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Abstract. This paper studies the Hochschild cohomology of finite-dimensional mono-
mial algebras. If Λ = KQ/I with I an admissible monomial ideal, then we give sufficient
conditions for the existence of an embedding of K[x1, . . . , xr]/〈xaxb for a 6= b〉 into the
Hochschild cohomology ring HH∗(Λ). We also introduce stacked algebras, a new class
of monomial algebras which includes Koszul and D-Koszul monomial algebras. If Λ is a
stacked algebra, we prove that HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉, where N is
the ideal in HH∗(Λ) generated by the homogeneous nilpotent elements. In particular, this
shows that the Hochschild cohomology ring of Λ modulo nilpotence is finitely generated
as an algebra.

Introduction. Let K be a field and let Λ = KQ/I be a finite-dimensio-
nal K-algebra where Q is a quiver and I is an admissible ideal. We assume
that Λ is a monomial algebra, that is, the ideal I is generated by a finite
set of paths ̺. We take the set ̺ to be a minimal generating set for I. The
Hochschild cohomology ring HH∗(Λ) is given by

HH∗(Λ) = Ext∗Λe(Λ, Λ) =
⊕

i≥0

Exti
Λe(Λ, Λ)

with the Yoneda product, where Λe is the enveloping algebra Λop⊗K Λ of Λ.
Let N be the ideal in HH∗(Λ) generated by the homogeneous nilpotent
elements.

The first part of the paper studies subrings of the Hochschild cohomol-
ogy ring of a monomial algebra. In particular, in Theorem 2.13 we give
sufficient conditions for the existence of non-nilpotent elements x1, . . . , xr in
HH∗(Λ) with xaxb = 0 for a 6= b so that K[x1, . . . , xr]/〈xaxb for a 6= b〉 is a
subalgebra of HH∗(Λ). We then introduce a new class of monomial algebras
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which we call (D, A)-stacked monomial algebras (Definition 3.1). The class
of (D, A)-stacked monomial algebras includes the Koszul monomial algebras
as well as the D-Koszul monomial algebras of [2, 6]. The second part of the
paper determines, for a finite-dimensional (D, A)-stacked monomial algebra
with charK 6= 2, the quotient HH∗(Λ)/N , and shows in Theorem 3.4 that
HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉. In particular, we show that
this quotient is finitely generated as a K-algebra and of Krull dimension at
most 1.

It was conjectured in [11] that HH∗(Λ)/N is finitely generated as a ring
for any artin algebra Λ over a commutative artinian ring. Some evidence for
this conjecture came from [11] where it was shown for a finite-dimensional
Nakayama algebra with one relation, and from [8] where it was shown for a
finite-dimensional selfinjective indecomposable algebra of finite representa-
tion type over an algebraically closed field. The conjecture is also known to
be true for any block of a group ring of a finite group [3, 12], and any block
of a finite-dimensional cocommutative Hopf algebra [4] (and see [11]). In [9],
the conjecture is shown for all monomial algebras. The results of this paper
differ from those in [9] in that we obtain a complete description of the ring
HH∗(Λ)/N for a (D, A)-stacked monomial algebra Λ.

1. Background. One of the main tools we use in this paper is the
minimal projective resolution of a monomial algebra Λ over Λe as given
in [1]. This requires the concept of overlaps of [5] and [10]. We recall the
relevant definitions here, once we have introduced some basic notation.

An arrow α starts at the vertex o(α) and ends at the vertex t(α); arrows
in a path are read from left to right. If p = α1 · · ·αn is a path with arrows
α1, . . . , αn then o(p) = o(α1) and t(p) = t(αn). (Note that if n = 0 so that
the path is a vertex v, then o(v) = v = t(v).) We denote the length of a
path p by ℓ(p). We fix ̺ as a minimal generating set for the ideal I, and
refer to an element of ̺ as a relation. An arrow α begins (respectively ends)
a relation r in ̺ if r = αp (respectively r = pα) for some path p. A path p
is a prefix of a path q if there is some path p′ such that q = pp′. A path p is
a suffix of a path q if there is some path p′ such that q = p′p.

Definition 1.1.

(1) A path q overlaps a path p with overlap pu if there are paths u and
v such that pu = vq and 1 ≤ ℓ(u) < ℓ(q). We may illustrate the
definition with the following diagram:

�

p

�oo v //
�

q
�

oo
u

//

Note that we allow ℓ(v) = 0 here.
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(2) A path q properly overlaps a path p with overlap pu if q overlaps p
and ℓ(v) ≥ 1.

(3) A path p has no overlaps with a path q if p does not properly overlap
q and q does not properly overlap p.

