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CYCLES OF DISTANCE-DECREASING MAPPINGS

IN THE RING OF n-ADIC INTEGERS

BY

V. I. SUSHCHANSKI (Gliwice), E. MOĆKO (Gliwice)
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Abstract. We give a description of possible sets of cycle lengths for distance-decrea-
sing maps and isometries of the ring of n-adic integers.

1. Introduction. Recall that a subset {x0, . . . , xn−1} of a set X is

called a cycle of the mapping f : X → X if xf
i = xi+1 for 0 ≤ i ≤ n − 2

and xf
n−1 = x0. The number n is called the length of the cycle and the

elements xi are said to be cyclic of order n for f . We denote by Cycl(f)
the set of lengths of all cycles of the mapping f . Let Σ be some class of
mappings of the set X. The main problems concerning the cyclic structure
of the mappings from Σ are the following:

(i) What positive integers are lengths of cycles of mappings from the
class Σ?

(ii) For which sets A of positive integers does there exist a mapping
f ∈ Σ such that A = Cycl(f)?

The class Σ can be defined using different conditions (topological, metri-
cal, algebraic, etc.). Many authors studied the class of polynomial mappings
over different rings. The main results in this direction are collected in the
remarkable monograph of W. Narkiewicz [6]. T. Pezda [8] has studied the
orders of cyclic elements for polynomial mappings over discrete valuation
rings of zero characteristic and finite residual fields. He has given a com-
plete answer to question (i) for the ring Zp of p-adic integers. Namely, he
showed that if p 6= 2, 3 then an integer n is the length of a polynomial cycle
if and only if n = ab, where 1 ≤ a ≤ p and b | p − 1; in the cases p = 2, 3
additionally cycles of length p2 occur.

Every polynomial mapping f : Zp → Zp is a distance-decreasing mapping
(in the sense of [1, p. 152]) of the metric space Zp with the natural metric
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̺(u, v) = vp(u − v),

where vp is the p-adic valuation (see [7, p. 328]). In other words, if f : Zp →
Zp is a polynomial, then for any x, y ∈ Zp we have

̺(xf , yf ) ≤ ̺(x, y).

Let Zn be the ring of n-adic integers for n > 1, i.e., the completion of
the ring Z with respect to the metric

̺(u, v) = n−k(u−v),

where k(x) is the maximal positive integer such that nk(x) |x.
The class H(Zn) of all distance-decreasing mappings over Zn is larger

than the class of polynomial mappings and contains the class Is(Zn) of all
isometries of the metric space Zn. We will give complete answers to questions
(i) and (ii) for the class H(Zn).

We denote by En the set of all positive integers with all prime factors
not greater than n.

The aim of this work is to prove the following statements.

Theorem 1. For both semigroups Σ = Is(Zn) and Σ = H(Zn), a num-

ber l is the length of some f -cycle, where f ∈ Σ, if and only if l ∈ En.

Theorem 2. For any subset A ⊂ En there exists a mapping f ∈ Is(Zn)
⊂ H(Zn) such that Cycl(f) = A.

The results of this paper were announced in [5].

2. Preliminaries. The wreath product of a finite or infinite sequence
(P1, M1), (P2, M2), . . . of transformation semigroups (see [3, p. 75],
[4, p. 276]) is defined as the semigroup of all transformations t of the set
M =

∏
i Mi, whose action on any element x = (x1, x2, . . .) ∈ M satisfies the

following conditions:

(i) for every i the ith coordinate yi of the sequence y = (x)t depends
only on the first coordinates x1, . . . , xi of x (and on t);

(ii) for any fixed sequence x0
1, x

0
2, . . . , x

0
i−1, the transformation xi 7→ yi

of the set Mi, defined by t, belongs to the semigroup Pi.

We denote the wreath product of a finite or infinite sequence (P1, M1),
(P2, M2), . . . of semigroups by ≀ni=1 Pi, where n is a positive integer or the
symbol ∞ respectively.

It follows from the definition that every transformation from ≀∞i=1 Pi is
uniquely determined by an infinite tuple of the form

(1) u = [t1, t2(x1), t3(x1, x2), . . .],

where t1 ∈ P1 and ti(x1, . . . , xi−1) ∈ P
M1×···×Mi−1

i for i = 2, 3, . . . . For
finitely iterated wreath products such tuples are finite.
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The wreath product of the sequence (P, M), (P, M), . . . is called the
(finite or infinite) wreath power of the semigroup (P, M).

