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Abstract. We give some examples of slant submanifolds of cosymplectic manifolds.
Also, we study some special slant submanifolds, called austere submanifolds, and establish
a relation between minimal and anti-invariant submanifolds which is based on properties
of the second fundamental form. Moreover, we give an example to illustrate our result.

1. Introduction. The notion of a slant submanifold of an almost Her-
mitian manifold was introduced by Chen [7]. Examples of slant submanifolds
of C

2 and C
4 were given by Chen and Tazawa [12], while those of slant sub-

manifolds of a Kähler manifold were given by Maeda, Ohnita and Udagawa
[21]. On the other hand, A. Lotta [19] defined and studied slant submanifolds
of an almost contact metric manifold. He also studied the intrinsic geometry
of 3-dimensional non-anti-invariant slant submanifolds of K-contact mani-
folds [20]. Later, L. Cabrerizo and others investigated slant submanifolds of
a Sasakian manifold and obtained many interesting results [2] and examples.
Slant submanifolds of cosymplectic manifolds have been studied in [16].

Lotta [19] has proved that a non-anti-invariant slant submanifold of a
contact metric manifold must be odd-dimensional. This motivated us to find
examples of slant submanifolds of a cosymplectic manifold with dimension
greater than or equal to 3. In this paper we give some examples of mini-
mal and non-minimal slant submanifolds with dimension 3. We also obtain
sufficient conditions for slant submanifolds to be either austere or minimal.

2. Preliminaries. Let M be a (2m + 1)-dimensional almost contact
metric manifold with structure tensors (φ, ξ, η, g), where φ is a (1, 1) tensor
field, ξ a vector field, η a 1-form and g the Riemannian metric on M . These
tensors satisfy [1]

(2.1)

{
φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1, η(φX) = 0;

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ),
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for any X,Y ∈ TM , where TM denotes the Lie algebra of vector fields
on M . A normal almost contact metric manifold is called a cosymplectic

manifold if

(2.2) (∇Xϕ)(Y ) = 0, ∇Xξ = 0

where ∇ denotes the Levi-Civita connection on M .

Let M be an m-dimensional Riemannian manifold with induced metric
g isometrically immersed in M . We denote by TM the Lie algebra of vector
fields in M and by T

⊥

M the set of all vector fields normal to M .

For any X ∈ TM and N ∈ T
⊥

M , we write

(2.3) φX = PX + FX and φN = tN + fN

where PX (resp. FX) denotes the tangential (resp. normal) component of
φX, and tN (resp. fN) denotes the tangential (resp. normal) component of
φN .

From now on, we suppose that the structure vector field ξ is tangent
to M . Hence, if we denote by D the orthogonal distribution to ξ in TM , we
can consider the orthogonal decomposition TM = D ⊕ {ξ}.

For each non-zero X tangent to M at x such that X is not proportional
to ξx, we denote by θ(X) the Wirtinger angle ofX, that is, the angle between
φX and TxM .

The submanifoldM is called slant if θ(X) is a constant, which is indepen-
dent of the choice of x ∈M and X ∈ TxM − {ξx} (see [19]). The Wirtinger
angle θ of a slant immersion is called the slant angle of the immersion. In-
variant and anti-invariant immersions are slant immersions with slant angle
0 and π/2, respectively. A slant immersion which is neither invariant nor
anti-invariant is called proper.

Let ∇ be the Riemannian connection on M . Then the Gauss and Wein-
garten formulae are

∇XY = ∇XY + h(X,Y ),(2.4)

∇XN = −ANX + ∇⊥

XN,(2.5)

for X,Y ∈ TM and N ∈ T
⊥

M , where h and AN are the second fundamental
forms related by

(2.6) g(ANX,Y ) = g(h(X,Y ), N)

and ∇⊥

is the connection in the normal bundle T
⊥

M of M .

The mean curvature vector H is defined by H = 1

m(traceh). We say that
M is minimal if H vanishes identically.

A submanifold is said to be austere if the set of eigenvalues of AN is
invariant under multiplication by −1.
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If P is the endomorphism defined by (2.3), then

(2.7) g(PX, Y ) + g(X,PY ) = 0.