To describe a minimal projective resolution of Λ over Λe, we use sets Rn

which we now define recursively. Let

R0 = the set of vertices of Q,

R1 = the set of arrows of Q,

R2 = ̺, the minimal set of paths in the generating set of I.

For n ≥ 3, we say R2 ∈ R2 maximally overlaps Rn−1 ∈ Rn−1 with overlap

Rn = Rn−1u if

(1) Rn−1 = Rn−2p for some path p;
(2) R2 overlaps p with overlap pu;
(3) there is no element of R2 which overlaps p with overlap being a

proper prefix of pu.

We may also say that Rn is a maximal overlap of R2 ∈ R2 with Rn−1

∈ Rn−1.
The set Rn is defined to be the set of all overlaps Rn formed in this way.
The construction of the paths in Rn may be illustrated with the following

diagram of Rn:

�

Rn−2

�

�
Rn−1

�

oo
p

//

�
R2

�

oo
u

//

We also recall from [10] that if Rn
1p = Rn

2 q for Rn
1 , Rn

2 ∈ Rn and paths
p, q, then Rn

1 = Rn
2 and p = q.

Let (P ∗, δ∗) be the minimal projective Λe-resolution of Λ from [1]. Then

Pn =
∐

Rn∈Rn

Λo(Rn) ⊗ t(Rn)Λ

where we write ⊗ for ⊗K throughout.
Any element Rn in Rn may be expressed uniquely as Rn−1

j aj and as

bkR
n−1
k for some Rn−1

j , Rn−1
k ∈ Rn−1 and paths aj , bk. We say that the

elements Rn−1
j and Rn−1

k occur in Rn.
The map

δ2n+1 : P 2n+1 → P 2n

is given as follows. If R2n+1 = R2n
j aj = bkR

2n
k ∈ R2n+1 then

o(R2n+1) ⊗ t(R2n+1) 7→ o(R2n
j ) ⊗ aj − bk ⊗ t(R2n

k )
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where the first tensor lies in the summand corresponding to R2n
j and the

second tensor lies in the summand corresponding to R2n
k .

For even degree elements, any element R2n in R2n may be expressed in
the form pjR

2n−1
j qj for some R2n−1

j ∈ R2n−1 and paths pj , qj with n ≥ 1.

Let R2n = p1R
2n−1
1 q1 = · · · = prR

2n−1
r qr be all expressions of R2n which

contain some element of R2n−1 as a subpath. Then the map

δ2n : P 2n → P 2n−1

is given as follows. If R2n ∈ R2n then, with the above notation,

o(R2n) ⊗ t(R2n) 7→
r∑

j=1

pj ⊗ qj

where the tensor pj ⊗ qj lies in the summand of P 2n−1 corresponding to
R2n−1

j .
If not specified, then it will always be clear from the context in which

summand of a projective module our tensors lie.
We now recall the product structure of HH∗(Λ). An element η of HHn(Λ)

is represented by a map Pn → Λ of Λe-modules; by abuse of notation we
also denote our chosen representative map by η. The liftings of η are choices
of maps Ωmη : Pn+m → Pm, for m ≥ 0, such that the following diagram
commutes:

· · · // Pn+m

Ωmη

��

δn+m
// · · · δn+2

// Pn+1

Ωη
��

δn+1
// Pn

Ω0η
��

η

  @
@

@
@

@
@

@
@

· · · // Pm δm
// · · · δ2

// P 1 δ1
// P 0 δ0

// Λ

For homogeneous elements θ ∈ HHm(Λ) and η ∈ HHn(Λ) represented
by maps Pm → Λ and Pn → Λ respectively, the product θη in Hochschild
cohomology is the element of HHn+m(Λ) which is represented by the map
θ ◦ Ωmη, where ◦ denotes the usual composition of maps. Recall that this
agrees with the Yoneda product and is independent of the choice of repre-
sentatives and liftings for η and θ.

2. Subalgebras of HH∗(Λ). In this section we give sufficient conditions
on a finite-dimensional monomial algebra Λ = KQ/I for HH∗(Λ) to have a
subalgebra of the form

K[x1, . . . , xr]/〈xixj for i 6= j〉.

The first result looks at elements of HH∗(Λ) which are determined by
certain closed paths in the quiver, and for which we need some preliminary
lemmas. The proofs of these lemmas are straightforward, but we include
them for completeness.
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Definition 2.1. A closed path C in Q is a non-trivial path C in KQ
such that C = vCv for some vertex v. We may say that C is a closed path
at the vertex v. We do not make any assumptions with this terminology as
to whether or not C is a non-zero element in the algebra Λ.

If C is a closed path at the vertex v then we say that v is not internal

to C if C = vσ1vσ2v for paths σ1, σ2 implies that σ1 = v or σ2 = v.