Following the pioneering work of L. Kaluzhnin [2] we call a tuple (1) a
(finite or infinite) tableau. Tableau (1) acts on an element m = (m1, m2, . . .)
of the set M by the rule

(2) mu = (mt1
1 , m

t2(m1)
2 , m

t3(m1,m2)
3 , . . .).

If all (Pi, Mi) are permutation groups, then the semigroup ≀∞i=1 Pi is also
a permutation group. If for all i the semigroup Pi is a symmetric transfor-
mation semigroup of the set Mi then condition (ii) from the definition of
the wreath product holds automatically. Hence, the wreath product of an
infinite sequence of symmetric semigroups (resp. symmetric groups) of sets
M1, M2, . . . is the semigroup of all transformations (resp. the group of all
permutations) of the set M =

∏
∞

i=1 Mi, satisfying only condition (i) of the
definition of the wreath product. It is possible to characterize the iterated
wreath products ≀∞i=1 S(Mi) as the isometry groups of some Baire metric
spaces [9].

The canonical form of an n-adic number a is an infinite sequence x1x2 . . . ,
where xi ∈ {0, 1, . . . , n − 1}, such that a = x1 + x2n + x3n

2 + · · · .

Let X = {0, 1, . . . , n− 1}, where n ≥ 2. We consider the space Xω of all
infinite sequences (words) x1x2 . . . over the alphabet X. We identify every
sequence w = x1x2 . . . ∈ Xω with the n-adic number having the canonical
expansion w, i.e., with the number Φ(w) = x1 + x2n + x3n

2 + · · · ∈ Zn.

We also consider the set X∗ of finite words over the alphabet X, including
the empty word ∅.

If u = x1 . . . xk ∈ X∗ is a finite word and v = xk+1xk+2 . . . ∈ Xω is an
infinite word, then we denote by uv the concatenation x1 . . . xkxk+1xk+2 . . . .

In what follows, we will talk mostly about words over the alphabet X,
rather than n-adic numbers.

Let us define two relations ≈k and ∼k on Zn by the following conditions:

(i) x ≈k y ⇔ x − y ∈ nkZn;
(ii) x ∼k y ⇔ x − y ∈ nkZn \ nk+1Zn.

The respective relations on the space Xω are defined by the conditions

(i) w1 ≈k w2 if and only if the initial strings of length k of w1 and w2

are equal;
(ii) w1 ∼k w2 if and only if the longest common initial string of w1 and

w2 has length k.

It is easy to see that the relations ≈k are equivalence relations on Zn

and Xω. For any two different w1, w2 ∈ Xω there exists exactly one integer
k = κ(w1, w2) ≥ 0 such that w1 ∼k w2.
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If w1, w2 ∈ Xω, then κ(w1, w2) is the length of the longest common initial
string of w1 and w2, and ̺(w1, w2) = n−κ(w1,w2) is a metric on Xω such that
the identification map Φ : Xω → Zn is an isometry.

Lemma 1. A mapping f : Xω → Xω is distance-decreasing (respectively
an isometry) if and only if it preserves all the relations ≈k (respectively
∼k), that is, for any infinite words w1, w2 and k ∈ N the relation w1 ≈k w2

(respectively w1 ∼k w2) implies wf
1 ≈k wf

2 (respectively wf
1 ∼k wf

2 ).

Proof. Let f : Xω → Xω be distance-decreasing and let w1 = x1x2 . . .
and w2 = y1y2 . . . be any two infinite words. If w1 ≈k w2 then xi = yi for
i = 1, . . . , k and ̺(w1, w2) ≤ n−k. Hence ̺(wf

1 , wf
2 ) ≤ n−k and wf

1 , wf
2 have

a common initial string of length k, so wf
1 ≈k wf

2 .
Conversely, if f preserves ≈k then for every w1, w2 ∈ Xω such that

̺(w1, w2) = n−k we have w1 ≈k w2 and hence wf
1 ≈k wf

2 , so ̺(wf
1 , wf

2 ) ≤ n−k

and f is distance-decreasing.
For isometries the proof is analogous.

Lemma 2.

(i) The semigroup H(Xω) of all distance-decreasing transformations of

the metric space Xω is isomorphic to the infinitely iterated wreath

power of the symmetric semigroup of degree n:

H(Xω) ≃
∞

≀
i=1

T (i)
n .