Thus P 2, denoted by Q, is self-adjoint.

We define the covariant derivatives of Q, P and F by

(∇XQ)Y = ∇X(QY ) −Q(∇XY ),(2.8)

(∇XP )Y = ∇X(PY ) − P (∇XY ),(2.9)

(∇XF )Y = ∇⊥

X(FY ) − F (∇XY ),(2.10)

for any X,Y ∈ TM .

For 3-dimensional proper slant submanifolds of a cosymplectic manifold,
we first prove:

Lemma 2.1. Let M be a 3-dimensional proper slant submanifold of a

cosymplectic manifold. Then

(2.11) (∇XP )Y = 0 for any X,Y ∈ TM .

Proof. Let p ∈ M and {e1, e2} be an orthonormal frame on M defined
in a neighbourhood U of p (cf. [20, Lemma 2.1, p. 40]). Put ξ|U = e3, and

let ωj
i be the structural 1-forms defined by

∇Xei =
3∑

j=1

ωj
i (X)ej

for each vector field X tangent to M . By (2.2), we have

(∇XP )e3 = ∇XPe3 − P (∇Xe3) = 0.

Similarly, we get

(∇XP )e1 = (cos θ)ω3
2(X)e3, (∇XP )e2 = −(cos θ)ω3

1(X)e3.

On the other hand, writing

Y = η(Y )e3 + g(Y, e1)e1 + g(Y, e2)e2

for all Y ∈ TM and using the above formulae we obtain (∇XP )Y = 0,
where we have used ω3

2(X) = ω3
1(X) = 0.

Now, using (2.11), we have

(2.12) (∇XQ)Y = 0.

On the other hand, Gauss and Weingarten formulae together with (2.2) and
(2.3) imply

(∇XP )Y = AFYX + th(X,Y ),(2.13)

∇⊥

X(FY ) − F (∇XY ) = (∇XF )Y = fh(X,Y ) − h(X,PY ),(2.14)
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for any X,Y ∈ TM . It is easy to see that (2.11) holds if and only if

(2.15) AFYX = AFXY,

where we have used (2.13). A similar calculation using (2.14) shows that

(2.16) (∇XF )Y = 0 if and only if ANPY = −AfNY

for any X,Y ∈ TM and N ∈ T
⊥

M .

We state the following results for later use.

Theorem A ([2]). Let M be a submanifold of an almost contact metric

manifold M such that ξ ∈ TM . Then M is slant if and only if there exists

a constant λ ∈ [0, 1] such that

(2.17) P 2 = −λ(I − η ⊗ ξ).

Furthermore, if θ is the slant angle of M , then λ = cos2 θ.

Corollary A ([2]). Let M be a slant submanifold of an almost contact

metric manifold M with slant angle θ. Then

g(PX,PY ) = (cos2 θ){g(X,Y ) − η(X)η(Y )},(2.18)

g(FX,FY ) = (sin2 θ){g(X,Y ) − η(X)η(Y )}.(2.19)

Lemma A ([19]). Let M be a slant submanifold of an almost contact

metric manifold M with slant angle θ. Then, at each point x of M , Q|D has

only one eigenvalue λ1 = cos2 θ.

Let M be a proper slant submanifold M with slant angle θ. For a unit
tangent vector field e1 on M perpendicular to ξ, we put

e2 = (sec θ)Pe1, e3 = ξ, e4 = (csc θ)Fe1, e5 = (csc θ)Fe2.

Then e1 = −(sec θ)Pe2 and by (2.2) and (2.3), e1, e2, ξ = e3, e4, e5 form
an orthonormal frame such that e1, e2, ξ are tangent to M and e3, e4 are
normal to M . We call such an orthonormal frame an adapted slant frame.
We also have

te4 = −(sin θ)e1, te5 = −(sin θ)e2, fe4 = −(cos θ)e5, fe5 = (cos θ)e4.