Lemma 2.2. Let Λ = KQ/I be a finite-dimensional monomial algebra

where I is an admissible ideal with minimal set of generators ̺. Suppose that

there is a closed path C in the quiver Q at the vertex v such that C 6= pr for

any path p with r ≥ 2 and that Cs ∈ ̺ for some s ≥ 2. Suppose also that

there are no overlaps of Cs with any relation in ̺ \ {Cs}. Then the vertex v
is not internal to C.

Proof. Suppose that v is internal to C; then C = vσ1vσ2v for distinct
non-trivial closed paths σ1, σ2. Since Λ is finite-dimensional, there are natu-
ral numbers N1, N2 with σNi

i ∈ I (for i = 1, 2) and hence there is a subword

wi of σNi

i in ̺, the set of generators for I. But these subwords are in ̺\{Cs}.
Moreover no subword of σi is in ̺ since Cs ∈ ̺. Thus each wi must be of the
form aiσ

ti
i bi with ai a suffix of σi, bi a prefix of σi and ti ≥ 0. We see that C

properly overlaps w1, and w2 properly overlaps C (noting that if ai and bi

are both vertices then ti ≥ 2). So there is a proper overlap of Cs with some
element of ̺ \ {Cs}, which contradicts the hypothesis.

Lemma 2.3. Let a and b be paths of length at least 1 and suppose that

ab = ba. Then there is a path p and integers r, s ≥ 1 such that a = pr and

b = ps.

Proof. The proof is by induction on ℓ(ab). For the initial case, if ℓ(ab) = 2
then we may take a = b = p and we are done. Now assume the assertion is
true for paths z, z′ with ℓ(zz′) < n and zz′ = z′z. Suppose that ℓ(ab) = n
and that ab = ba. If ℓ(a) = ℓ(b) then a = b and we may take p = a = b.
So, without loss of generality, suppose that ℓ(a) > ℓ(b). Then we may write
a = bq = q′b for some paths q, q′ with ℓ(q) = ℓ(q′) ≥ 1. So bqb = ab = ba =
bq′b and hence q = q′. Thus bq = qb with ℓ(b), ℓ(q) ≥ 1 and ℓ(bq) < n. By
the induction hypothesis, there is a path p and integers r, s ≥ 1 such that
b = pr and q = ps. Hence a = pr+s. This completes the proof.

Lemma 2.4. Let a, b and c be paths such that 1 ≤ ℓ(a) < ℓ(c) and

csa = bcs for some s ≥ 1. Then there is a path p and integer t ≥ 2 such that

c = pt.

Proof. Since ℓ(a) = ℓ(b) < ℓ(c) we may write c = bq = q′a for some
paths q, q′ with ℓ(q) = ℓ(q′) ≥ 1. Then

bqbq · · · bqa = csa = bcs = bq′aq′a · · · q′a.
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Using ℓ(q) = ℓ(q′) and ℓ(a) = ℓ(b), it follows that q = q′ and a = b. Hence
c = bq = qb. Thus we may apply Lemma 2.3 to obtain a path p and integers
r, r′ ≥ 1 such that b = pr and q = pr′ . Hence c = pt where t = r + r′ ≥ 2.

We now come to our first result. Recall that ̺ is a fixed minimal gener-
ating set for I and that we refer to an element of ̺ as a relation.

Proposition 2.5. Let Λ = KQ/I be a finite-dimensional monomial

algebra where I is an admissible ideal with minimal set of generators ̺.
Suppose that there is a closed path C in the quiver Q at the vertex v such

that C 6= pr for any path p with r ≥ 2 and that Cs ∈ ̺ for some s ≥ 2.
Suppose also that there are no overlaps of Cs with any relation in ̺ \ {Cs}.

Then there is a subalgebra K[x] of HH∗(Λ) where x is in degree 2 and is

represented by the map P 2 → Λ where, for R2 ∈ R2,

o(R2) ⊗ t(R2) 7→

{
v if R2 = Cs,

0 otherwise.

Proof. From Lemma 2.2 we know that the vertex v is not internal to C.
Let C = α1 · · ·αr where the αi are arrows.

The element Cs in R2 properly overlaps itself with overlap Cs+1. If Cs+1

is not in R3 then there is some path u with ℓ(u) < ℓ(C) such that Csu ∈ R3.
Hence Csu = vR2 for some path v and R2 ∈ R2. But then R2 overlaps Cs

and so by hypothesis R2 = Cs. Now Lemma 2.4 contradicts the hypothesis
that C 6= pr for any path p with r ≥ 2. Hence Cs+1 ∈ R3. Since there are
no overlaps of Cs with any other relation in ̺, this is also the only element
of R3 in which Cs occurs.