(ii) The group Is(Xω) of all isometries of the metric space Xω is isomor-

phic to the infinitely iterated wreath power of the symmetric group

Sn of degree n:

Is(Xω) ≃
∞

≀
i=1

S(i)
n .

This follows from Lemma 1 and the definition of the wreath product of
symmetric semigroups or symmetric groups.

We will denote by Xk the metric space of all words of length k with the
metric defined by

̺k(v1, v2) =

{
n−κ(v1,v2) if v1 6= v2,

0 otherwise,

where κ(v1, v2) is, as usual, the length of the longest common initial string
of the words v1 and v2.

Let H(Xk) (respectively Is(Xk)) be the semigroup of all distance-de-
creasing mappings of Xk (respectively the group of all isometries of Xk).
We have

H(Xk) ≃
k

≀
i=1

T
(i)
k , Is(Xk) ≃

k

≀
i=1

S(i)
n .
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Lemma 3. Let f ∈ H(Xω) and let C ⊆ Xω be a closed subset of Xω

which is the union of some cycles of f . Then there exists f̃ ∈ Is(Xω) such

that the union of all cycles of f̃ is equal to C and f |C = f̃ |C .

Proof. The set C is obviously f -invariant, i.e., Cf = C. Moreover, the
restriction of f to C is invertible. If a1, a2 ∈ C and each ai belongs to

an f -cycle of length ni, then ̺(afk+1

1 , afk+1

2 ) ≤ ̺(afk

1 , afk

2 ) for every k. But

afn1n2

i = ai, thus we always have equality and the action of f on C is
isometric.

For every a ∈ Xω \ C define [a] to be the longest initial string of a
common with some element of C. Since C is closed, the string [a] is finite
for every a ∈ Xω \ C. Let l(a) be its length and denote by a the word
obtained from a by deleting [a].

The transformation α : a 7→ Φ−1(Φ(a) + 1) obviously belongs to Is(Xω)
and it has no cycles, since this is true for the conjugate transformation
a 7→ a + 1 of Zn. Let now β : Xω → Xω act by the rule (xw)β = x(wα),
i.e., β does not change the first letter and acts on the rest of the word as α.
Then β also has no cycles.

Define now f̃ : Xω → Xω by the rule

af̃ =

{
af if a ∈ C,

[a]faβ if a /∈ C.

It is easy to prove, using Lemma 1, that f̃ is an isometry. It follows easily
from the definition of β that f̃ has no cycles outside C.

Lemma 4. A number l is the length of a cycle of some f ∈ H(Xω) if

and only if it is the length of a cycle of some f̃ ∈ Is(Xω).

Proof. In Lemma 3, take C equal to a cycle of f .

Lemma 5. If u ∈ Is(Xk), then Cycl(u) ⊆ En.

Proof. Since Is(Xk) ≃ ≀ki=1 S
(i)
n , by definition of the wreath product of

permutation groups we have

|Is(Xk)| = n!(n!)n · · · (n!)nk−1
,

so |Is(Xk)| ∈ En. Since the order of every permutation from Is(Xk) is a
factor of |Is(Xk)| and cycle lengths for permutations are factors of their
orders, the cycle lengths for the isometry u are factors of |Is(Xk)|, proving
the statement.

A subset A ⊂ kN containing k is called a D-subset with basis k.
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Lemma 6. For any A ⊂ En there exist D-subsets A1, . . . , Al with bases

k1, . . . , kl such that

A =
l⋃

i=1

Ai and ki ∤ kj for i 6= j.

Proof. Let p1 < · · · < ps be all primes from En. We say that two ele-
ments a and b are comparable if a | b or b | a. It is sufficient to prove that
each infinite subset A ⊂ En = Eps contains an infinite set of pairwise com-
parable elements. Then the statement of the lemma follows, since one can
take {k1, . . . , kl} to be the set of all minimal elements of A (with respect
to the order included by division). The set of all minimal elements is finite,
since otherwise it would be an infinite set without comparable elements.

We use induction on s. The case s = 1 is trivial.

Let s > 1. Define

A = {pk1
1 · · · p

ks−1

s−1 | pk1
1 · · · p

ks−1

s−1 pks
s ∈ A for some ks} ⊂ Eps−1 .