If we put hr
ij = g(h(ei, ej), er), i, j = 1, 2, 3, r = 4, 5, then from [16, Lemma

3.1] we have

h4
12 = h5

11, h4
22 = h5

12,(2.20)

h4
13 = h4

32 = h4
33 = h5

13 = h5
23 = h5

33 = 0.(2.21)

If dimM = m, a local field of orthonormal frames {e1, . . . , em, em+1, . . . ,
em} can be chosen such that, when restricted to M , the vectors e1, . . . , em
are tangent to M and hence em+1, . . . , em are normal to M . Then, for any
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vector field X tangent to M , we can write

∇Xei =
m∑

j=1

ωj
i (X)ej +

m∑

k=m+1

ωk
i (X)ek,(2.22)

∇Xer =
m∑

j=1

ωj
r(X)ej +

m∑

k=m+1

ωk
r (X)ek,(2.23)

for i ∈ {1, . . . ,m} and r ∈ {m+ 1, . . . ,m}, where ωj
i , ω

k
i , ωj

r and ωk
r are the

connection forms of M in M .

3. Examples of slant submanifolds. In the present section, we intro-
duce a method to find examples of slant submanifolds of R

2m+1 with almost
contact metric structure (ϕ0, ξ, η, g), which satisfy

(∇Xϕ0)(Y ) = 0, ∇Xξ = 0

for X,Y ∈ TR
2m+1.

The cosymplectic structure on TR
2m+1 is given by

η = dz, ξ = ∂/∂z,(3.1)

g = η ⊗ η +
m∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi)(3.2)

and

(3.3) ϕ0

( m∑

i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
=

m∑

i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)

where (xi, yi, z), i = 1, . . . ,m, are the cartesian coordinates on R
2m+1. The

following theorem yields examples of slant submanifolds in R
5(ϕ0, ξ, η, g).

Theorem 3.1. Let

x(u, v) = (f1(u, v), f2(u, v), f3(u, v), f4(u, v))

define a slant surface S in C
2 with its usual Kählerian structure, such that

∂/∂u and ∂/∂v are non-zero and perpendicular. Then

y(u, v, t) = (f1(u, v), f2(u, v), f3(u, v), f4(u, v), t)

defines a three-dimensional slant submanifold M in R
5(ϕ0, ξ, η, g) with the

same slant angle such that , if we put e1 = ∂/∂u, e2 = ∂/∂v, then (e1, e2, ξ)
is an orthogonal basis of the tangent bundle of the submanifold.

Proof. By means of the basis (e1, e2, ξ), it is easy to show that M is a
three-dimensional submanifold of R5. To prove that M is slant, we write

X = λ1e1 + λ2e2 + η(X)ξ for X ∈ χ(M).
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Then

(3.4)
√

|X|2 − η2(X) =
√
λ2

1 + λ2
2.

Now, since (e1, e2, ξ) is an orthogonal basis of χ(M), using (2.3) we obtain

(3.5) |PX|2 =
g2(ϕ0X, e1)

g(e1, e1)
+
g2(ϕ0X, e2)

g(e2, e2)
.

We may consider a vector field X0 ∈ TS such that X0 = λ1e1 + λ2e2 and
denoting by J the usual almost complex structure of C2, we find that

g(ϕ0X, e1) = g(JX0, e1) and g(ϕ0X, e2) = g(JX0, e2).

If P0X0 is the tangent projection of JX0 and θ is the slant angle of S, then
from (3.4) and (3.5), we get

(3.6)
|PX|√

|X|2 − η2(X)
=

|P0X0|
X0

= cos θ.

Hence, M is a slant submanifold with the same slant angle θ.

By applying the examples given in [7] and the above theorem, we have
the following examples of slant submanifolds of cosymplectic manifolds in
R

5(ϕ0, ξ, η, g):

Example 3.1. For any θ ∈ [0, π/2],

x(u, v, t) = (u cos θ, u sin θ, v, 0, t)

defines a three-dimensional minimal slant submanifoldM with slant angle θ.

We may choose an orthonormal basis (e1, e2, ξ) of χ(M) such that

e1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
, e2 =

∂

∂y1
, e3 = ξ =

∂

∂z
.

Moreover, the vector fields

e∗1 = − sin θ
∂

∂x1
+ cos θ

∂

∂x2
, e∗2 =

∂

∂y2

form an orthonormal basis for T
⊥

M . Since ∇ei
ei = 0, we have h(e1, e1) = 0,

h(e2, e2) = 0, h(e3, e3) = 0 and the submanifold is minimal.

