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THE EULER AND HELMHOLTZ OPERATORS

ON FIBERED MANIFOLDS WITH ORIENTED BASES

BY

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. We study naturality of the Euler and Helmholtz operators arising in the
variational calculus in fibered manifolds with oriented bases.

Given two fibered manifolds Z1→M and Z2→M over the same baseM ,
we denote the space of all base preserving fibered manifold morphisms of Z1
into Z2 by C

∞
M (Z1, Z2).

In [1], I. Kolář studied the Euler operator

E : C∞M (J
sY,
∧m

T ∗M)→ C∞Y (J
2sY, V ∗Y ⊗

∧m
T ∗M)

for fibered manifolds p : Y → M . He deduced that all natural operators of
this type are of the form cE, c ∈ R, provided m is sufficiently large.
In [3], Kolář and Vitolo studied the Helmholtz operator

H : C∞Y (J
sY, V ∗Y ⊗

∧m
T ∗M)→ C∞JsY (J

2sY, V ∗JsY ⊗ V ∗Y ⊗
∧m

T ∗M)

for fibered manifolds p : Y → M . They deduced that all natural operators
of this type are of the form cH, c ∈ R, provided s = 1, 2. In [4], we extended
this result to all s.
In the present paper, for a fibered manifold p : Y → M with oriented

basis, we study the naturality of the Euler operator

Ẽ : Vol+(M)× C∞(JsY,R)→ C∞Y (J
2sY, V ∗Y )

given by Ẽ(η, λ)⊗ η = E(λ⊗ η) for any η ∈ Vol+(M) and λ ∈ C∞(JsY,R),
where Vol+(M) is the set of all positive volume forms on M .
We also study, for fibered manifolds p : Y →M with oriented bases, the

naturality of the Helmholtz operator

H̃ : Vol+(M)× C∞Y (J
sY, V ∗Y )→ C∞JsY (J

2sY, V ∗JsY ⊗ V ∗Y )

defined from H just as Ẽ from E.
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The first main result of the present paper is

Theorem 1. Let m,n, s be natural numbers. Any FM+m,n-natural π
2s
s -

local , regular operator

D : Vol+(M)× C∞(JsY,R)→ C∞Y (J
2sY, V ∗Y ),

R-linear in the second factor and homogeneous of weight 0 in the first factor ,

is of the form D = cẼ, c ∈ R.

Remark 1. FM+m,n denotes the category of all (m,n)-dimensional fiber-
ed manifolds with oriented bases and their fibered embeddings covering ori-
entation preserving embeddings. The FM+m,n-naturality of D means that
for any FM+m,n-map f : Y1 → Y2, any Lagrangians λ1 ∈ C

∞(JsY1,R)
and λ2 ∈ C

∞(JsY2,R) and any positive volume forms η1 ∈ Vol
+(M1) and

η2 ∈ Vol
+(M2) if λ1 and λ2 are f -related and η1 and η2 are f -related, then

D(η1, λ1) and D(η2, λ2) are f -related. The regularity means that D trans-
forms smoothly parametrized families of Lagrangians and volume forms into
smoothly parametrized families of respective morphisms. The locality means
that D(η, λ)u depends on germπ2ss (u)(λ) and germx(η) for any u ∈ J

2s
x Y ,

x ∈ M , where π2ss : J
2sY → JsY is the jet projection. The linearity in the

second factor means that D(η, λ) depends R-linearly on λ ∈ C∞(JsY,R)
for any fixed η ∈ Vol+(M). The homogeneity of weight 0 in the first factor
means that D(tη, λ) = D(η, λ) for t > 0.

Remark 2. Theorem 1 without the linearity assumption does not hold.
For, let h : R→ R be a non-constant function. Then the operator Ẽ[h](η, λ)

= (h ◦ λ ◦ π2ss )Ẽ(η, λ) is not linear in the second factor.

Remark 3. If C : C∞M (J
sY,
∧m

T ∗M)→ C∞Y (J
2sY, V ∗Y ⊗

∧m
T ∗M) is

a natural R-linear operator, then (similarly to Ẽ) one can define the corre-

sponding natural operator C̃ : Vol+(M) × C∞(JsY,R) → C∞Y (J
2sY, V ∗Y ),

R-linear in the second factor and homogeneous of weight zero in the first

factor. Using Theorem 1, we see that C̃ = cẼ, and we recover the above
mentioned result of [1] in the case of R-linear operators. The inverse con-

struction of C from C̃ is impossible because we have no canonical surjection
C∞M (J

sY,
∧m

T ∗M)→ Vol+(M)×C∞(JsY,R). So, Theorem 1 is not a con-
sequence of the result of [1].

