) (x ∈ Rs).(7.3)

Now we shall first show that for every x ∈ Rs and for arbitrary non-

negative integers k1, . . . , ks the series
∑

rH
(k1,...,ks)
r (x) converges absolutely.

Then we shall prove that H ∈ C∞(Rs). Finally, it remains to investigate
how the function H approximates the given continuous function f on Rs

with respect to the norm ‖ · ‖ω. This will be done in the following section.

In order to prove the absolute convergence of the series (7.3) we introduce
the set

Ln,k = Ln1,...,ns;k1,...,ks :=

s
∏

σ=1

[nσ − 2
kσ+1;nσ + 2

kσ+1].(7.4)

Then, by the inequality (6.1) from Lemma 4 and the identity (2.2), we get

∞
∑

r=1

|H(k1,...,ks)r (x)| −
∞
∑

r=1
x∈Lµ1(r);k1,...,ks

|H(k1,...,ks)r (x)|

=

∞
∑

r=1
x6∈Lµ1(r);k1,...,ks

|H(k1,...,ks)r (x)| =
∞
∑

r=1
x6∈Lµ1(r);k1,...,ks

|y
(k1,...,ks)
µ1(r);µ2(r);m

(x)|

=
∑

−∞<n1,...,ns<∞
x6∈Ln,k

∑

0≤ν1,...,νs≤N

|y(k1,...,ks)
n,ν,m (x)|

≤
∑

−∞<n1,...,ns<∞
x6∈Ln,k

∑

0≤ν1,...,νs≤N

εn
8(1 +N)s

≤
∑

−∞<n1,...,ns<∞

εn
8
<
ε

8
.
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Hence

∞
∑

r=1

|H(k1,...,ks)r (x)| <
∞
∑

r=1
x∈Lµ1(r);k1,...,ks

|H(k1,...,ks)r (x)|+
ε

8
<∞.

Obviously the last sum has finitely many terms. We have proved that the

series
∑

rH
(k1,...,ks)
r (x) converges absolutely. Therefore we may rearrange

the terms arbitrarily. To prove that H belongs to C∞(Rs) we shall need two
lemmas from real analysis.

Lemma 7. For any real numbers a < b let fn : [a; b]
s → R (n =

1, 2, . . .) be a sequence of partially differentiable functions such that the se-
ries
∑∞
n=1 fn(x) converges for at least one x = x0. Additionally , assume

that all the series
∞
∑

n=1

∂fn(x)

∂xσ
(1 ≤ σ ≤ s)

converge uniformly on [a; b]s. Then
∑∞
n=1 fn(x) converges uniformly on

[a; b]s to a function f : [a; b]s → R which is partially differentiable with

respect to each variable x1, . . . , xs. Furthermore,

∂f(x)

∂xσ
=

∞
∑

n=1

∂fn(x)

∂xσ
(1 ≤ σ ≤ s).(7.5)

Lemma 8 (The Weierstrass criterion). For any A ⊂ Rs let fn : A → R

(n = 1, 2, . . .) be such that |fn(x)| ≤ cn for all n ≥ 1 and x ∈ A, where cn
are some positive numbers not depending on x. Additionally , assume that the
series

∑∞
n=1 cn converges. Then the series

∑∞
n=1 fn(x) converges uniformly

on A.

Let K := k1 + · · · + ks. Now we shall show by an inductive argu-

ment that
∑∞
r=1H

(k1,...,ks)
r (x) represents a partially differentiable function

H(k1,...,ks)(x), and

∂H(k1,...,ks)(x)

∂xσ
=

∞
∑

r=1

∂H
(k1,...,ks)
r (x)

∂xσ
(1 ≤ σ ≤ s)(7.6)

for all x ∈ Rs and K ≥ 0. Proceeding step by step, we put K = 0 at the
beginning and then repeat the arguments for K = 1, 2, . . . . For brevity we
introduce the notation

H(K)r (x) := H
(k1,...,ks)
r (x).
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Let a < b. For x ∈ [a; b]s and 1 ≤ σ ≤ s we have
∞
∑

r=1

∂H
(K)
r (x)

∂xσ
=

∞
∑

r=1
Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks∩[a;b]

s 6=∅

∂H
(K)
r (x)

∂xσ
(7.7)

+

∞
∑

r=1
Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks∩[a;b]

s=∅

∂H
(K)
r (x)

∂xσ
.