Since α1 ∈ R1, we may illustrate the element Cs+1 ∈ R3 by the following
diagram:

� α1··· �

oo
Cs

//

� �
oo Cs

//

oo
C

//

The image of o(Cs+1)⊗ t(Cs+1) under the map P 3 δ3

→ P 2 is v⊗C−C⊗v
in the summand corresponding to the element Cs of R2. For R2 ∈ R2, define
x : P 2 → Λ by

o(R2) ⊗ t(R2) 7→

{
v if R2 = Cs,

0 otherwise.

Then the composition P 3 δ3

→ P 2 x
→ Λ is zero. Moreover, since the image of

any composition P 2 δ2

→ P 1 → Λ is in the Jacobson radical of Λ, it is clear
that x does not lie in Im δ2∗, where δ2∗ is the induced map HomΛe(P 1, Λ) →
HomΛe(P 2, Λ). Thus x represents a non-zero element of HH2(Λ).
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Now, the element Cs ∈ R2 overlaps the path C with overlap Cs. So we
have the situation:

� α1···

Cs

�

�
Cs

�

oo
C

//

�
Cs

�

oo
Cs−1

//

Thus it is clear from Definition 1.1 that the element Cs in R2 maximally
overlaps the element Cs+1 in R3 with overlap C2s in R4. We may illustrate
this element C2s ∈ R4 more simply by:

�

Cs

�

�
Cs

�

�

Cs

�

Moreover, since there are no overlaps of Cs with any element of R2

except Cs it follows that there are no overlaps of C with any element of
R2 except Cs. The construction of elements of R4 now gives that the only
element of R4 which has Cs+1 as a subpath is C2s.

The map x lifts to the map Ωx : P 3 → P 1 given by

o(R3) ⊗ t(R3) 7→

{ ∑r−1
j=0 α1 · · ·αj ⊗ αj+2 · · ·αr if R3 = Cs+1,

0 otherwise.

The projective P 4 has summand Λo(C2s) ⊗ t(C2s)Λ. From Lemma 2.4
and using C 6= pr for any path p with r ≥ 2, the expressions of C2s which
contain some element of R3 as a subpath are precisely those of the form
CjCs+1Cs−j−1 for j = 0, 1, . . . , s−1. So, the image of o(C2s)⊗ t(C2s) under

the map P 4 δ4

→ P 3 is
∑s−1

j=0 Cj ⊗ Cs−j−1, which lies in the summand of P 3

corresponding to the element Cs+1 of R3. A simple computation shows that
x may be lifted to the map Ω2x : P 4 → P 2 given by

o(R4) ⊗ t(R4) 7→

{
v ⊗ v in the Cs-component if R4 = C2s,

0 otherwise.

Thus x2 in HH4(Λ) is represented by the element P 4 → Λ with

o(R4) ⊗ t(R4) 7→

{
v if R4 = C2s,

0 otherwise.

In order to construct xn for n > 2 as a map P 2n → Λ, we consider the
sets R2n and R2n+1. Inductively, it may be verified that C(n−1)s+1 ∈ R2n−1,
Cns is the only element in R2n which has C(n−1)s+1 as a subpath, and
Cns+1 is the only element in R2n+1 which has Cns as a subpath. Thus, for
n ≥ 2 and from Section 1, the map δ2n+1 : P 2n+1 → P 2n is given, on the
component corresponding to Cns+1 ∈ R2n+1, by

o(Cns+1) ⊗ t(Cns+1) 7→ v ⊗ C − C ⊗ v
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with image lying in the component corresponding to Cns ∈ R2n, and the
map δ2n : P 2n → P 2n−1 is given, on the component corresponding to Cns

∈ R2n, by

o(Cns) ⊗ t(Cns) 7→
s−1∑

j=0

Cj ⊗ Cs−j−1

with image lying in the component corresponding to C(n−1)s+1 ∈ R2n−1. It
is now straightforward to show that the map Ω2(n−1)x : P 2n → P 2n−2 given
by

o(R2n) ⊗ t(R2n) 7→

{
v ⊗ v in the C(n−1)s-component if R2n = Cns,

0 otherwise,

is indeed a lifting of x, and hence that xn is represented by P 2n → Λ with

o(R2n) ⊗ t(R2n) 7→

{
v if R2n = Cns,

0 otherwise.

In addition, xn is a non-zero element of HH2n(Λ) for all n ≥ 1, since any

composition of the form P 2n δ2n

−→ P 2n−1 → Λ has image in the Jacobson
radical of Λ.

Hence x is a non-nilpotent element of HH∗(Λ) and generates a subalgebra
K[x] of HH∗(Λ). This completes the proof.

