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STRONGLY BOUNDED AUTOMORPHISM GROUPS

BY

A. IVANOV (Wroctaw)

Abstract. A group G is strongly bounded if every isometric action of G on a metric
space has bounded orbits. We show that the automorphism groups of typical countable
structures with the small index property are strongly bounded. In particular we show that
this is the case when G is the automorphism group of the countable universal locally finite
extension of a periodic abelian group.

0. Introduction. A group G has property (FH) if every affine isometric
action of G on a Hilbert space has a fixed point [7]. For countable groups
property (FH) is equivalent to Kazhdan’s property (T) (see [7]). Recent
papers [1] and [4] contain uncountable examples of (FH)-groups: Sym(w)
and HY, where H is a non-trivial finite perfect group. The latter example was
found by Koppelberg and Tits in [13] as the first example of an uncountable
group with Serre’s property (FA) (that any action on a simplicial tree without
inversions has fixed points). Now it is known that (FH) implies (FA) (see [7]).
On the other hand, property (FA) implies the following one: A group G has
cofinality > w if G cannot be presented as the union of a strictly increasing
chain {H,, : n € w} of proper subgroups. We now define the main notion of
the paper.

DEFINITION 1 ([1], [4]). A group G is Cayley bounded if for every gen-
erating subset U C G there exists n € w such that every element of GG is a
product of n elements of U UU "1 U {1}. A group is strongly bounded if it is
Cayley bounded and has cofinality > w.

It is shown in [4] that strongly bounded groups have property (FH).
Moreover G is strongly bounded if and only if every isometric action of G
on a metric space has bounded orbits ([4, Proposition 2.4]). The groups
Sym(w) and H*, where H is a non-trivial finite perfect group, are strongly
bounded. This fact for the latter group has been proved in [4] and thus
H“ has become the first example answering the question from [7] whether
uncountable (FH)-groups exist.

2000 Mathematics Subject Classification: 20F50, 03C60, 20E08.
Key words and phrases: strongly bounded group, generic automorphism, universal
locally finite group.

[57]



58 A. IVANOV

The case of Sym(w) has been considered in [1]. The proof there is based
on some ideas from [16]. In our paper we suggest another approach, which
covers many cases of this kind. We prove that if a countable structure M
has an amalgamation base (see [10]), then Aut(M) has a property very close
to strong boundedness. As a corollary we will see that many well known
automorphism groups are strongly bounded. We also extend the number of
examples by the automorphism group of the countable universal locally finite
group and some related groups.

The property which we study is slightly technical and is a topological
version of the condition arising in the following (very useful) characterization
of strongly bounded groups, which has been proved in [4, Proposition 2.7]:

A group G is strongly bounded if and only if for every presenta-
tion of G as G = |J X,, for an increasing sequence X,,, n € w, with
{1y U X, 1UX,- X, C X, there is a number n such that X,, = G.

Further definitions are given in the next section.

When the paper was submitted, Y. de Cornulier informed the author
that independently A. Kechris and Ch. Rosendal had obtained in [12] a
stronger version of our Theorem 4. Using it they have proved that if G is
a closed oligomorphic subgroup of Sym(w) having ample generic elements,
then G is strongly bounded (Theorem 5.17 of [12]). This covers all pos-
sible oligomorphic applications of Theorem 4. Therefore we concentrate only
on non-oligomorphic examples omitting the cases of the random graph and
w-categorical w-stable structures.

The author is grateful to Y. de Cornulier for his remarks and for pointing
out a mistake in the first version of the paper, and to A. Kechris for comments
concerning further investigations in the area.

The research is supported by KBN grants 2 PO3A 007 19 and 1 PO3A 025
28. The research was partially done when the author held a visiting position
at the Institute of Mathematics, Polish Academy of Sciences.

NOTATION. We denote by w the set of all non-negative integer numbers;
Z(m) = the cyclic group consisting of m elements.

1. Generic automorphisms and strong boundedness. For a count-
able structure M we study Aut(M) as a closed subgroup of Sym(w). Here we
consider Sym(w) as a complete metric space by defining d(g,h) = > {27 :
g(n) # h(n) or g=1(n) # h=%(n)}. It is well known that all closed subgroups
of Sym(w) are of the form Aut(M) for appropriate structures M defined
on w.