The first sum on the right side of (7.7) consists of finitely many terms.
The terms of the second sum can be estimated by Lemma 4: The condition
Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks∩ [a; b]

s = ∅ and the hypothesis x ∈ [a; b]s imply
that x 6∈ Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks . This means that for some σ0 with
1 ≤ σ0 ≤ s, either

|xσ0 − nσ0 | ≥ 2
kσ0+1 (if σ0 6= σ) or |xσ0 − nσ0 | ≥ 2

kσ0+2 (if σ0 = σ).

Additionally we need (7.2). Therefore the conditions of Lemma 4 are satisfied
when the second sum in (7.7) is estimated by (6.1), (7.1), and (2.2). For x ∈
[a; b]s and for integers r satisfying Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks ∩ [a; b]

s = ∅
we have

∣

∣

∣

∣

∂H
(K)
r (x)

∂xσ

∣

∣

∣

∣

<
εµ1(r)

8(1 +N(µ1(r)))
s ,

and
∞
∑

r=1
Lµ1(r);k1,...,kσ−1,1+kσ,kσ+1,...,ks∩[a;b]

s=∅

εµ1(r)

8(1 +N(µ1(r)))
s ≤

∞
∑

r=1

εµ1(r)

8(1 +N(µ1(r)))
s

=
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

∑

0≤ν1≤N

· · ·
∑

0≤νs≤N

εn
8(1 +N(n1, . . . , ns))

s

=
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

εn
8
<
ε

8
<∞.

Hence, by Lemma 8, the second sum on the right side of (7.7) converges
uniformly on [a; b]s, and therefore the sum on the left side has the same
property. Thus we may apply Lemma 7, which proves that the function
defined by

H(K)(x) =

∞
∑

r=1

H(K)r (x) (x ∈ [a; b]s)(7.8)

is partially differentiable with respect to each variable x1, . . . , xs, and that
(7.6) holds. In particular the sum on the right side of (7.8) converges abso-
lutely on [a; b]s, which has been shown before. Since the set [a; b]s can be
chosen arbitrarily large, we have proved that H ∈ C∞(Rs).
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8. Approximation of f(x) by H(x). The goal of this section is to
estimate ‖f −H‖ω. For this purpose we first express H(x) by the multiple
sum (2.8):

‖f−H‖ω =
\

Rs

ω(x)|f(x)−H(x)|dx(8.1)

=
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

n1+1\
n1

. . .

ns+1\
ns

ω(x)

×
∣

∣

∣f(x)−
∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞

Zk,m(x)
∣

∣

∣dx

≤
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)
{

|f(x)− Zn,m(x)|

+
∑

−1≤i1,...,is≤+1
i21+···+i

2
s>0

|Zn1+i1,...,ns+is,m(x)|

+
∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞
kσ 6=nσ−1,nσ,nσ+1
(σ=1,...,s)

|Zk,m(x)|
}

dx

=: I1 + I2 + I3.

The numbers I1, I2, I3 correspond to the three terms inside the curly brack-
ets.

a) An upper bound for I1. The following inequalities follow from (2.4),
(2.5), and (2.7):

|Zk,m(x)| ≤ |Yk(x)| ≤ 1 + |f(x)|(8.2)

for kσ − 1 ≤ xσ ≤ kσ + 2, σ = 1, . . . , s. Hence

I1 =
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)|f(x)− Zn,m(x)| dx

=
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

∑∗

(tσ,uσ)
σ=1,...,s

n1+u1\
n1+t1

· · ·
ns+us\
ns+ts

ω(x)|f(x)− Zn,m(x)| dx,

where every pair (tσ, uσ) for σ = 1, . . . , s in the sum
∑∗ is one of the three

pairs

(0, δn/2), (δn/2, 1− δn/2), (1− δn/2, 1).
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Therefore the sum
∑∗ consists of 3s terms. For convenience we introduce

two polynomials:

p(t) :=

(

1

2
−
3δn
4

)

t2 +

(

1

2
−
δn
4

)

t+
δn
2
,

q(t) := −

(

1

2
−
3δn
4

)

t2 +

(

1

2
−
δn
4

)

t+

(

1−
δn
2

)

.