Example 2.6. Let Q be the quiver

·

β
��

·
α 77oooooo ·

δggOOOOOO

·ε

ggOOOOOO γ

77oooooo

Let Λ = KQ/I where C = αβγδβε and I is the ideal 〈C2, αβε, δβγ〉. Note
that C is a closed path which satisfies the conditions of Proposition 2.5 and
moreover has repeated arrows. From Proposition 2.5, there is a subalgebra
K[x] of HH∗(Λ) where x is in degree 2.

In the next result we consider elements of HH∗(Λ) which come from
closed trails or generalizations of such paths. We start with some definitions.

Definition 2.7.

(1) A closed trail T in Q is a non-trivial closed path T = α1 · · ·αm in
KQ such that α1, . . . , αm are all distinct arrows.

(2) For A ≥ 1, a closed A-trail T in Q is a non-trivial closed path
T = α1 · · ·αm in KQ such that α1, . . . , αm are all distinct paths of
length A.
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Thus if A = 1 then a closed 1-trail is a closed trail. Since Q is a finite
quiver, there are a finite number of closed A-trails for each A ≥ 1. If A > 1,
then an A-trail may have repeated arrows.

Definition 2.8. Let p be any path and let q be a closed path in Q.
Then p lies on q if p is a subpath of qs for some s ≥ 1.

Fix A ≥ 1. Let T be a closed A-trail in Q at the vertex v; for ease of
notation write T = α0α1 · · ·αm−1 for m ≥ 1, where the αi are distinct paths
of length A. Let ei = o(αi) for i = 0, . . . , m − 1, so e0 = v. Let

T1 = α1 · · ·αm−1α0,

T2 = α2 · · ·α0α1,
...

Tm−1 = αm−1α0 · · ·αm−2

and set T0 = T . Then the paths T0, T1, . . . , Tm−1 are all of length Am and
lie on the closed path α0α1 · · ·αm−1. We say that {T0, T1, . . . , Tm−1} is a
complete set of closed A-trails on α0α1 · · ·αm−1.

Fix L ≥ 2 and write L = Nm + l where 0 ≤ l ≤ m − 1 and N ≥ 0.
For t ∈ N, let [t] ∈ {0, 1, . . . , m − 1} denote the residue of t modulo m. Let
W = TN

0 α0α1 · · ·αl−1 with the conventions that if N = 0 then TN
0 = e0 and

if l = 0 then W = TN
0 . More generally, for k = 0, 1, . . . , m − 1, define

σk(W ) = TN
k αkαk+1 · · ·αk+l−1

with the conventions that

(i) if t ≥ m then αt = α[t],

(ii) if N = 0 then TN
k = ek,

(iii) if l = 0 then σk(W ) = TN
k .

Note that, for all k, σk(W ) lies on the A-trails T0, T1, . . . , Tm−1. Define ̺T

to be the set

̺T = {W, σ(W ), . . . , σm−1(W )}.

We say that ̺T is the set of paths of length AL that are associated to the

A-trail T . Note that {W, σ(W ), . . . , σm−1(W )} is also the set of paths of
length AL that are associated to each A-trail Tk for k = 0, . . . , m − 1.

We keep this notation throughout the rest of the paper.

Proposition 2.9. Let Λ = KQ/I be a finite-dimensional monomial

algebra, where I is an admissible ideal with minimal set of generators ̺.
Let A ≥ 1. Let T be a closed A-trail in the quiver Q at the vertex v;
write T = α0α1 · · ·αm−1 where the αi are distinct paths of length A in Q.

Suppose that there is some integer L ≥ 2 such that ̺ contains the set

̺T = {W, σ(W ), . . . , σm−1(W )} of paths of length AL that are associated
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to the A-trail T . Let L = Nm + l with 0 ≤ l ≤ m − 1 and N ≥ 0. Suppose

also that , for each i, the path αi has no overlaps with any relation in ̺ \̺T .

Then there exists a subalgebra K[x] of HH∗(Λ) such that x is in degree

2m/gcd(L, m) and is represented by the map P 2m/gcd(L,m) → Λ, where, for

R2m/gcd(L,m) ∈ R2m/gcd(L,m),

o(R2m/gcd(L,m))⊗t(R2m/gcd(L,m)) 7→





o(Tk) if R2m/gcd(L,m) = T
L/gcd(L,m)
k

for k = 0, . . . , m − 1,

0 otherwise.

Proof. With the above notation we have T = T0, W = TN
0 α0 · · ·αl−1,

αi is the prefix of length A of σi(W ), and α[l+i−1] is the suffix of length A

of σi(W ).