DEFINITION 2 (see [10]). An Aut(M)-invariant set I" of finite subsets
of M (including 0) is an amalgamation base if:
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e any tuple @ of finite maps extendible to a tuple of automorphisms has
an extension to a tuple of automorphisms inducing a tuple of permu-
tations on some A € I' with Dom(a@) C A4;

o for any A, B,C € I' with A C B, A C C there exist v € Aut(M/A)
and D € I' containing C' U y(B) such that whenever o, 8 € Aut(M)
induce permutations of (B) and C which agree on A then there exists
d € Aut(M) extending both a|y(B) and |C and inducing a permuta-
tion on D.

Theorems 2.9 and 5.3 of [10] prove that if M has an amalgamation base
as above, then M has the small index property: any subgroup of Aut(M) of
index less than the continuum is open.

It is worth noting that in [10] the corresponding definition is slightly
wider. Nevertheless the formulation given in Definition 2 holds for all ex-
amples studied in [10]. We use this form because it allows us to find easily
some additional properties of Aut(M). We now describe this in detail.

A tuple § = (g1,...,9n) € Aut(M)™ is I'-generic if the following two
conditions hold:

(a) for any A € I' the set of pointwise stabilizers {Aut(M/B) : ACBe I’
and g;(B) = B for all i < n} is a base of open neighbourhoods of 1
in Aut(M);

(b) for any g-invariant A € I' and any B € I extending A, if h is a
tuple of permutations of B which agree with § on A, then there is
o € Aut(M/A) such that g* extends h.

By Proposition 2.3 of [10], if two I'-generic tuples g and g’ induce the same
permutation of a set B € I', then there is & € Aut(M/B) conjugating g
to g'. In particular we see that all I'-generic tuples are conjugate (because
we assume ) € I).

Theorem 2.9 of [10] states that if I" is an amalgamation base of M, then
the set of all I'-generic tuples from (Aut(M))"™ is comeagre in (Aut(M))" in
the product topology (in [10] the proof is given for w-categorical structures,
but it works in general; see [2]).

As a result we obtain the following statement (probably folklore).

PROPOSITION 3. If a countable structure M has an amalgamation base I’
then for any n the space (Aut(M))™ has generic tuples (its Aut(M)-orbit in
the space (Aut(M))™ under the conjugacy action on coordinates is comeagre)
and they are exactly the I'-generic tuples.

We are ready to formulate the main result of this section (1).

(*) Tt is shown in [12] that the statement of the theorem holds under the weaker
assumption that for every n the space (Aut(M))™ has a generic tuple.
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THEOREM 4. Assume that M is countably infinite and has an amalga-
mation base. Let Xg C X1 C--- C X; C --- be an increasing sequence such
that Aut(M) = J X; and for each n, {1} U X, ' U X, - X,, C X;41 and X,
does not contain an open subgroup. Then X,, = Aut(M) for some n.

Proof. Let G = Aut(M). Let I" be an amalgamation base of M. Assume
that the sequence X, is strictly increasing. If for some tuple @ € M and some
number n € w the set Gz N X, is comeagre in the stabilizer Gz = Aut(M/a)
(thus has the Baire property and is non-meagre in G3), then Pettis’ theorem
(|11, Theorem 9.10]) implies that the set (Gz N X,) - (Gz N X,,)~! contains
an open neighbourhood of 1. Since X, - X, - X,jl C Xj42, we see that
Xn+2NGg = Gg, thus X, 42 contains an open subgroup of GG, a contradiction.

As the union of countably many meagre sets is meagre, we may assume
that no X,, is meagre in G. Now for any @ and n some gGz N X, is not
meagre in gGg; thus Gg N X, 12 is not meagre in Gz. Hence we may assume
that Gz N X, is not meagre in G for any @ and n.

Our further argument is based on the proof of Theorem 6.1 of [10]. We
build a binary tree {gs : s € 2<¥} C G such that for any s € 2<% we
have gso € X|s, gs1 & X|s|+2 and the tuple (gp, gs(1),---,9s) is a ['-generic
tuple of automorphisms. Then for every s € 2<% we define 75 € G so
that ¢gi' = ¢gJ3° = g5 (at every step existence of such v, will follow from
Proposition 2.3 of [10]).