The second main result of the present paper is

Theorem 2. Let m,n, s be natural numbers. Any FM+m,n-natural , π
2s
s -

local , regular operator

D : Vol+(M)× C∞Y (J
sY, V ∗Y )→ C∞JsY (J

2sY, V ∗JsY ⊗ V ∗Y ),

R-linear in the second factor and homogeneous with weight 0 in the first

factor , is of the form cH̃, c ∈ R.
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Remark 4. Theorem 2 without the assumption of linearity does not
hold. For, we have a natural operator H̃0 non-linear in the second factor
given by 〈H̃0(η,B)j2sx σ, v ⊗ w〉 = 〈Bjsxσ, Tπ

s
0(v)〉〈Bjsxσ, w〉 for j

2s
x σ ∈ J

2sY ,
x ∈M , v ∈ VjsxσJ

sY , w ∈ Vσ(x)Y .

Proof of Theorem 1. From now on R
m,n is the trivial bundle R

m × R
n

→ R
m and x1, . . . , xm, y1, . . . , yn are the usual coordinates on R

m,n.

Let D be an operator in question.

Since an FM+m,n-map (x, y − σ(x)) sends j2s0 (σ) to Θ = j2s0 (0) ∈
J2s0 (R

m,Rn) = J2s0 (R
m,n), J2s(Rm,n) is the FM+m,n-orbit of Θ. Therefore

D is uniquely determined by the evaluations

〈D(η, λ)Θ, v〉 ∈ R

for all λ ∈ C∞(Js(Rm,n),R), η ∈ Vol+(Rm) and v ∈ T0R
n = V(0,0)R

m,n.

Using the invariance of D with respect to FM+m,n-morphisms of the
form idRm ×ψ for linear ψ we see that D is uniquely determined by the
evaluations 〈

D(η, λ)Θ,
∂

∂y1 0

〉
∈ R

for all λ ∈ C∞(Js(Rm,n),R) and η ∈ Vol+(Rm).

Consider an arbitrary positive volume form η = f(x1, . . . , xm)dx1 ∧ · · ·
· · · ∧ dxm on R

m. There is a map F : Rm → R
m such that ∂

∂x1
F = f and

F (0)= 0. Then the locally defined FM+m,n-map (F, x
2, . . . , xm, y1, . . . , yn)−1

preserves Θ, ∂
∂y1 0

and sends germ0(d
mx) into germ0(η), where d

mx =

dx1 ∧ · · · ∧ dxm. Then by naturality D is uniquely determined by the eval-
uations 〈

D(dmx, λ)Θ,
∂

∂y1 0

〉
∈ R

for all λ ∈ C∞(Js(Rm,n),R).

By the R-linearity in the second factor of D and by Corollary 19.8 in [1]
we see that D is determined by the values

(1)

〈
D(dmx, xβM(yjα))Θ,

∂

∂y1 0

〉
,

where (xi, yjα) is the induced coordinate system on J
s(Rm,n) and M is an

arbitrary monomial in the yjα’s. (Here and below, α and β are arbitrary
m-tuples with |α| ≤ s and j = 1, . . . , n.)

Now, using the invariance of D with respect to the FM+m,n-maps

(x1, . . . , xm, τ1y1, . . . , τnyn)

for τ j > 0, we get the homogeneity condition which gives that (1) is zero if
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M(yjα) is not of the form y1α. So, D is determined by the values
〈
D(dmx, xβy1α)Θ,

∂

∂y1 0

〉

for α and β as above.

Next, using the invariance of D with respect to the FM+m,n-maps

(x1, . . . , τ ixi, . . . , xm, y1, . . . , yn)

for τ i > 0 and using the R-linearity in the second factor and the homogeneity
of weight 0 in the first factor of D we get

(2)

〈
D(dmx, xβy1α)Θ,

∂

∂y1 0

〉
= 0

if only βi − αi 6= 0 for some i = 1, . . . ,m (i.e. if α 6= β).

Let α = (α1, . . . , αm) be an m-tuple with |α| ≤ s.

Suppose αi1 > 0 for some i1 = 1, . . . ,m.

The locally defined FM+m,n-map ψ = (x
1, . . . , xm, y1 + xi1y1 . . . , yn)−1

preserves x1, . . . , xm, Θ and ∂
∂y1 0

and sends y1α to y
1
α + xi1y1α + y1α−1i1

(as y1α ◦ J
sψ−1(jsxoσ) = ∂α(σ

1 + xi1σ1)(xo) = ∂ασ
1(xo) + x

i1
o ∂ασ

1(xo) +

∂α−1i1σ
1(xo) = (y

1
α + xi1y1α + y1α−1i1 )(j

s
xo
σ) for jsxoσ ∈ JsRm,n, where

∂α is the iterated partial derivative with respect to the index α multiplied
by 1/α!). Then using the invariance of D with respect to ψ, from

〈
D(dmx, xα−11y1α)Θ,

∂

∂y1 0

〉
= 0

(see (2)) we see that
〈
D(dmx, xαy1α)Θ,

∂

∂y1 0

〉
= −

〈
D(dmx, xα−1i1y1α−1i1 )Θ,

∂

∂y1 0

〉
.