Since no path αi has overlaps with any relation in ̺ \ ̺T , the path W
has no overlaps with any relation in ̺ \ ̺T . Thus if a relation R2 overlaps
W then R2 ∈ ̺T . The element σ(W ) in R2 maximally overlaps the ele-
ment W ∈ R2 with overlap Wα[l] ∈ R3. The relation σl(W ) maximally

overlaps Wα[l] ∈ R3 with overlap Wσl(W ) in R4. We continue in this way

with maximal overlaps to obtain the element Wσl(W ) · · ·σl(µ−1)(W ) in R2µ

where µ = m/gcd(L, m) and, moreover, µ is minimal such that we obtain
an element of Rn with n even which is also a closed path in Q. Note that

Wσl(W ) · · ·σl(µ−1)(W ) = T
L/gcd(L,m)
0 . Similarly we may use a sequence of

maximal overlaps to give elements T
L/gcd(L,m)
k in R2µ, for k = 1, . . . , m− 1.

Let R2µ
k = T

L/gcd(L,m)
k for k = 0, . . . , m − 1, and observe that o(R2µ

k ) =

t(R2µ
k ) = ek.

Noting that o(Tk) = ek, for R2µ ∈ R2µ, define x : P 2µ → Λ by

o(R2µ) ⊗ t(R2µ) 7→

{
ek if R2µ = R2µ

k for k = 0, . . . , m − 1,

0 otherwise.

Now consider the set R2µ+1. The relation σ[l(µ−1)+1](W ) maximally over-

laps R2µ
0 to give R2µ

0 α0 in R2µ+1 (since R2µ
0 is a closed path in Q). We may

write this element of R2µ+1 as R2µ+1
0 = R2µ

0 α0 = α0R
2µ
1 . Similarly, we may

define elements R2µ+1
k = R2µ

k αk = αkR
2µ
k+1 ∈ R2µ+1 for k = 0, . . . , m − 1.

Moreover none of the R2µ
k occur in any other elements of R2µ+1, since if a

relation R2 overlaps an element of ̺T then R2 ∈ ̺T , and if an element of ̺T

overlaps a relation R2 then also R2 ∈ ̺T .

The image of o(R2µ+1
k ) ⊗ t(R2µ+1

k ) under the map P 2µ+1 δ2µ+1

−→ P 2µ is
ek⊗αk−αk⊗ek+1 with the first tensor in the summand of P 2µ corresponding
to the element R2µ

k and the second tensor in the summand corresponding

to the element R2µ
k+1. Hence the composition P 2µ+1 δ2µ+1

−→ P 2µ x
→ Λ is zero.
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Moreover, since the image of any composition P 2µ δ2µ

−→ P 2µ−1 → Λ is in
the Jacobson radical of Λ, it is clear that x does not lie in Im δ2µ∗. Thus x
represents a non-zero element of HH2µ(Λ).

By considering maximal overlaps it can be verified in a similar way to
that shown in the proof of Proposition 2.5 that there is a lifting of x to the
map P 4µ → P 2µ given by

o(R4µ) ⊗ t(R4µ) 7→





ek ⊗ ek in the T
L/gcd(L,m)
k -component

if R4µ = T
2L/gcd(L,m)
k for k = 0, . . . , m − 1,

0 otherwise.

Note that T
2L/gcd(L,m)
k = (R2µ

k )2 for k = 0, . . . , m − 1. Then x2 in HH4µ(Λ)
is represented by the element P 4µ → Λ with

o(R4µ) ⊗ t(R4µ) 7→

{
ek if R4µ = T

2L/gcd(L,m)
k for k = 0, . . . , m − 1,

0 otherwise.
Using similar computations to those in the proof of Proposition 2.5, we

deduce, more generally, that xn is represented by P 2µn → Λ with

o(R2µn) ⊗ t(R2µn) 7→

{
ek if R2µn = T

nL/gcd(L,m)
k for k = 0, . . . , m − 1,

0 otherwise,

and xn is a non-zero element of HH2µn(Λ) for all n ≥ 1.
Hence x is a non-nilpotent element of HH∗(Λ) and generates the required

subalgebra K[x] of HH∗(Λ).

The following corollary is the special case when A = 1.

Corollary 2.10. Let Λ = KQ/I be a finite-dimensional monomial

algebra, where I is an admissible ideal with minimal set of generators ̺. Let

T be a closed trail in the quiver Q at the vertex v; write T = α0α1 · · ·αm−1

where the αi are distinct arrows in Q. Suppose that there is some integer

L ≥ 2 such that ̺ contains the set ̺T = {W, σ(W ), . . . , σm−1(W )} of paths

of length L that lie on the trail T . Let L = Nm + l with 0 ≤ l ≤ m − 1 and

N ≥ 0. Suppose also that , for each i, the arrow αi does not begin or end any

relation in ̺ \ ̺T .