We start our construction from any generic gy and 7y := idy. Enu-
merate M = {ag,...,an,...}. Assume that all s with |s| = n are already
defined. Let A = {ao, ..., an, 75 *(ao),...,7; "(an)}. Since (gg,gs1):-- - gs)
is a generic tuple of automorphisms, there is a finite B; C M such that
A C B and all gy, gs(1) - - - » gs belong to the G-stabilizer of the set Bs. By
the Kuratowski-Ulam Theorem the set C' = {g € G : (gp, gs(1),- - -+ s> 9) 8
I'-generic} is comeagre in G. Since G g, N X, is neither meagre nor comeagre,
there are gs0 € CNGp, N X, and gs1 € (CNGp,) \ Xpnt2. Since the tuples
(90> 9s(1)> - - - » Gs> gs0) and (gg, gs(1), - - - » gs> gs1) are generic and agree on B,
there is f € G'g, such that

(g®7 9s(1)y - - - 7987981)f = (9@793(1)7 ce. 7.957950)‘
Define 759 := s and vs1 := f - 7s.

By the choice of B for any o € 2¢ the sequence 74|, n € w, is a Cauchy
sequence. As a result it has a limit 7,. For ¢ # 7 with o|n = s0 and 7|n = sl
we have g)§ = gXt° = g} and ¢)7 = g);' = g5 (by the choice of f at every
step). Since gs0 € X, and gs1 € X, 10, we see that 7,7-! ¢ X,,. On the other
hand, as G = |J X,,, we may assume that X,,_o contains uncountably many
elements 5. Thus we may assume that v, and ~; as above are in X,,_o. This
together with the properties of the sequence X,, gives a contradiction with

the condition 7,7, ' € X,,. m
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2. Universal locally finite extensions of abelian groups. In 1959
Ph. Hall [6] discovered the countable universal locally finite group U. The
group has become an attractive object both for algebraists [8], [9] and logi-
cians [14], [15]. Below we give an extended version of the original definition.

Let A denote a countable periodic abelian group. A locally finite group
G is called a universal locally finite extension of A (see [9]) if A C Z(G)
and the following condition (A-injectivity) is satisfied: suppose A < B < D
with A C Z(D) and |D/A| < oo; then for any A-embedding ¢ : B — G
(¢(a) = a for a € A) there exists an A-embedding D — G which extends ¢.
It is known that such a group G is unique if |G| = w (see [9]); in this case it
is denoted by H(A). It is also known that any finite partial automorphism
fixing A pointwise extends to an inner automorphism of H(A).

The following theorem is the main point of this section. In the formu-
lation, we denote by Aut(H(A)/A) the set of all automorphisms of H(A)
which fix A pointwise.

THEOREM 5. The group Aut(H(A)/A) is strongly bounded.

2.1. Universal locally finite groups. The proof of Theorem 5 is based on
the following presentation of H(A). Let K4 be the isomorphism closure of
the class of all finite subgroups of H(A) in the language extended by symbols
for all elements of A (and denoted by L 4). The subgroups are considered as
partial models of L 4. Then K4 has the joint embedding property and the
amalgamation property; H(A) is the universal homogeneous structure for
K (see [9]).

We now describe the amalgamation in K4 (following Lemmas 2 and 3
of |9]); this will also be applied in the proof. Let L, K and £ = LN K be
structures from K 4. We may assume that they all have the same intersection
with A (otherwise extend the group, say L, to an appropriate subgroup of the
direct sum of L and A with L N A amalgamated). Let S be a left transversal
of F'in L and T be a left transversal of F in K. The permutation product of L
and K relative to S and T is the subgroup P < Sym(S x T x E) generated
by L and K which are considered as permutation groups on S x T'x F with
the following actions:

(s,t,e)l = (s',t,€/), where s-e-l=5""¢,

(s,t,e)k = (s,t',€¢'), where t-e-k=1t¢.

