COLLOQUIUM MATHEMATICUM

CYCLES OF DISTANCE-DECREASING MAPPINGS IN THE RING OF n-ADIC INTEGERS

BY
V. I. SUSHCHANSKI (Gliwice), E. MOĆKO (Gliwice) and V. V. NEKRASHEVYCH (College Station, TX)

Abstract

We give a description of possible sets of cycle lengths for distance-decreasing maps and isometries of the ring of n-adic integers.

1. Introduction. Recall that a subset $\left\{x_{0}, \ldots, x_{n-1}\right\}$ of a set X is called a cycle of the mapping $f: X \rightarrow X$ if $x_{i}^{f}=x_{i+1}$ for $0 \leq i \leq n-2$ and $x_{n-1}^{f}=x_{0}$. The number n is called the length of the cycle and the elements x_{i} are said to be cyclic of order n for f. We denote by $\operatorname{Cycl}(f)$ the set of lengths of all cycles of the mapping f. Let Σ be some class of mappings of the set X. The main problems concerning the cyclic structure of the mappings from Σ are the following:
(i) What positive integers are lengths of cycles of mappings from the class Σ ?
(ii) For which sets A of positive integers does there exist a mapping $f \in \Sigma$ such that $A=\operatorname{Cycl}(f) ?$

The class Σ can be defined using different conditions (topological, metrical, algebraic, etc.). Many authors studied the class of polynomial mappings over different rings. The main results in this direction are collected in the remarkable monograph of W. Narkiewicz [6]. T. Pezda [8] has studied the orders of cyclic elements for polynomial mappings over discrete valuation rings of zero characteristic and finite residual fields. He has given a complete answer to question (i) for the ring \mathbb{Z}_{p} of p-adic integers. Namely, he showed that if $p \neq 2,3$ then an integer n is the length of a polynomial cycle if and only if $n=a b$, where $1 \leq a \leq p$ and $b \mid p-1$; in the cases $p=2,3$ additionally cycles of length p^{2} occur.

Every polynomial mapping $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a distance-decreasing mapping (in the sense of $[1, \mathrm{p} .152]$) of the metric space \mathbb{Z}_{p} with the natural metric

[^0]$$
\varrho(u, v)=v_{p}(u-v)
$$
where v_{p} is the p-adic valuation (see [7, p. 328]). In other words, if $f: \mathbb{Z}_{p} \rightarrow$ \mathbb{Z}_{p} is a polynomial, then for any $x, y \in \mathbb{Z}_{p}$ we have
$$
\varrho\left(x^{f}, y^{f}\right) \leq \varrho(x, y)
$$

Let \mathbb{Z}_{n} be the ring of n-adic integers for $n>1$, i.e., the completion of the ring \mathbb{Z} with respect to the metric

$$
\varrho(u, v)=n^{-k(u-v)}
$$

where $k(x)$ is the maximal positive integer such that $n^{k(x)} \mid x$.
The class $H\left(\mathbb{Z}_{n}\right)$ of all distance-decreasing mappings over \mathbb{Z}_{n} is larger than the class of polynomial mappings and contains the class Is $\left(\mathbb{Z}_{n}\right)$ of all isometries of the metric space \mathbb{Z}_{n}. We will give complete answers to questions (i) and (ii) for the class $H\left(\mathbb{Z}_{n}\right)$.

We denote by E_{n} the set of all positive integers with all prime factors not greater than n.

The aim of this work is to prove the following statements.
Theorem 1. For both semigroups $\Sigma=\operatorname{Is}\left(\mathbb{Z}_{n}\right)$ and $\Sigma=H\left(\mathbb{Z}_{n}\right)$, a number l is the length of some f-cycle, where $f \in \Sigma$, if and only if $l \in E_{n}$.

Theorem 2. For any subset $A \subset E_{n}$ there exists a mapping $f \in \operatorname{Is}\left(\mathbb{Z}_{n}\right)$ $\subset H\left(\mathbb{Z}_{n}\right)$ such that $\operatorname{Cycl}(f)=A$.