Example 3.2. For any positive constant k,

x(u, v, t) = (eku cosu cos v, eku sinu cos v, eku cosu sin v, eku sinu sin v, t)

defines a three-dimensional non-minimal slant submanifoldM with the slant
angle

θ = cos−1

(
k√

1 + k2

)
.
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In this case we may choose an orthonormal basis (e1, e2, ξ) of χ(M) such
that

e1 =
e−ku

√
1 + k2

∂

∂u
, e2 = e−ku ∂

∂v
, e3 = ξ =

∂

∂z
.

Also, at the points of the submanifold, we have

(x1)2 + (x2)2 + (y1)2 + (y2)2 = e2ku.

Then, by a straightforward computation, we get |H| = e−ku/3
√

1 + k2.

Example 3.3. For any positive constant k,

x(u, v, t) = (u, k cos v, v, k sin v, t)

defines a three-dimensional non-minimal slant submanifoldM with the slant
angle

θ = cos−1

(
1√

1 + k2

)
.

Moreover, the following statements are equivalent: (i) k = 0, (ii) M is in-
variant, (iii) M is minimal. In this case orthonormal basis (e1, e2, ξ) of χ(M)
is given by

e1 =
∂

∂x1
, e2 =

1√
1 + k2

(
−y2 ∂

∂x2
+

∂

∂y1
+ x2 ∂

∂y2

)
, e3 = ξ =

∂

∂z
.

Moreover, by applying the vector fields e∗1 = x2∂/∂x2 + y2∂/∂y2 of T
⊥

M
and some computation, we see that the mean curvature vector is

−→
H = − k

3(1 + k2)
e∗1.

Example 3.4. For any non-zero constants a and b,

x(u, v, t) = (a cosu, b cos v, a sinu, b sin v, t)

gives a compact totally real submanifold M with ∇h = 0. In this case, we
may take the orthonormal basis (e1, e2, ξ) of χ(M) as

e1 = −y
1

a

∂

∂x1
+
x1

a

∂

∂y1
, e2 = −y

2

b

∂

∂x2
+
x2

b

∂

∂y2
, e3 = ξ =

∂

∂z
.

Moreover, the vector fields

e∗1 = −x
1

a

∂

∂x1
− y1

a

∂

∂y1
, e∗2 = −x

2

b

∂

∂x2
− y2

b

∂

∂y2

generate the normal space T
⊥

M .

4. Slant submanifolds and second fundamental forms. In this
section, we study some properties of slant submanifolds related to the second
fundamental form. We have:
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Proposition 4.1. Any totally umbilical slant submanifold M of a co-

symplectic manifold is totally geodesic.

Proof. Since M is totally umbilical, we get h(X,Y ) = g(X,Y )H for all
X,Y ∈ χ(M). From (2.2), we have h(ξ, ξ) = 0, and consequently H = 0.
Hence h(X,Y ) = 0 for all X,Y ∈ χ(M) and the submanifold is totally
geodesic.

From the above proposition it can be deduced that a totally umbilical
submanifold is totally geodesic if and only if it is minimal.

Now, we consider another type of minimal submanifolds, namely austere
submanifolds. We have the following:

Theorem 4.2. Let M be a proper slant submanifold of a cosymplectic

manifold M . If (∇XF )Y = 0 for all X,Y ∈ χ(M), then M is an austere

submanifold.

Proof. Since (∇XF )Y = 0, from (2.14) we have

(4.1) fh(X,Y ) = h(X,PY ) for any X,Y ∈ χ(M).

It is easy to show that (M, (sec θ)P, ξ, η, g) is an almost contact metric man-
ifold, and we consider a local orthonormal basis

(4.2) {e1, (sec θ)Pe1, . . . , em, (sec θ)Pem, ξ}
on M . Moreover, from (4.1) and (2.17), we get

(4.3) h((sec θ)Pei, (sec θ)Pej) = −h(ei, ei) for any i, j = 1, . . . ,m.