In particular one has

t p(t) q(t)

−1 0 δn/2

0 δn/2 1− δn/2

+1 1− δn/2 1

(8.3)

Thus we get

I1 =
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

1
∑

v1=−1

· · ·
1
∑

vs=−1

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

ω(x)

× |f(x)− Zn,m(x)| dx

=
{

∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

1
∑

v1=−1

· · ·
1
∑

vs=−1

v21+···+v
2
s>0

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

+
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1−δn/2\
n1+δn/2

. . .

ns+1−δn/2\
ns+δn/2

}

ω(x)|f(x)− Zn,m(x)| dx.

The integrands of the first multiple sum in {} can be estimated trivially by
(8.2), whereas an upper bound for the integrands of the right multiple sum
is given by Lemma 3, since x ∈ Jn by (2.11). So we have

(8.4) I1 ≤
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

1
∑

v1=−1

. . .

1
∑

vs=−1

v21+···+v
2
s>0

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

ω(x)

× (1 + 2|f(x)|) dx

+
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1−δn/2\
n1+δn/2

· · ·

ns+1−δn/2\
ns+δn/2

ω(x)
εn
8
dx.

If v21 + · · ·+ v
2
s > 0, then there exists σ with vσ 6= 0 and, by (8.3),

q(vσ)− p(vσ) = δn/2.
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Moreover, for every τ (1 ≤ τ ≤ s) we have

0 < (nτ + q(vτ ))− (nτ + p(vτ )) = q(vτ )− p(vτ ) < 1.

Assuming additionally vσ = −1, we have

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

ω(x)(1 + 2|f(x)|) dx

≤

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

sup
nτ−1≤xτ≤nτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + 2|f(x)|) dx

≤

nσ+δn/2\
nσ

sup
nτ−1≤xτ≤nτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + 2|f(x)|) dxσ.

For vσ = +1 the arguments are the same, leading to a similar integral with
lower limit nσ + 1 − δn/2 and upper limit nσ + 1. Applying the definition
(2.9) of δn, we have proved that

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

ω(x)(1 + 2|f(x)|) dx <
εn
8

for all v21 + · · ·+ v
2
s > 0, vτ = −1, 0,+1. Now we easily find an upper bound

for I1 from (8.4), namely

I1 ≤
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

{ 1
∑

v1=−1

· · ·
1
∑

vs=−1

v21+···+v
2
s>0

εn
8
+
\

Rs

ω(x)
εn
8
dx

}

=
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

{(3s − 1)εn/8 + εn/8}

=
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

3s εn/8 = ε/8.

Here we have applied the identities (1.1) and (2.2). Thus we have proved
the following lemma:

Lemma 9. We have

I1 =
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

1
∑

v1=−1

· · ·
1
∑

vs=−1

n1+q(v1)\
n1+p(v1)

· · ·

ns+q(vs)\
ns+p(vs)

ω(x)

× |f(x)− Zn,m(x)| dx ≤ ε/8.
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b) An upper bound for I2. Next we investigate the second term in (8.1):

I2 =
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)(8.5)

×
∑

−1≤i1,...,is≤+1
i21+···+i

2
s>0

|Zn1+i1,...,ns+is,m(x)| dx

=
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1
∑

k1=n1−1

· · ·
ns+1
∑

ks=ns−1
(k1,...,ks) 6=(n1,...,ns)

n1+1\
n1

· · ·
ns+1\
ns

ω(x)

× |Zk1,...,ks,m(x)| dx.

In what follows we consider all the 3s−1 domains Ik for ni−1 ≤ ki ≤ ni+1,
i = 1, . . . , s, (k1, . . . , ks) 6= (n1, . . . , ns), where Ik is given by (2.10) for n = k.
Let

Gn :=

s
∏

i=1

[ni;ni + 1].