The results of this paper were announced in [5].
2. Preliminaries. The wreath product of a finite or infinite sequence $\left(P_{1}, M_{1}\right),\left(P_{2}, M_{2}\right), \ldots$ of transformation semigroups (see [3, p. 75], [4, p. 276]) is defined as the semigroup of all transformations t of the set $M=\prod_{i} M_{i}$, whose action on any element $\bar{x}=\left(x_{1}, x_{2}, \ldots\right) \in M$ satisfies the following conditions:
(i) for every i the i th coordinate y_{i} of the sequence $\bar{y}=(\bar{x})^{t}$ depends only on the first coordinates x_{1}, \ldots, x_{i} of \bar{x} (and on t);
(ii) for any fixed sequence $x_{1}^{0}, x_{2}^{0}, \ldots, x_{i-1}^{0}$, the transformation $x_{i} \mapsto y_{i}$ of the set M_{i}, defined by t, belongs to the semigroup P_{i}.

We denote the wreath product of a finite or infinite sequence $\left(P_{1}, M_{1}\right)$, $\left(P_{2}, M_{2}\right), \ldots$ of semigroups by $\imath_{i=1}^{n} P_{i}$, where n is a positive integer or the symbol ∞ respectively.

It follows from the definition that every transformation from $\imath_{i=1}^{\infty} P_{i}$ is uniquely determined by an infinite tuple of the form

$$
\begin{equation*}
u=\left[t_{1}, t_{2}\left(x_{1}\right), t_{3}\left(x_{1}, x_{2}\right), \ldots\right] \tag{1}
\end{equation*}
$$

where $t_{1} \in P_{1}$ and $t_{i}\left(x_{1}, \ldots, x_{i-1}\right) \in P_{i}^{M_{1} \times \cdots \times M_{i-1}}$ for $i=2,3, \ldots$ For finitely iterated wreath products such tuples are finite.

The wreath product of the sequence $(P, M),(P, M), \ldots$ is called the (finite or infinite) wreath power of the semigroup (P, M).

Following the pioneering work of L. Kaluzhnin [2] we call a tuple (1) a (finite or infinite) tableau. Tableau (1) acts on an element $\bar{m}=\left(m_{1}, m_{2}, \ldots\right)$ of the set M by the rule

$$
\begin{equation*}
\bar{m}^{u}=\left(m_{1}^{t_{1}}, m_{2}^{t_{2}\left(m_{1}\right)}, m_{3}^{t_{3}\left(m_{1}, m_{2}\right)}, \ldots\right) \tag{2}
\end{equation*}
$$

If all $\left(P_{i}, M_{i}\right)$ are permutation groups, then the semigroup ${v_{i=1}^{\infty}}^{\infty} P_{i}$ is also a permutation group. If for all i the semigroup P_{i} is a symmetric transformation semigroup of the set M_{i} then condition (ii) from the definition of the wreath product holds automatically. Hence, the wreath product of an infinite sequence of symmetric semigroups (resp. symmetric groups) of sets M_{1}, M_{2}, \ldots is the semigroup of all transformations (resp. the group of all permutations) of the set $M=\prod_{i=1}^{\infty} M_{i}$, satisfying only condition (i) of the definition of the wreath product. It is possible to characterize the iterated wreath products $\chi_{i=1}^{\infty} S\left(M_{i}\right)$ as the isometry groups of some Baire metric spaces [9].

The canonical form of an n-adic number a is an infinite sequence $x_{1} x_{2} \ldots$, where $x_{i} \in\{0,1, \ldots, n-1\}$, such that $a=x_{1}+x_{2} n+x_{3} n^{2}+\cdots$.

Let $X=\{0,1, \ldots, n-1\}$, where $n \geq 2$. We consider the space X^{ω} of all infinite sequences (words) $x_{1} x_{2} \ldots$ over the alphabet X. We identify every sequence $w=x_{1} x_{2} \ldots \in X^{\omega}$ with the n-adic number having the canonical expansion w, i.e., with the number $\Phi(w)=x_{1}+x_{2} n+x_{3} n^{2}+\cdots \in \mathbb{Z}_{n}$.

We also consider the set X^{*} of finite words over the alphabet X, including the empty word \emptyset.

If $u=x_{1} \ldots x_{k} \in X^{*}$ is a finite word and $v=x_{k+1} x_{k+2} \ldots \in X^{\omega}$ is an infinite word, then we denote by $u v$ the concatenation $x_{1} \ldots x_{k} x_{k+1} x_{k+2} \ldots$

In what follows, we will talk mostly about words over the alphabet X, rather than n-adic numbers.