It is easy to see that P amalgamates L and K over E under their represen-
tations in P. Now the group H(A) is constructed by Fraissé’s procedure as
a tower of structures from Ky: G1 < --- < G, < ---. At every step the
group Gy1 is obtained from G, by amalgamation with some embedding
over A of a subgroup E < (G, into some structure from Ky.
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Let us verify that G := | J G; has the property in the definition of H(A).
If B is a subgroup of G :=JGi, A < B < D and |D/A]| is finite, then find
a finite Dy < D such that D is the direct sum of Dy and A with Dy N A
amalgamated. We may additionally assume that B is generated by Dy N B
and A. By the construction of G the group Dy is A-embeddable into G over
BN Dy. It is easy to see that the image o(Dyp) and A generate a subgroup
of H(A) which is B-isomorphic to D.

Proof of Theorem 5. The proof consists of two steps. The first one is the
claim that Aut(H(A)/A) has an amalgamation base. The second one is a
reduction of the statement of the theorem to Theorem 4.

First we prove that K4 (considered as the class of all subgroups of H(A))
is an amalgamation base. We want to verify the amalgamation property from
the definition of amalgamation bases and the property that any n-tuple @
of finite partial automorphisms extends to an n-tuple 7 of automorphisms
of some D € K4 (fixing D N A pointwise).

To see the latter we may assume that the tuple @ is defined on a subgroup
K of H(A). Then for such a pair (K, @), with K € K4, any Range(q;) is
a subgroup of K (where «; € @). Moreover defining @ on K N A to be the
identity we have

K N A= Range(a;) N A = Dom(a;) N A.

To find an appropriate pair (D,%) extending (K,@) we apply Lemma 1
from [6]: any isomorphism between two subgroups of K is realized by an
inner automorphism of Sym(K’) under the regular representation of K in
Sym(K'). Now the centralizer of K N A in Sym(K) becomes the required
extension D of K, where @ is extended to a tuple of automorphisms fixing
K N A pointwise.

Let us verify that the amalgamation property from the definition of amal-
gamation bases holds for K4. Let L, K and E = L N K be structures
from K 4. We assume that these groups have the same intersection with A
(otherwise extend the group, say L, to an appropriate subgroup of the direct
sum of L and A with L N A amalgamated). Let S be a left transvesal of E
in L and T be a left transversal of £/ in K. Let J be the permutation prod-
uct of L and K relative to S and T. We claim that taking an embedding of
J into H(A) over L and A we obtain the required (k') and the required
common extension D of L and v(K).

To see this let o € Aut(L), § € Aut(K) and let A € Aut(E) be induced
by both « and (. The groups (a) and () are homomorphic images of a
common finite group (), and o € Aut(L) and 8 € Aut(K). Then consider
the semidirect products L x (4) and K x (4). They have isomorphic subgroups
generated by E and (§). Since ¢ preserves E, we have L N (F,0) = E =
K N (E,). We now see that S is a left transversal of (F,d) in L x (J)
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and T is a left transversal of (E, ) in K x (0) respectively. Amalgamating

this diagram by the method described before the proof we obtain a common

extension J of L x (0) and K x(9), where both awon L and 3 on K are realized

by the inner automorphism induced by §. It is clear that .J is isomorphic to

the subgroup generated by L and K in J. Therefore the class K A is an

amalgamation base. Below we apply this for the second step of the proof.
We use some arguments similar to Theorem 1.3 of [2]. Let

G = Aut(H(A)/A) = | ] X,
IS

where Xo C X1 C --- is a chain of subsets of G satisfying de Cornulier’s
condition (as at the end of the Introduction). To apply Theorem 4 we only
need to show that for all natural numbers m, X, contains no open subgroups.
Suppose, to the contrary, that some X, contains an open subgroup L < G.
Then there is a finite subgroup F' < H(A) such that the pointwise stabilizer
G is a subgroup of L. Take F' < H(A) such that (F, F’) is isomorphic to
F ®rna F under an isomorphism fixing F' and mapping F’ onto another F.
Then F' and F’ are of the same isomorphism type over A in H(A) and
FNF' C A By increasing m if necessary we may assume that X,, contains
all automorphisms mapping F onto F’ and fixing A. Then G C X! -
Xm - Xm € Xinio and for any F” of the same G p-orbit with F’ over A we
similarly have Gpr C X;44.