Continuing this process we see that
〈
D(dmx, xαy1α)Θ,

∂

∂y1 0

〉
= (−1)|α|

〈
D(dmx, y1(0))Θ,

∂

∂y1 0

〉
.

Summing up, D is determined by the value
〈
D(dmx, y1(0))Θ,

∂

∂y1 0

〉
∈ R.

Thus the vector space of all D in question is of dimension less than or equal
to 1. Hence D = cẼ for some c ∈ R.

Proof of Theorem 2. Let D be an operator in question. Let Θ be as in
the proof of Theorem 1.
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As in that proof, D is uniquely determined by
〈
D(η,B)Θ,

d

dt0
(tjs0(g(x), 0, . . . , 0))⊗

∂

∂y2 0

〉
∈ R

for all B ∈ C∞
Rm,n
(Js(Rm,n), V ∗Rm,n), η ∈ Vol+(Rm) and g : Rm → R.

Using the invariance of D with respect to the FM+m,n-maps (x
1, . . . , xm,

y1+g(x)y1, y2, . . . , yn) preserving Θ we find thatD is uniquely determined by
〈
D(η,B)Θ,

d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
∈ R

for all B ∈ C∞
Rm,n
(Js(Rm,n), V ∗Rm,n).

Then similarly to the proof of Theorem 1 (using FM+m,n-naturality), D
is uniquely determined by

〈
D(dmx,B)Θ,

d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
∈ R

for all B as above.

Let B ∈ C∞
Rm,n
(Js(Rm,n), V ∗Rm,n). Using the invariance of D with re-

spect to the FM+m,n-maps ψτ = (x
1, . . . , xm, (1/τ1)y1, . . . , (1/τn)yn) for

τ j 6= 0 we get the homogeneity condition
〈
D(dmx, (ψτ )∗B)Θ,

d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

= τ1τ2
〈
D(dmx,B)Θ,

d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

for τ = (τ1, . . . , τn). Then by the second factor linearity of D and by Corol-
lary 19.8 in [2] of the Peetre theorem,

〈
D(dmx,B)Θ,

d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

is determined by the values
〈
D(dmx, xβy2αdy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
,

〈
D(dmx, xβy1αdy

2)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

for all m-tuples α and β with |α| ≤ s.

Then by the invariance of D with respect to the FM+m,n-maps

(τ1x1, . . . , τmxm, y1, . . . , yn)
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for τ i > 0 and the first factor 0-weight homogeneity of D we get

(3)

〈
D(dmx, xβy2αdy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

=

〈
D(dmx, xβy1αdy

2)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
= 0

if only β 6= α.
Suppose α = (α1, . . . , αm) is an m-tuple with |α| ≤ s and αi 6= 0

for some i. Then using the invariance of D with respect to the locally
defined FM+m,n-map ψ = (x

1, . . . , xm, y1, y2 + xiy2, . . . , yn)−1 preserving

x1, . . . , xm, y1, Θ, js0(1, 0, . . . , 0) and
∂
∂y2 0
and sending y2α to y

2
α + x

iy2α +

y2α−1i , from〈
D(dmx, xα−1iy2αdy

1)Θ,
d

dt 0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
= 0

(see (3)) we deduce that
〈
D(dmx, xαy2αdy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

= −

〈
D(dmx, xα−1iy2α−1idy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
.

Then for any m-tuple α with |α| ≤ s we have
〈
D(dmx, xαy2αdy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

= (−1)|α|
〈
D(dmx, y2(0)dy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
.

By the same arguments (since ψ sends dy2 to dy
2 + xidy2), from

〈
D(dmx, xα−1iy1αdy

2)Θ,
d

dt 0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
= 0

we obtain〈
D(dmx, xαy1αdy

2)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
= 0

if α 6= (0).
Using the invariance of D with respect to the local FM+m,n-map

(x1, . . . , xm, y1 + y1y2, . . . , yn)−1

preserving Θ, js0(1, 0, . . . , 0) and
∂
∂y2 0
, from

〈
D(dmx, dy1)Θ,

d

dt 0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
= 0
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we deduce that〈
D(dmx, y2(0)dy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉

= −

〈
D(dmx, y1(0)dy

2)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
.

Thus D is uniquely determined by
〈
D(dmx, y2(0)dy

1)Θ,
d

dt0
(tjs0(1, 0, . . . , 0))⊗

∂

∂y2 0

〉
∈ R.

Therefore the vector space of all D in question is of dimension less than or
equal to 1. Hence D = cH̃ for some c ∈ R.

REFERENCES
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