Let us define two relations \approx_{k} and \sim_{k} on \mathbb{Z}_{n} by the following conditions:
(i) $x \approx_{k} y \Leftrightarrow x-y \in n^{k} \mathbb{Z}_{n}$;
(ii) $x \sim_{k} y \Leftrightarrow x-y \in n^{k} \mathbb{Z}_{n} \backslash n^{k+1} \mathbb{Z}_{n}$.

The respective relations on the space X^{ω} are defined by the conditions
(i) $w_{1} \approx_{k} w_{2}$ if and only if the initial strings of length k of w_{1} and w_{2} are equal;
(ii) $w_{1} \sim_{k} w_{2}$ if and only if the longest common initial string of w_{1} and w_{2} has length k.

It is easy to see that the relations \approx_{k} are equivalence relations on \mathbb{Z}_{n} and X^{ω}. For any two different $w_{1}, w_{2} \in X^{\omega}$ there exists exactly one integer $k=\kappa\left(w_{1}, w_{2}\right) \geq 0$ such that $w_{1} \sim_{k} w_{2}$.

If $w_{1}, w_{2} \in X^{\omega}$, then $\kappa\left(w_{1}, w_{2}\right)$ is the length of the longest common initial string of w_{1} and w_{2}, and $\varrho\left(w_{1}, w_{2}\right)=n^{-\kappa\left(w_{1}, w_{2}\right)}$ is a metric on X^{ω} such that the identification map $\Phi: X^{\omega} \rightarrow \mathbb{Z}_{n}$ is an isometry.

Lemma 1. A mapping $f: X^{\omega} \rightarrow X^{\omega}$ is distance-decreasing (respectively an isometry) if and only if it preserves all the relations \approx_{k} (respectively \sim_{k}), that is, for any infinite words w_{1}, w_{2} and $k \in \mathbb{N}$ the relation $w_{1} \approx_{k} w_{2}$ (respectively $w_{1} \sim_{k} w_{2}$) implies $w_{1}^{f} \approx_{k} w_{2}^{f}$ (respectively $w_{1}^{f} \sim_{k} w_{2}^{f}$).

Proof. Let $f: X^{\omega} \rightarrow X^{\omega}$ be distance-decreasing and let $w_{1}=x_{1} x_{2} \ldots$ and $w_{2}=y_{1} y_{2} \ldots$ be any two infinite words. If $w_{1} \approx_{k} w_{2}$ then $x_{i}=y_{i}$ for $i=1, \ldots, k$ and $\varrho\left(w_{1}, w_{2}\right) \leq n^{-k}$. Hence $\varrho\left(w_{1}^{f}, w_{2}^{f}\right) \leq n^{-k}$ and w_{1}^{f}, w_{2}^{f} have a common initial string of length k, so $w_{1}^{f} \approx_{k} w_{2}^{f}$.

Conversely, if f preserves \approx_{k} then for every $w_{1}, w_{2} \in X^{\omega}$ such that $\varrho\left(w_{1}, w_{2}\right)=n^{-k}$ we have $w_{1} \approx_{k} w_{2}$ and hence $w_{1}^{f} \approx_{k} w_{2}^{f}$, so $\varrho\left(w_{1}^{f}, w_{2}^{f}\right) \leq n^{-k}$ and f is distance-decreasing.

For isometries the proof is analogous.
Lemma 2.
(i) The semigroup $H\left(X^{\omega}\right)$ of all distance-decreasing transformations of the metric space X^{ω} is isomorphic to the infinitely iterated wreath power of the symmetric semigroup of degree n :

$$
H\left(X^{\omega}\right) \simeq \sum_{i=1}^{\infty} T_{n}^{(i)}
$$

(ii) The group $\operatorname{Is}\left(X^{\omega}\right)$ of all isometries of the metric space X^{ω} is isomorphic to the infinitely iterated wreath power of the symmetric group S_{n} of degree n :

$$
\operatorname{Is}\left(X^{\omega}\right) \simeq \sum_{i=1}^{\infty} S_{n}^{(i)}
$$

This follows from Lemma 1 and the definition of the wreath product of symmetric semigroups or symmetric groups.