We separate the domain Gn of integration from (8.5) into parts overlapping
with Ik and the remaining ones. For this purpose we define

Jn,k :=

n1+1\
n1

· · ·
ns+1\
ns

ω(x)|Zk,m(x)| dx =
{ \
Gn∩Ik

+
\

Gn\Ik

}

ω(x)|Zk,m(x)| dx.

First we deal with Gn ∩ Ik. From the hypothesis ni − 1 ≤ ki ≤ ni + 1 for
i = 1, . . . , s we know that this is a nonempty set. Then one deduces from
(k1, . . . , ks) 6= (n1, . . . , ns) and from (2.10) the existence of at least one σ
such that the projection ofGn∩Ik onto the xσ-axis gives an interval of length
δk/2. It follows that kσ 6= nσ. Consequently, we have either nσ = kσ + 1
or nσ = kσ − 1. There exists a subset Ln,k (of dimension s − 1) such that
either

Gn ∩ Ik = [nσ;nσ + δk/2]× Ln,k with kσ = nσ − 1(8.6)

or

Gn ∩ Ik = [nσ + 1− δk/2;nσ + 1]× Ln,k with kσ = nσ + 1.(8.7)

Any point x = (x1, . . . , xs) from the domain of integration in Jn,k satisfies
ni ≤ xi ≤ ni+1 for i = 1, . . . , s. Moreover ki ∈ {ni−1, ni, ni+1} for each i.
Hence we get the inequalites

ki − 1 ≤ ni ≤ xi ≤ ni + 1 = (ni − 1) + 2 ≤ ki + 2 (i = 1, . . . , s),(8.8)
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which allow us (by application of (2.4), (2.5), and (2.7)) to estimate |f(x)−
Yk(x)| for x ∈ Gn ∩ Ik:

|Zk,m(x)| ≤ |Yk(x)| ≤ 1 + |f(x)| (x ∈ Gn ∩ Ik).(8.9)

First assume that (8.6) holds. Applying (8.9) and (8.8), we then have\
Gn∩Ik

ω(x)|Zk,m(x)| dx =

nσ+δk/2\
nσ

\
Ln,k

ω(x)|Zk,m(x)| dx

≤

nσ+δk/2\
nσ

\
Ln,k

ω(x)(1 + |f(x)|) dx

≤

nσ+δk/2\
nσ

\
Ln,k

sup
kτ−1≤xτ≤kτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + |f(x)|) dx

≤

nσ+δk/2\
nσ

sup
kτ−1≤xτ≤kτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + |f(x)|) dxσ <
εk
8
.

Here the upper bound εk/8 follows from (2.9) (by setting nσ = kσ + 1),
whereas the last but one term results from Ln,k ⊂ Gn, ni ≤ xi ≤ ni + 1
and dx = dx1 · · · dxs. When (8.7) holds, one gets the same upper bound by
using similar arguments:\
Gn∩Ik

ω(x)|Zk,m(x)| dx

≤
nσ+1\

nσ+1−δk/2

sup
kτ−1≤xτ≤kτ+2

1≤τ≤s
τ 6=σ

ω(x)(1 + |f(x)|) dxσ <
εk
8

with nσ = kσ − 1. Altogether we have proved that\
Gn∩Ik

ω(x)|Zk,m(x)| dx ≤
εk
8

(8.10)

for k = (k1, . . . , ks) with ni−1 ≤ ki ≤ ni+1 and (k1, . . . , ks) 6= (n1, . . . , ns).
Next we treat the domain Gn \ Ik from the second integral of Jn,k. For this
purpose we need some preliminaries. Let x ∈ Gn \ Ik. Then using x 6∈ Ik,
(2.7), (2.3), (2.6), and Lemma 2, one gets
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|Zk,m(x)| = |Yk(x)gk,m(x)| =
∣

∣

∣

N
∑

ν1=0

· · ·
N
∑

νs=0

ak,νx
ν1
1 · · ·x

νs
s gk,m(x)