Then there exists a subalgebra K[x] of HH∗(Λ) where x is in degree

2m/gcd(L, m) and is represented by the map P 2m/gcd(L,m) → Λ where, for

R2m/gcd(L,m) ∈ R2m/gcd(L,m),

o(R2m/gcd(L,m))⊗t(R2m/gcd(L,m)) 7→





o(Tk) if R2m/gcd(L,m) = T
L/gcd(L,m)
k

for k = 0, . . . , m − 1,

0 otherwise.

Remark. (1) Suppose that a trail T satisfies the conditions of Corol-
lary 2.10 and has a repeated vertex. Then T = p1p2p3 for paths pi with
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p1 ∈ vKQw, p2 ∈ wKQw and p3 ∈ wKQv for some vertices v, w, and
1 ≤ ℓ(p2) < ℓ(T ). Since Λ is a finite-dimensional monomial algebra, there is
some positive integer N with pN

2 ∈ I and hence there is a subpath q of pN
2

which lies in ̺. Now the first arrow of q is an arrow on the trail T and so q
must be in ̺T since the conditions of Corollary 2.10 hold. Hence N = 1 and
thus p2 ∈ I.

(2) In the case A = 1 and m = 1, the closed trail T is simply a loop α
and ̺T = {αL} for some L ≥ 2. Furthermore if αL ∈ ̺ and α neither begins
nor ends any relation in ̺ \ {αL} then both Propositions 2.5 and 2.9 apply.

Example 2.11. This is an example of an A-trail with A = 2. Let Λ =
KQ/I where Q is the quiver

· α // ·

β
��

·

δ

OO

·
γ

oo

and I = 〈αβγδαβ, γδαβγδ〉. We may apply Proposition 2.9 with 2-trail
αβγδ to show that K[x] is a subalgebra of HH∗(Λ) where x is in degree 4.

Example 2.12. In this example A = 1 and the trail has a repeated
vertex. Let Λ = KQ/I where Q is the quiver

·

δ
��

·
β

// ·

γ 77oooooo
αoo

·ε

ggOOOOOO

and I = 〈αβ, βγ, γδ, δε, εα〉. Then we may apply Corollary 2.10 with trail
αβγδε to show that K[x] is a subalgebra of HH∗(Λ) where x is in degree 10.

Let Λ = KQ/I be a finite-dimensional monomial algebra, where I is an
admissible ideal with minimal set of generators ̺. Then ̺ is a finite set.
Thus there are a finite number of closed paths C1, . . . , Cu in Q such that
for each Ci with 1 ≤ i ≤ u, we have Ci 6= pri

i for any path pi with ri ≥ 2,
Csi

i ∈ ̺ for some si ≥ 2 and there are no overlaps of Csi

i with any relation
in ̺ \ {Csi

i }. By Proposition 2.5, for each Ci there is a map xi of degree 2
from P 2 to Λ. We call xi the element of HH2(Λ) corresponding to the closed

path Ci.

Also, for each A ≥ 2, there are a finite number of closed A-trails Tu+1, . . .
. . . , Tr in Q such that for each Ti with u + 1 ≤ i ≤ r, there is some integer
Li ≥ 2 so that the set ̺Ti

of paths of length ALi that are associated to the
A-trail Ti is contained in ̺ but that no path αi j of length A on the A-trail
Ti has overlaps with a relation in ̺ \ ̺Ti

, where Ti = αi 0αi 1 · · ·αi mi−1. We
say that two A-trails are distinct if neither lies on the other.
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By Proposition 2.9, for each Ai-trail Ti there is a map xi of degree
2mi/gcd(Li, mi) from P 2mi/gcd(Li,mi) to Λ. We say that xi is the element of
HH2mi/gcd(Li,mi)(Λ) corresponding to the Ai-trail Ti.

Keeping the above notation, we now combine Propositions 2.5 and 2.9
in the following theorem.

Theorem 2.13. Let Λ = KQ/I be a finite-dimensional monomial alge-

bra, where I is an admissible ideal with minimal set of generators ̺.

Let C1, . . . , Cu be closed paths in the quiver Q at the vertices v1, . . . , vu

respectively , such that for each Ci with 1 ≤ i ≤ u, we have Ci 6= pri

i for any

path pi with ri ≥ 2, Csi

i ∈ ̺ for some si ≥ 2 and there are no overlaps of

Csi

i with any relation in ̺ \ {Csi

i }.
Let Tu+1, . . . , Tr be closed paths in the quiver Q such that the Ti are

distinct closed Ai-trails with Ai ≥ 1. For each u + 1 ≤ i ≤ r, write Ti =
αi 0αi 1 · · ·αi mi−1 where each αi j is a path of length Ai. Suppose that there

are integers Li ≥ 2 so that the set ̺Ti
of paths of length AiLi which are

associated to the trail Ti is contained in ̺ but no path αi j has overlaps with

any relation in ̺ \ ̺Ti
.