We will denote by X^{k} the metric space of all words of length k with the metric defined by

$$
\varrho_{k}\left(v_{1}, v_{2}\right)= \begin{cases}n^{-\kappa\left(v_{1}, v_{2}\right)} & \text { if } v_{1} \neq v_{2} \\ 0 & \text { otherwise }\end{cases}
$$

where $\kappa\left(v_{1}, v_{2}\right)$ is, as usual, the length of the longest common initial string of the words v_{1} and v_{2}.

Let $H\left(X^{k}\right)$ (respectively $\operatorname{Is}\left(X^{k}\right)$) be the semigroup of all distance-decreasing mappings of X^{k} (respectively the group of all isometries of X^{k}). We have

$$
H\left(X^{k}\right) \simeq{\underset{i=1}{k}}_{\sum_{k}^{(i)}, \quad \operatorname{Is}\left(X^{k}\right) \simeq \sum_{i=1}^{k} S_{n}^{(i)}}
$$

Lemma 3. Let $f \in H\left(X^{\omega}\right)$ and let $C \subseteq X^{\omega}$ be a closed subset of X^{ω} which is the union of some cycles of f. Then there exists $\widetilde{f} \in \operatorname{Is}\left(X^{\omega}\right)$ such that the union of all cycles of \widetilde{f} is equal to C and $\left.f\right|_{C}=\left.\widetilde{f}\right|_{C}$.

Proof. The set C is obviously f-invariant, i.e., $C^{f}=C$. Moreover, the restriction of f to C is invertible. If $a_{1}, a_{2} \in C$ and each a_{i} belongs to an f-cycle of length n_{i}, then $\varrho\left(a_{1}^{f^{k+1}}, a_{2}^{f^{k+1}}\right) \leq \varrho\left(a_{1}^{f^{k}}, a_{2}^{f^{k}}\right)$ for every k. But $a_{i}^{f^{n_{1} n_{2}}}=a_{i}$, thus we always have equality and the action of f on C is isometric.

For every $a \in X^{\omega} \backslash C$ define $[a]$ to be the longest initial string of a common with some element of C. Since C is closed, the string $[a]$ is finite for every $a \in X^{\omega} \backslash C$. Let $l(a)$ be its length and denote by \bar{a} the word obtained from a by deleting $[a]$.

The transformation $\alpha: a \mapsto \Phi^{-1}(\Phi(a)+1)$ obviously belongs to $\operatorname{Is}\left(X^{\omega}\right)$ and it has no cycles, since this is true for the conjugate transformation $a \mapsto a+1$ of \mathbb{Z}_{n}. Let now $\beta: X^{\omega} \rightarrow X^{\omega}$ act by the rule $(x w)^{\beta}=x\left(w^{\alpha}\right)$, i.e., β does not change the first letter and acts on the rest of the word as α. Then β also has no cycles.

Define now $\tilde{f}: X^{\omega} \rightarrow X^{\omega}$ by the rule

$$
a^{\tilde{f}}= \begin{cases}a^{f} & \text { if } a \in C, \\ {[a]^{f} \bar{a}^{\beta}} & \text { if } a \notin C .\end{cases}
$$

It is easy to prove, using Lemma 1 , that \tilde{f} is an isometry. It follows easily from the definition of β that \widetilde{f} has no cycles outside C.

Lemma 4. A number l is the length of a cycle of some $f \in H\left(X^{\omega}\right)$ if and only if it is the length of a cycle of some $\widetilde{f} \in \operatorname{Is}\left(X^{\omega}\right)$.

Proof. In Lemma 3, take C equal to a cycle of f.
Lemma 5. If $u \in \operatorname{Is}\left(X^{k}\right)$, then $\operatorname{Cycl}(u) \subseteq E_{n}$.
Proof. Since $\operatorname{Is}\left(X^{k}\right) \simeq \imath_{i=1}^{k} S_{n}^{(i)}$, by definition of the wreath product of permutation groups we have

$$
\left|\operatorname{Is}\left(X^{k}\right)\right|=n!(n!)^{n} \cdots(n!)^{n^{k-1}}
$$

so $\left|\operatorname{Is}\left(X^{k}\right)\right| \in E_{n}$. Since the order of every permutation from $\operatorname{Is}\left(X^{k}\right)$ is a factor of $\left|\operatorname{Is}\left(X^{k}\right)\right|$ and cycle lengths for permutations are factors of their orders, the cycle lengths for the isometry u are factors of $\left|\operatorname{Is}\left(X^{k}\right)\right|$, proving the statement.