Let o € G. Let 8 be an inner automorphism of H(A) such that g|r = a|f.
Then ~'a € Gp. Find a finite subgroup F” as above such that the element
of H(A) which induces (3, centralizes F” (apply universality of H(A)). Then
B€Gprand a € Xppyg - Xipya € Xinas. Hence G = Xp15. »

The restriction map Aut(H(A)) — Aut(A) is a surjective homomorphism
with the kernel Aut(H(A)/A). By Theorem 5 if Aut(H(A)) acts on a tree
T (resp. a Hilbert space H) by (affine) isometries, then TAut(H(4)/4) - ¢
(resp. HAWH(A)/A) - () and therefore Aut(H(A)) fixes a point if and only
if Aut(A) fixes a point on TAWHA/A) (pegp, HAUH(A)/A))  Ag a result we
have the following theorem.

THEOREM 6. Suppose that A is a countable periodic abelian group. Then
Aut(H(A)) has property (FA) (resp. (FH)) if and only if Aut(A) does. m

2.2. Strongly bounded automorphism groups of countable abelian p-groups.
Let A denote a countable periodic abelian group (as in Theorem 6). It is well
known that A decomposes into a direct sum Zp D,® Zp Uy, where each D),
is a direct sum of Priifer groups Z(p>) and each U, is a reduced p-group

(without divisible subgroups). Since each D, is a characteristic subgroup
of A, [],Aut(Dp) is a homomorphic image of Aut(A) (Chapter 16 of [5]).
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It is clear that Aut(A) has property (FH) (resp. (FA)) if and only if so do
the groups [, Aut(D,) and the corresponding kernel. In our next result we
strengthen Theorem 6 by reducing the problem if Aut(H (A)) satisfies (FH)
to the kernel.

To find amalgamation bases of abelian p-groups we shall use a fact which
can be deduced from the corresponding chapters of [5]; it is explicitly stated
in Theorem 1.2 of [3] describing abelian groups with quantifier elimination:

Let C be Z(p"), where n € (w\ {0}) U{oc}. Let B = @,_; C, where
| € wU {w}. Then any isomorphism between finite subgroups of B
extends to an automorphism of B.

For n = oo (this is the only case we are interested in) the group B is the
countable universal homogeneous structure with respect to the class L of
all finite subgroups. This means that L has the joint embedding property
and the amalgamation property (in the standard sense): the amalgamation
of groups H, K € L can be easily obtained by €D with K N H amalgamated.

THEOREM 7. Let Q be a set of prime numbers and f be a function Q —
(w\ {0}) U {oc}. Forp € Q let Ay(f) be the direct sum @ (Z(p'®)) of
pairwise isomorphic cyclic (or Prifer) groups and A(f) = @pEQ Ap(f).
Then the group Aut(A(f)) is strongly bounded.

Proof. The group Aut(A(f)) acts on the disjoint union A= Upeg Ap(f)-

We consider the set A as a structure with unary predicates for all A,(f),
where each A,(f) is considered as an abelian group. The automorphism
group of that structure coincides with Aut(A(f)).

Let K be the class of all substructures of A of the form Ky U---UK,,
(considered as tuples (Kp,,...,Kp,)), where {p1,...,p} € @Q and each K,
is a finite subgroup of A, (f). We want to show that K is an amalgamation
base of A. R

We assume that any partial automorphism of A is defined on a disjoint
union of subgroups of appropriate A,(f)’s (it can be made so). Then for
every pair (K,a), where K € K, any Range(q;) consists of a collection of
subgroups of groups K, from K (where a; € @). The condition that the set
of all pairs (D, @), where D € K and @ is an n-tuple of automorphisms of D,
is cofinal in the set of n-tuples of partial automorphisms easily follows from
the fact stated before the theorem.

The amalgamation property from the definition of amalgamation bases
can be shown as follows. For finite H, K € A,(f) take the direct sum H®pnx
K of H and K with HNK amalgamated. If « € Aut(H), 5 € Aut(K) induce
the same automorphism v of H N K, then define 6((h, k)) := (a(h), 5(k)) for
(h,k) € H®pgnk K. It is easily seen that 0 is an automorphism. Extending
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this procedure to tuples we see that the class of substructures K of A as
above is an amalgamation base.

We now apply this to the statement of the theorem. The application is
basically the same as in the proof of Theorem 5. =

Let A be a countable periodic abelian group and » . D, ® >, U, be a
decomposition of A into a direct sum of Priifer groups Z(p>) (occurring
in D) and reduced p-groups U,. As we have already noted, Hp Aut(D,) is

a homomorphic image of Aut(A). In the following proposition we consider
the case of [, Aut(Dp).