On the other hand, we write X̃ = X−η(X)ξ and X∗ = (sec θ)PX. Now, we

shall show that if µ is a non-zero eigenvalue of AN for any N ∈ T
⊥

M , then
−µ is also an eigenvalue of AN for some non-zero vector X∗ = (sec θ)PX
associated with X ∈ χ(M), i.e. ANX∗ = −µX∗.

From (4.2), we can write

(4.4) X̃ =

m/2∑

i=1

λiei +

m/2∑

i=1

µiei∗.

Then

(4.5) AN X̃ =

m/2∑

i=1

λiANei +

m/2∑

i=1

µiANei∗.

Now, from (2.2) and (2.6), we get

(4.6) ANei =

m/2∑

j=1

g(h(ei, ej), N)ej +

m/2∑

j=1

g(h(ei, ej∗), N)ej∗.
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From (4.3), we get

(4.7) ANei∗ =

m/2∑

j=1

g(h(ei∗, ej), N)ej −
m/2∑

j=1

g(h(ei, ej), N)ej∗.

Applying P to (4.4), multiplying by sec θ and using (2.17), we get

(4.8) X∗ =

m/2∑

i=1

λiei∗ −
m/2∑

i=1

µiei.

Moreover, using h(ei∗, ej) = h(ei, ej∗), we get ANX∗ = −µX∗, which proves
the result.

Now, we establish a relation between 3-dimensional minimal slant sub-
manifolds and anti-invariant submanifolds of cosymplectic manifolds.

We have the following:

Lemma 4.3. Let M be a 3-dimensional proper slant submanifold of a 5-
dimensional cosymplectic manifold M with slant angle θ. If {e1, e2, e3 = ξ,
e4, e5} is an adapted slant basis, then

(4.9) ω5
4 − ω2

1 = −(cot θ)((traceh4)ω1 + (traceh5)ω2),

where ω1, ω2 are the dual forms of e1, e2.

Proof. Putting X = Y = e1 in (2.14), we have

(4.10) ∇⊥

e1
e4 = csc θ{F (∇e1

e1) + fh(e1, e1) − h(e1, P e1)}.
Using (2.22) and applying F , we get

(4.11) F (∇e1
e1) = (sin θ)ω2

1(e1)e5.

On the other hand,

fh(e1, e1) = h4
11fe4 + h5

11fe5 = (cos θ){−h4
11e5 + h5

11e4},(4.12)

h(e1, P e1) = (cos θ)h(e1, e2) = (cos θ){h4
12e4 + h5

12e5}.(4.13)

Substituting (4.11)–(4.13) in (4.10), we find

∇⊥

e1
e4 = ω2

1(e1)e5 + (cot θ)(−h4
11e5 + h5

11e4 − h4
12e4 − h5

12e5)

From equations (2.20) and (2.21), we have

∇⊥

e1
e4 = ω2

1(e1)e5 − (cot θ)(traceh4)e5,

and from (2.23) we get

(4.14) ω5
4(e1) − ω2

1(e1) = −(cot θ)(traceh4).

Similarly,

ω5
4(e2) − ω2

1(e2) = −(cot θ)(traceh4),(4.15)

ω5
4(e3) − ω2

1(e3) = 0.(4.16)
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Now, since {e1, e2, e3 = ξ} is a local orthonormal basis of the tangent space
of M , dual to {ω1, ω2, η}, equation (4.9) follows from (4.14)–(4.16).

We now prove:

Theorem 4.4. Let M be a 3-dimensional proper slant submanifold of

a 5-dimensional cosymplectic manifold (M,ϕ, ξ, η, g) with slant angle θ.
Suppose that there exists on M an almost contact structure ϕ such that

(M,ϕ, ξ, η, g) is an almost contact metric manifold satisfying

(4.17) g((∇Xϕ)Y, Z) = 0

for any X , Y , Z normal to the structure vector field. If M is an anti-

invariant submanifold with respect to the structure (ϕ, ξ, η, g), then M is

a minimal submanifold of M .