∣

∣

∣(8.11)

≤
N
∑

ν1=0

· · ·
N
∑

νs=0

|yk,ν,m(x)| ≤
N
∑

ν1=0

· · ·
N
∑

νs=0

εk
8(N + 1)s

=
εk
8

for all m ≥ m1 and x 6∈ Ik. We recall that the degree N and m1 depend on
f , ε and k1, . . . , ks. It follows that\

Gn\Ik

ω(x)|Zk,m(x)| dx ≤
\

Gn\Ik

ω(x)
εk
8
dx ≤

εk
8

\
Rs

ω(x) dx =
εk
8
.

Together with (8.10), this shows that Jn,k < εk/8+εk/8 = εk/4. Then from
(8.5) we get

I2 <
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1
∑

k1=n1−1

· · ·
ns+1
∑

ks=ns−1
(k1,...,ks) 6=(n1,...,ns)

εk
4

<
1

4

∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1
∑

k1=n1−1

· · ·
ns+1
∑

ks=ns−1

ε

9s · 2|k1|+···+|ks|

=
1

4

∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

ε

3s · 2|n1|+···+|ns|
=
ε

4
(by (2.2)).

That gives

Lemma 10. We have

I2 =
∑

−∞<n1<∞

. . .
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)

×
∑

−1≤i1,...,is≤+1
i21+...+i

2
s>0

|Zn1+i1,...,ns+is,m(x)| dx <
ε

4
.

c) An upper bound for I3. The coordinates xσ of any point x ∈ Gn satisfy
nσ ≤ xσ ≤ nσ+1 for σ = 1, . . . , s. From the hypotheses kσ 6= nσ−1, nσ, nσ+1
(σ = 1, . . . , s) for kσ in I3 we get

• when kσ ≤ nσ − 2: xσ ≥ nσ = (nσ − 2) + 2 ≥ kσ + 2;

• when kσ ≥ nσ + 2: xσ ≤ nσ + 1 = (nσ + 2)− 1 ≤ kσ − 1.

Consequently, x 6∈ Ik in each case, which follows immediately from (2.10).
Again we may apply (8.11), (2.2), and (1.1):
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I3 =
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)

×
∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞
kσ 6=nσ−1,nσ,nσ+1
(σ=1,...,s)

|Zk,m(x)| dx

≤
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)

×
∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞

εk
8
dx

≤
ε

8

∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x) dx

=
ε

8

\
Rs

ω(x) dx =
ε

8
.

Lemma 11. We have

I3 =
∑

−∞<n1<∞

· · ·
∑

−∞<ns<∞

n1+1\
n1

· · ·
ns+1\
ns

ω(x)

×
∑

−∞<k1<∞

· · ·
∑

−∞<ks<∞
kσ 6=nσ−1,nσ,nσ+1
(σ=1,...,s)

|Zk,m(x)| dx ≤
ε

8
.

Collecting together the results from Lemmas 9–11, one finally has

‖f −H‖ω = I1 + I2 + I3 ≤ ε/8 + ε/4 + ε/8 = ε/2 < ε.

This completes the proof of Theorem 1.
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Basel, 1992.

[11] M. A. Neumark, Normierte Algebren, Harri Deutsch, Thun–Frankfurt am Main,
1990.

[12] M. B. Pour-El, Abstract computability and its relation to the general purpose analog
computer (some connections between logic, differential equations, and analog com-
puters), Trans. Amer. Math. Soc. 199 (1974), 1–28.

[13] L. A. Rubel, A universal differential equation, Bull. Amer. Math. Soc. 4 (1981),
345–349.

[14] —, Uniform approximation by rational functions which all satisfy the same algebraic
differential equation, J. Approx. Theory 84 (1996), 123–128.

[15] C. E. Shannon, Mathematical theory of the differential analyzer , J. Math. Phys. 20
(1941), 337–354.

Institut für Mathematik
Universität Hannover
Welfengarten 1
D-30167 Hannover, Germany
E-mail: elsner@math.uni-hannover.de

Received 30 July 2004;

revised 2 June 2005 (4476)