A subset $A \subset k \mathbb{N}$ containing k is called a D-subset with basis k.

Lemma 6. For any $A \subset E_{n}$ there exist D-subsets A_{1}, \ldots, A_{l} with bases k_{1}, \ldots, k_{l} such that

$$
A=\bigcup_{i=1}^{l} A_{i} \quad \text { and } \quad k_{i} \nmid k_{j} \quad \text { for } i \neq j
$$

Proof. Let $p_{1}<\cdots<p_{s}$ be all primes from E_{n}. We say that two elements a and b are comparable if $a \mid b$ or $b \mid a$. It is sufficient to prove that each infinite subset $A \subset E_{n}=E_{p_{s}}$ contains an infinite set of pairwise comparable elements. Then the statement of the lemma follows, since one can take $\left\{k_{1}, \ldots, k_{l}\right\}$ to be the set of all minimal elements of A (with respect to the order included by division). The set of all minimal elements is finite, since otherwise it would be an infinite set without comparable elements.

We use induction on s. The case $s=1$ is trivial.
Let $s>1$. Define

$$
\bar{A}=\left\{p_{1}^{k_{1}} \cdots p_{s-1}^{k_{s-1}} \mid p_{1}^{k_{1}} \cdots p_{s-1}^{k_{s-1}} p_{s}^{k_{s}} \in A \text { for some } k_{s}\right\} \subset E_{p_{s-1}} .
$$

If \bar{A} is finite then there exists $p_{1}^{k_{1}^{(0)}} \cdots p_{s-1}^{k_{s-1}^{(0)}} \in \bar{A}$ such that the set

$$
C=\left\{l=p_{1}^{k_{1}^{(0)}} \cdots p_{s-1}^{k_{s-1}^{(0)}} p_{s}^{k_{s}} \mid l \in A, k_{s} \geq 0\right\}
$$

is infinite. Since all pairs of elements of C are comparable, A contains an infinite set of pairwise comparable elements.

If \bar{A} is infinite then, by the inductive assumption, it contains an infinite subset $C \subset E_{p_{s-1}}$ of pairwise comparable elements $c_{i}=p_{1}^{k_{1}^{(i)}} \cdots p_{s-1}^{k_{s-1}^{(i)}}, i=$ $1,2, \ldots$, such that $p_{1}^{k_{1}^{(i)}} \cdots p_{s-1}^{k_{s-1}^{(i)}} \mid p_{1}^{k_{1}^{(i+1)}} \cdots p_{s-1}^{k_{s-1}^{(i+1)}}$. The numbers $a p_{s}^{l}$ and $b p_{s}^{r}$ with $a, b \in C$ and $a<b$ are not comparable if $r>l$. Since for any l there exist only finitely many r such that $r<l$, and C is infinite, the set A contains an infinite subset of pairwise comparable elements.

In the proof of Theorem 1, we will use the following construction for tableaux of finite lengths. Let

$$
\begin{aligned}
u & =\left[a_{1}, a_{2}\left(x_{1}\right), \ldots, a_{m}\left(x_{1} \ldots x_{m-1}\right)\right] \\
v & =\left[b_{1}, b_{2}\left(x_{1}\right), \ldots, b_{k}\left(x_{1} \ldots x_{k-1}\right)\right]
\end{aligned}
$$

be tableaux from $H\left(X^{m}\right)$ and $H\left(X^{k}\right)$ respectively, and let $\alpha \in X^{m}$. We denote by $u \triangle_{\alpha} v$ the tableau

$$
u \triangle_{\alpha} v=\left[c_{1}, c_{2}\left(x_{1}\right), \ldots, c_{m+k}\left(x_{1}, \ldots, x_{m+k-1}\right)\right]
$$