If A is finite then there exists p
k
(0)
1

1 · · · p
k
(0)
s−1

s−1 ∈ A such that the set

C = {l = p
k
(0)
1

1 · · · p
k
(0)
s−1

s−1 pks
s | l ∈ A, ks ≥ 0}

is infinite. Since all pairs of elements of C are comparable, A contains an
infinite set of pairwise comparable elements.

If A is infinite then, by the inductive assumption, it contains an infinite

subset C ⊂ Eps−1 of pairwise comparable elements ci = p
k
(i)
1

1 · · · p
k
(i)
s−1

s−1 , i =

1, 2, . . . , such that p
k
(i)
1

1 · · · p
k
(i)
s−1

s−1 | p
k
(i+1)
1

1 · · · p
k
(i+1)
s−1

s−1 . The numbers apl
s and

bpr
s with a, b ∈ C and a < b are not comparable if r > l. Since for any l

there exist only finitely many r such that r < l, and C is infinite, the set A
contains an infinite subset of pairwise comparable elements.

In the proof of Theorem 1, we will use the following construction for
tableaux of finite lengths. Let

u = [a1, a2(x1), . . . , am(x1 . . . xm−1)],

v = [b1, b2(x1), . . . , bk(x1 . . . xk−1)]

be tableaux from H(Xm) and H(Xk) respectively, and let α ∈ Xm. We
denote by u △α v the tableau

u △α v = [c1, c2(x1), . . . , cm+k(x1, . . . , xm+k−1)],

from H(Xm+k) constructed in the following way:

(1) ci(x1, . . . , xi−1) = ai(x1, . . . , xi−1) for i = 1, . . . , m;
(2) cm+1(α) = b1,
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(3) cm+i(α, xm+1, . . . , xm+i−1) = bi(xm+1, . . . , xm+i−1) for i = 2, . . . , k;
(4) cm+i(y, xm+1, . . . , xm+i−1) = ε for y 6= α and i = 1, . . . , k,

where ε is the trivial permutation on X.
In other words, u △α v acts on the words of length m + k by the rule

(x1 . . . xmxm+1 . . . xm+k)
u△αv

=

{
(x1 . . . xm)uxm+1 . . . xm+k if x1 . . . xm 6= α,

(x1 . . . xm)u(xm+1 . . . xm+k)
v if x1 . . . xk = α.

Lemma 7. Let u ∈ Is(Xm), v ∈ Is(Xk), l1 ∈ Cycl(u), l2 ∈ Cycl(v), and

let α ∈ Xm be an element of a cycle of length l1 for u. Then u △α v ∈
Is(Xm+k) and l1 · l2 ∈ Cycl(u △α v).

Proof. The fact that u △α v ∈ Is(Xm+k) is straightforward (by Lem-
ma 1).

It is also easy to see that if α ∈ Xm is an element of a u-cycle of length
l1 and β ∈ Xk is an element of a v-cycle of length l2, then αβ is an element
of a u△α v-cycle of length l1 · l2. This follows directly from the definition of
u △α v.

Lemma 8. Let u ∈ H(Xm) and v ∈ H(Xk) have only one cycle each,
of respective lengths l1 and l2. Let α be an element of the cycle of u. Then

u △α v has only one cycle, of length l1 · l2.

This also follows directly from the definitions.

3. Proof of Theorem 1. Firstly we prove that the lengths of all cycles
for distance-decreasing transformations of Xω belong to En.

In view of Lemma 4, we can assume that l is the length of some f -
cycle (a1, . . . , al), where f = [h1, h2(x1), h3(x1, x2), . . .] belongs to Is(Xω)
and ai ∈ Xω (1 ≤ i ≤ l). Let k be a positive integer such that the initial

strings a
(k)
1 , . . . , a

(k)
n of the words a1, . . . , al are pairwise different. The words

a
(k)
1 , . . . , a

(k)
l form a cycle of length l for the permutation

f (k) = [h1, h2(x1), . . . , hl(x1, . . . , xk−1)].