PROPOSITION 8. The group Hp Aut(D,) has either property (FH), (FA),
or strong boundedness if and only if every D) is an infinite direct sum of
Priifer p-groups.

Proof. Assume that there is p such that D), is a finite direct sum of Priifer
p-groups. Then it is well known that Aut(D,) is of the form GL,(Z,), where
Zy is the ring of p-adic integers. By [5, Vol. 2, p. 318] the group of units of
Zyp is isomorphic to Z(p — 1) x Jp, where J), is the additive group of p-adic
integers. Consider J,, as a subgroup of the vector space Q, over Q. Since
dim(Q,) = 2*, the group J, embeds into R. This means that there exists a
non-trivial homomorphism from Aut(D,) into Jp; it can be realized by the
determinant (considered as a homomorphism onto the group of units of Z,)
and the projection onto J,,. To see that properties (FA), (FH), and strong
boundedness do not hold, notice that rank(.J,) = 2 and the group J, can
be expressed as the union of a countable chain of proper subgroups (of car-
dinality 2). Thus the cofinality of Aut(D,) and consequently [], Aut(D,)
is not greater than w.

For the other direction it is enough to apply Theorem 7 to [], Aut(Dp)
with infinite-dimensional groups D,,. =

We finish this section by a further remark concerning properties (FH) and
(FA). Let p be a prime number. We consider U,,. Let 7 be the p-length of U,,.
It is defined to be the minimal ordinal o with p?U, = 0, where pOUp = U,
p’ U, = p(p?U,) and for limit ordinals g, p2U, = (\{p"U, : v < o} (see [5]).

Let P, := p?U,[p], 0 < 7. Consider the natural homomorphism (Sec-
tion 114 of [5])

0 Aut(U,) — [[ Aut(Ps/Poryr).
o<T
Since U, is countable the homomorphism is onto (Theorem 114.2 of [5]). The
quotient P,/ Py is a vector space over GF(p). If its dimension is finite, we
have the natural homomorphism (with vanishing SL) from Aut(P,/P,41)
onto the multiplicative group GF(p)*.
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PROPOSITION 9. If Aut(Up) has property (FA) (resp. (FH)), then the
number of finite-dimensional spaces P,/P,11 is finite.

Proof. If this number is infinite, by the above we have a homomorphism
from Aut(Up) onto (GF(p)*)¥. By Theorem 36.1 of [5] a basic subgroup
(see [5]) of (GF(p)*)“ is an endomorphic image of the group. As a result
we have a homomorphism onto a direct sum A of infinitely many copies of a
finite cyclic group. Since A has cofinality < w, the group Aut(U,) does not
have (FA). =

3. Free groups. We now give another application of Theorem 4. Con-
sider the case of the automorphism group of the free group F, of rank w. Let
B consist of all subgroups of F, generated by finite subsets of bases of F,,,.
It is clear that B is Aut(F,)-invariant and the pointwise stabilizer of any
member of B is clopen in Aut(F,,). It is shown in [2] that:

(a) any tuple @ of finite maps extendible to a tuple of automorphisms of
F,, has an extension to a tuple of automorphisms inducing a tuple of
permutations on some A € B with Dom(a@) C A;

(b) for any A, B,C € B with A < B, A < C, there exist v € Aut(F,/A)
and some D € B containing C' U ~(B) such that whenever «, 3 €
Aut(F,,) induce permutations of v(B) and C which agree on A, then
there exists § € Aut(F,,) extending both «a|y(B) and §|C and induc-
ing a permutation on D.

Although B consists of infinite subgroups, the pointwise stabilizer of each
F € B coincides with the stabilizer of some tuple @ € F. This allows us to
carry out all standard arguments. Lemma 1.2 of [2] states that the set of all
B-generic n-tuples (which are defined exactly as in Section 1) is comeagre
in Aut(F,). As in Section 1 we deduce that (Aut(F,))" has generic tuples
of automorphisms and the set of generic tuples coincides with the set of
B-generic tuples. Applying Theorem 4 and arguments for Theorem 5 (as
well as Theorem 1.3 of [2]) we obtain the following theorem.

THEOREM 10. The group Aut(F,,) is strongly bounded.
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