from $H\left(X^{m+k}\right)$ constructed in the following way:
(1) $c_{i}\left(x_{1}, \ldots, x_{i-1}\right)=a_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ for $i=1, \ldots, m$;
(2) $c_{m+1}(\alpha)=b_{1}$,
(3) $c_{m+i}\left(\alpha, x_{m+1}, \ldots, x_{m+i-1}\right)=b_{i}\left(x_{m+1}, \ldots, x_{m+i-1}\right)$ for $i=2, \ldots, k$;
(4) $c_{m+i}\left(y, x_{m+1}, \ldots, x_{m+i-1}\right)=\varepsilon$ for $y \neq \alpha$ and $i=1, \ldots, k$,
where ε is the trivial permutation on X.
In other words, $u \triangle_{\alpha} v$ acts on the words of length $m+k$ by the rule $\left(x_{1} \ldots x_{m} x_{m+1} \ldots x_{m+k}\right)^{u \Delta_{\alpha} v}$

$$
= \begin{cases}\left(x_{1} \ldots x_{m}\right)^{u} x_{m+1} \ldots x_{m+k} & \text { if } x_{1} \ldots x_{m} \neq \alpha, \\ \left(x_{1} \ldots x_{m}\right)^{u}\left(x_{m+1} \ldots x_{m+k}\right)^{v} & \text { if } x_{1} \ldots x_{k}=\alpha .\end{cases}
$$

Lemma 7. Let $u \in \operatorname{Is}\left(X^{m}\right), v \in \operatorname{Is}\left(X^{k}\right), l_{1} \in \operatorname{Cycl}(u), l_{2} \in \operatorname{Cycl}(v)$, and let $\alpha \in X^{m}$ be an element of a cycle of length l_{1} for u. Then $u \triangle_{\alpha} v \in$ $\operatorname{Is}\left(X^{m+k}\right)$ and $l_{1} \cdot l_{2} \in \operatorname{Cycl}\left(u \triangle_{\alpha} v\right)$.

Proof. The fact that $u \triangle_{\alpha} v \in \operatorname{Is}\left(X^{m+k}\right)$ is straightforward (by Lemma 1).

It is also easy to see that if $\alpha \in X^{m}$ is an element of a u-cycle of length l_{1} and $\beta \in X^{k}$ is an element of a v-cycle of length l_{2}, then $\alpha \beta$ is an element of a $u \triangle_{\alpha} v$-cycle of length $l_{1} \cdot l_{2}$. This follows directly from the definition of $u \triangle_{\alpha} v$.

Lemma 8. Let $u \in H\left(X^{m}\right)$ and $v \in H\left(X^{k}\right)$ have only one cycle each, of respective lengths l_{1} and l_{2}. Let α be an element of the cycle of u. Then $u \triangle_{\alpha} v$ has only one cycle, of length $l_{1} \cdot l_{2}$.

This also follows directly from the definitions.
3. Proof of Theorem 1. Firstly we prove that the lengths of all cycles for distance-decreasing transformations of X^{ω} belong to E_{n}.

In view of Lemma 4, we can assume that l is the length of some f cycle $\left(a_{1}, \ldots, a_{l}\right)$, where $f=\left[h_{1}, h_{2}\left(x_{1}\right), h_{3}\left(x_{1}, x_{2}\right), \ldots\right]$ belongs to $\operatorname{Is}\left(X^{\omega}\right)$ and $a_{i} \in X^{\omega}(1 \leq i \leq l)$. Let k be a positive integer such that the initial strings $a_{1}^{(k)}, \ldots, a_{n}^{(k)}$ of the words a_{1}, \ldots, a_{l} are pairwise different. The words $a_{1}^{(k)}, \ldots, a_{l}^{(k)}$ form a cycle of length l for the permutation

$$
f^{(k)}=\left[h_{1}, h_{2}\left(x_{1}\right), \ldots, h_{l}\left(x_{1}, \ldots, x_{k-1}\right)\right] .
$$