Since f (k) ∈ Is(Xk), Lemma 5 implies that l ∈ En.
Now we prove that for every l ∈ En there exists f ∈ Is(Xω) such that

l ∈ Cycl(f). Let l = p1 · · · ps be a prime factorization of l. Since l ∈ En,
we have pi ≤ n for all i = 1, . . . , s. For each pi we can construct a tableau
ui = [gi] ∈ H(X1) having a cycle of length pi, where gi = (0, 1, . . . , pi − 1).
Using the construction preceding Lemma 7, suppose that u = (. . . (u1△a1u2)
△a2 . . .) △as−1 us, where ai is an element of the cycle of length p1 . . . pi

for the tableau u = u1 △a1 u2 △a2 . . . △ai−1 ui, i = 1, . . . , s − 1. Then
p1 · · · ps ∈ Cycl(u) by Lemma 7.
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4. Proof of Theorem 2

Step 1. For every l ∈ En there exists u ∈ H(Xs) for some s ∈ N such

that Cycl(u) = {l}, and there exists û ∈ H(Xω) such that Cycl(û) = {l}
and the union of the cycles of û is closed.

Let l = p1 · · · ps be a prime factorization with pi ≤ n, i = 1, . . . , s. For
each pi we define the transformation

gi =

(
0 · · · pi − 2 pi − 1 pi · · · p − 1

1 · · · pi − 1 0 0 · · · 0

)

in the semigroup Tn having only the cycle (0, 1, . . . , pi − 1) of length pi (all
other elements go to 0). We define ui = [gi] ∈ H(X1), which has only one
cycle of length pi, i = 1, . . . , s. Put u = u1 △a1 u2 △a2 . . . △as−1 us, where
ai is an element of the unique cycle of length p1 · · · pi for u = u1 △a1 u2 △a2

. . . △ai−1 ui, i = 1, . . . , s − 1. By Lemma 8, u has only one cycle, of length
p1 · · · ps.

Put û = [u, ε, ε, . . .] ∈ H(Xω). Then û has only cycles of length l. Their
union C is a closed subset of Xω of the form

C = {aw | a is an element of a cycle of u, and w ∈ Xω}.

Step 2. For any D-subset A, there exists u ∈ H(Zn) such that Cycl(u)
= A and the union C of all its cycles is closed.

Let A be a finite or infinite D-subset with basis m, and let m = m0, m1,
m2, . . . be an infinite sequence such that A = {m0, m1, . . .} (if A is finite,
then the sequence mi must have repetitions). Let mj/m = kj, j ≥ 1. Accord-
ing to Step 1, we can construct u0 ∈ H(Xs0) having a unique cycle whose
length is m. For each j ≥ 1 by Step 1 we can also construct uj ∈ H(Xsj )
having a unique cycle whose length is kj . Without loss of generality, we may
assume that the word 0sj = 00 . . . 0 ∈ Xsj belongs to the unique cycle of uj ,
j = 0, 1, . . . .

We now define u ∈ H(Xω) by

(x1x2 . . .)u =





(x1x2 . . . xs0)
u0 00 . . . 0︸ ︷︷ ︸

j times

1(xs0+j+2xs0+j+3 . . . xs0+j+sj+1)
uj

·xs0+sj+j+2xs0+sj+j+3 . . .

if x1x2 . . . xs0+j+1 = 00 . . . 01, j = 0, 1, 2, . . .

(x1x2 . . . xs0)
u0xs0+1xs0+2 . . . in all other cases.

It follows as in the proof of Lemmas 7 and 8 that Cycl(u) = A.

Step 3. For any A ⊂ En, there exists u ∈ H(Zn) such that Cycl(u) = A
and the union of its cycles is closed.

By Lemma 6 there exist D-subsets A1, . . . , Ar with bases m1, . . . , mr

such that A =
⋃r

j=1 Aj and mi ∤ mj for i 6= j. For each j by Step 2 we
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construct uj ∈ H(Xω) such that Cycl(uj) = Aj , and then define u by

(x1x2 . . .)u

=





00 . . . 0︸ ︷︷ ︸
j − 1 times

1(xj+1xj+2 . . .)uj if x1 . . . xj = 00 . . . 0︸ ︷︷ ︸
j − 1 times

1

for some j = 1, . . . , r,

00 . . . 0︸ ︷︷ ︸
j − 1 times

1xj+1xj+2 . . . if x1 . . . xj−1 = 00 . . . 0 and xj 6= 0, 1

for some j = 1, . . . , r;

00 . . . 0︸ ︷︷ ︸
r − 1 times

1xr+1xr+2 . . . if x1 . . . xr = 00 . . . 0.

It is easy to see that the cycles of u are of the form 00 . . . 0︸ ︷︷ ︸
j − 1 times

1Cj , where

Cj is a cycle of uj .
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