Proof. Let {e1, e2, e3 = ξ, e4, e5} be an adapted slant basis of the cosym-
plectic manifold (M,ϕ, ξ, η, g) and {e4, e5} be a local orthonormal frame of

T
⊥

M . Since M is an anti-invariant submanifold in (M,ϕ, ξ, η, g), it follows

that {ϕe1, ϕe2} is another local orthonormal basis of T
⊥

M . Consequently,
there exists a function ψ on M such that

(4.18)

{
e4 = (cosψ)ϕe1 + (sinψ)ϕe2,

e4 = (− sinψ)ϕe1 + (cosψ)ϕe2.

Consider X̃ ∈ D; then

ω5
4(X̃) = g(∇

X̃
e4, e5)

and further using (4.17) and (4.18), we get

(4.19) ω5
4(X̃) − ω2

1(X̃) = X̃ψ = dψ(X̃).

Now, consider any X ∈ χ(M), i.e. X = X̃+η(X)ξ. We find, by using (4.17)
and (4.19), that

ω5
4(X) − ω2

1(X) = ω5
4(X̃) − ω2

1(X̃) + η(X)(ω5
4(ξ) − ω2

1(ξ)) = dψ(X̃).

But

dψ(X̃) = dψ(X − η(X)ξ) = dψ(X) − η(X)ξ(ψ).

Therefore

ω5
4 − ω2

1 = dψ − ξ(ψ)η.

Using (4.9), we get

(4.20) dψ − ξ(ψ)η = −(cot θ)((traceh4)ω1 + (traceh5)ω2).

Also, from (4.17) and (4.18), we have

h4
11 = −g(∇e1

e4, e1)(4.21)

= (cosψ)g(h(e1, e1), ϕe1) + (sinψ)g(h(e1, e2), ϕe1).
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Again, from (4.18), we have

(4.22)

{
ϕe1 = (cosψ)e4 − (sinψ)e5,

ϕe2 = (sinψ)e4 + (cosψ)e5.

Hence,

h4
11 = (cos2 ψ)h4

11 − (sin2 ψ)h4
22.

Since h4
33 = h5

33 = 0, we get

(4.23) (sin2 ψ)(traceh4) = 0.

Similarly,

(4.24) (sin2 ψ)(traceh5) = 0.

Now, we set

U = {x ∈M : H(x) 6= 0};
we will show that U = ∅. Indeed, if x ∈ U then

1

3
(traceh) =

1

3
{(traceh4)e4 + (traceh5)e5} = H(x) 6= 0,

and hence

(4.25) traceh4 6= 0 or traceh5 6= 0.

From (4.23) and (4.25), we conclude that ψ ≡ 0 (mod π) in U . Thus, dψ = 0
and ξ(ψ) = 0, and consequently, from (4.20), we have

(cot θ)((traceh4)ω1 + (traceh5)ω2) = 0.

Taking (4.25) into consideration, we get cot θ = 0, contrary to the fact that
M is a proper slant submanifold. Hence U = ∅, and therefore M is minimal.

Finally, we consider an example: Let ϕ be the (1, 1)-tensor field defined
as follows:

ϕ

( 2∑

i=1

(
Xi

∂

∂xi
+Yi

∂

∂yi
+Z

∂

∂z

))
= −X2

∂

∂x1
+X1

∂

∂x2
+Y2

∂

∂y1
−Y1

∂

∂y2
.

Then R
5(ϕ, ξ, η, g) is an almost contact metric manifold. If we take the basis

vectors as in Example 3.1, e1 = (cos θ)∂/∂x1+(sin θ)∂/∂x2, e2 = ∂/∂y1 and
e3 = ξ = ∂/∂z, then

ϕe1 = − sin θ
∂

∂x1
+ cos θ

∂

∂x2

and

g(ϕe1, e2) = η(ϕe1)η(e2) + dx1(ϕe1)dx
1(e2) + dx2(ϕe1)dx

2(e2)

+ dy1(ϕe1)dy
1(e2) + dy2(ϕe1)dy

2(e2)

= 0 =
√
g(ϕe1, ϕe1)

√
g(e2, e2) cosα,
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i.e. α = π/2. Thus the submanifold is anti-invariant with respect to the
structure ϕ. Moreover, ∇ei

ei = 0, hence the submanifold is minimal.
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