Since $f^{(k)} \in \operatorname{Is}\left(X^{k}\right)$, Lemma 5 implies that $l \in E_{n}$.
Now we prove that for every $l \in E_{n}$ there exists $f \in \operatorname{Is}\left(X^{\omega}\right)$ such that $l \in \operatorname{Cycl}(f)$. Let $l=p_{1} \cdots p_{s}$ be a prime factorization of l. Since $l \in E_{n}$, we have $p_{i} \leq n$ for all $i=1, \ldots, s$. For each p_{i} we can construct a tableau $u_{i}=\left[g_{i}\right] \in H\left(X^{1}\right)$ having a cycle of length p_{i}, where $g_{i}=\left(0,1, \ldots, p_{i}-1\right)$. Using the construction preceding Lemma 7 , suppose that $u=\left(\ldots\left(u_{1} \triangle_{a_{1}} u_{2}\right)\right.$ $\left.\triangle_{a_{2}} \ldots\right) \triangle_{a_{s-1}} u_{s}$, where a_{i} is an element of the cycle of length $p_{1} \ldots p_{i}$ for the tableau $u=u_{1} \triangle_{a_{1}} u_{2} \triangle_{a_{2}} \ldots \triangle_{a_{i-1}} u_{i}, i=1, \ldots, s-1$. Then $p_{1} \cdots p_{s} \in \operatorname{Cycl}(u)$ by Lemma 7 .

4. Proof of Theorem 2

Step 1. For every $l \in E_{n}$ there exists $u \in H\left(X^{s}\right)$ for some $s \in \mathbb{N}$ such that $\operatorname{Cycl}(u)=\{l\}$, and there exists $\widehat{u} \in H\left(X^{\omega}\right)$ such that $\operatorname{Cycl}(\widehat{u})=\{l\}$ and the union of the cycles of \widehat{u} is closed.

Let $l=p_{1} \cdots p_{s}$ be a prime factorization with $p_{i} \leq n, i=1, \ldots, s$. For each p_{i} we define the transformation

$$
g_{i}=\left(\begin{array}{ccccccc}
0 & \cdots & p_{i}-2 & p_{i}-1 & p_{i} & \cdots & p-1 \\
1 & \cdots & p_{i}-1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

in the semigroup T_{n} having only the cycle $\left(0,1, \ldots, p_{i}-1\right)$ of length p_{i} (all other elements go to 0$)$. We define $u_{i}=\left[g_{i}\right] \in H\left(X^{1}\right)$, which has only one cycle of length $p_{i}, i=1, \ldots, s$. Put $u=u_{1} \triangle_{a_{1}} u_{2} \triangle_{a_{2}} \ldots \triangle_{a_{s-1}} u_{s}$, where a_{i} is an element of the unique cycle of length $p_{1} \cdots p_{i}$ for $u=u_{1} \triangle_{a_{1}} u_{2} \triangle_{a_{2}}$ $\ldots \triangle_{a_{i-1}} u_{i}, i=1, \ldots, s-1$. By Lemma $8, u$ has only one cycle, of length $p_{1} \cdots p_{s}$.

Put $\widehat{u}=[u, \varepsilon, \varepsilon, \ldots] \in H\left(X^{\omega}\right)$. Then \widehat{u} has only cycles of length l. Their union C is a closed subset of X^{ω} of the form

$$
C=\left\{a w \mid a \text { is an element of a cycle of } u, \text { and } w \in X^{\omega}\right\}
$$

Step 2. For any D-subset A, there exists $u \in H\left(\mathbb{Z}_{n}\right)$ such that $\operatorname{Cycl}(u)$ $=A$ and the union C of all its cycles is closed.

Let A be a finite or infinite D-subset with basis m, and let $m=m_{0}, m_{1}$, m_{2}, \ldots be an infinite sequence such that $A=\left\{m_{0}, m_{1}, \ldots\right\}$ (if A is finite, then the sequence m_{i} must have repetitions). Let $m_{j} / m=k_{j}, j \geq 1$. According to Step 1 , we can construct $u_{0} \in H\left(X^{s_{0}}\right)$ having a unique cycle whose length is m. For each $j \geq 1$ by Step 1 we can also construct $u_{j} \in H\left(X^{s_{j}}\right)$ having a unique cycle whose length is k_{j}. Without loss of generality, we may assume that the word $0^{s_{j}}=00 \ldots 0 \in X^{s_{j}}$ belongs to the unique cycle of u_{j}, $j=0,1, \ldots$.

We now define $u \in H\left(X^{\omega}\right)$ by

$$
\left(x_{1} x_{2} \ldots\right)^{u}=\left\{\begin{array}{r}
\left(x_{1} x_{2} \ldots x_{s_{0}}\right)^{u_{0}} \underbrace{00 \ldots 0}_{j \text { times }} 1\left(x_{s_{0}+j+2} x_{s_{0}+j+3} \ldots x_{s_{0}+j+s_{j}+1}\right)^{u_{j}} \\
\quad \cdot x_{s_{0}+s_{j}+j+2} x_{s_{0}+s_{j}+j+3} \ldots \\
\left(x_{1} x_{2} \ldots x_{s_{0}}\right)^{u_{0}} x_{s_{0}+1} x_{s_{0}+2} \ldots \text { in all other cases. }
\end{array}\right.
$$

It follows as in the proof of Lemmas 7 and 8 that $\operatorname{Cycl}(u)=A$.
Step 3. For any $A \subset E_{n}$, there exists $u \in H\left(\mathbb{Z}_{n}\right)$ such that $\operatorname{Cycl}(u)=A$ and the union of its cycles is closed.

By Lemma 6 there exist D-subsets A_{1}, \ldots, A_{r} with bases m_{1}, \ldots, m_{r} such that $A=\bigcup_{j=1}^{r} A_{j}$ and $m_{i} \nmid m_{j}$ for $i \neq j$. For each j by Step 2 we
construct $u_{j} \in H\left(X^{\omega}\right)$ such that $\operatorname{Cycl}\left(u_{j}\right)=A_{j}$, and then define u by $\left(x_{1} x_{2} \ldots\right)^{u}$

$$
= \begin{cases}\underbrace{00 \ldots 0}_{j-1 \text { times }} 1\left(x_{j+1} x_{j+2} \ldots\right)^{u_{j}} & \text { if } x_{1} \ldots x_{j}=\underbrace{00 \ldots 0}_{\begin{array}{c}
j-1 \text { times } \\
\text { for some } j=1, \ldots, r
\end{array}} 1 \\
\underbrace{00 \ldots 0}_{j-1 \text { times }} 1 x_{j+1} x_{j+2} \ldots & \text { if } x_{1} \ldots x_{j-1}=00 \ldots 0 \text { and } x_{j} \neq 0,1 \\
\underbrace{00 \ldots 0}_{r-1 \text { times }} 1 x_{r+1} x_{r+2} \ldots & \text { for some } j=1, \ldots, r ;\end{cases}
$$

It is easy to see that the cycles of u are of the form $\underbrace{00 \ldots 0}_{-1} 1 C_{j}$, where C_{j} is a cycle of u_{j}.

Acknowledgments. The authors are grateful to the referee for his help in improving the paper.

REFERENCES

[1] K. S. Brown, Buildings, Springer, Berlin, 1988.
[2] L. A. Kaluzhnin, On some generalization of Sylow p-subgroups of symmetric groups, Acta Math. Hungar. 2 (1951), 198-221 (in Russian).
[3] L. A. Kaluzhnin, P. M. Beleckij and V. Z. Feinberg, Kranzprodukte, Teubner, Leipzig, 1987.
[4] J. P. P. Meldrum, Wreath Products of Groups and Semigroups, Pitman Monogr. Surveys Pure Appl. Math. 74, Longman, Harlow, 1995.
[5] E. Moćko, V. Nekrashevych and V. Sushchansky, Dynamics of triangular transformations of the sequences over finite alphabets, Mat. Zametki 73 (2003), 436-439 (in Russian).
[6] W. Narkiewicz, Polynomial Mappings, Lecture Notes in Math. 1800, Springer, Berlin, 1995.
[7] -, Theory of Numbers, PWN, Warszawa, 1977 (in Polish).
[8] T. Pezda, Polynomial cycles in certain local domains, Acta Arith. 66 (1994), 11-22.
[9] V. I. Sushchansky, Isometry groups of Baire p-spaces, Dopovidi AN URSR 1984, no. 8, 28-30 (in Ukrainian).

Institute of Mathematics
Silesian University of Technology
44-100 Gliwice, Poland
E-mail: Wital.Suszczanski@polsl.pl ewilg@ @zeus.polsl.gliwice.pl

Department of Mathematics
Texas A\&M University 3368 TAMU
College Station, TX 77843-3368, U.S.A.
E-mail: nekrash@math.tamu.edu

[^0]: 2000 Mathematics Subject Classification: 13B35, 37E15, 54H20.
 Key words and phrases: cycle of a mapping, length of a cycle, distance-decreasing mapping, n-adic integers.