Then

K[x1, . . . , xr]/〈xaxb for a 6= b〉

is a subalgebra of HH∗(Λ) where xj corresponds to the closed path Cj for

j = 1, . . . , u and to the closed trail Tj for j = u + 1, . . . , r.

For j = 1, . . . , u, the vertices v1, . . . , vu are distinct , and the element xj

corresponding to the closed path Cj is in degree 2 and is represented by the

map P 2 → Λ where, for R2 ∈ R2,

o(R2) ⊗ t(R2) 7→

{
vj if R2 = C

sj

j ,

0 otherwise.

For j = u + 1, . . . , r, let Tj,0, . . . , Tj,mj−1 denote the complete set of

closed Aj-trails on the closed path Tj. The element xj corresponding to

the closed Aj-trail Tj is, in the above notation, in degree 2µj where µj =
mj/gcd(Lj , mj) and is represented by the map P 2µj → Λ where, for R2µj

∈ R2µj ,

o(R2µj ) ⊗ t(R2µj ) 7→





o(Tj,k) if R2µj = T
Lj/gcd(Lj ,mj)
j,k

for k = 0, . . . , mj − 1,

0 otherwise.

Proof. We start by showing that the vertices v1, . . . , vu are distinct. Sup-
pose that there are distinct closed paths Ca, Cb at the vertex va = vb such
that Csa

a , Csb

b ∈ ̺ for some sa, sb ≥ 2 and there are no overlaps of Csa
a with

any relation in ̺ \ {Csa
a } or of Csb

b with any relation in ̺ \ {Csb

b }. The alge-
bra Λ is finite-dimensional so there is some N ≥ 1 with (CaCb)

N ∈ I. Since
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no subword of Ca or of Cb is in ̺, there is some relation in ̺ of the form
w(CaCb)

N0w′ for some paths w, w′ and N0 ≥ 0.

If w is trivial, that is, w = va, then w(CaCb)
N0w′ overlaps Csa

a , which
contradicts the hypothesis on Ca. If w is non-trivial and is a subword of Cb,
so that there is a path p with Cb = pw, then w(CaCb)

N0w′ overlaps Csb

b ,
which contradicts the hypothesis on Cb. Finally, if Cb is a subword of w
with w = pCb and p non-trivial, then w(CaCb)

N0w′ overlaps Csa
a , which

contradicts the hypothesis on Ca. Hence the vertices v1, . . . , vu are distinct.

For j = 1, . . . , u, define xj : P 2 → Λ by

o(R2) ⊗ t(R2) 7→

{
vj if R2 = C

sj

j ,

0 otherwise.

By Proposition 2.5, each of the elements x1, . . . , xu is in degree 2 and gen-
erates a subalgebra of HH∗(Λ) isomorphic to K[x].

Now there is a lifting of xa to the map P 4 → P 2 given by

o(R4) ⊗ t(R4) 7→

{
va ⊗ va in the Csa

a -component if R4 = C2sa
a ,

0 otherwise,

and hence, for a 6= b, the composition xaxb is zero since the vertices va

and vb are distinct.

For j = 1, . . . , u, each xj is non-nilpotent, so if for some t ≥ 1 and scalars
ci ∈ K we have

∑u
i=1 cix

t
i = 0 then 0 = xj

∑u
i=1 cix

t
i = cjx

t+1
j and hence

cj = 0. Thus

K[x1, . . . , xu]/〈xaxb for a 6= b〉

is a subalgebra of HH∗(Λ).

For j = u+1, . . . , r, let Tj,0, . . . , Tj,mj−1 denote the complete set of closed
Aj-trails on the closed path Tj . Define xj : P 2µj → Λ by

o(R2µj ) ⊗ t(R2µj) 7→





o(Tj,k) if R2µj = T
Lj/gcd(Lj ,mj)
j,k

for k = 0, . . . , mj − 1,

0 otherwise.

By Proposition 2.9, each of the elements xu+1, . . . , xr generates a subalgebra
of HH∗(Λ) isomorphic to K[x] and, with the above notation, xj is in degree
2mj/gcd(Lj , mj) = 2µj .

Next we show that xaxb = 0 for 1 ≤ a ≤ r and u + 1 ≤ b ≤ r.

Let Tb = α0α1 · · ·αmb−1 with o(αi) = ei for k = 0, . . . , mb − 1. Keeping
the notation of Proposition 2.9, let ̺Tb

= {Wb, σ(Wb), . . . , σ
mb−1(Wb)} be

the set of paths of length AbLb that are associated to the trail Tb and let µb =
mb/gcd(Lb, mb). For k = 0, . . . , mb−1, let R2µb

k ∈ R2µb , R2µb+1
k ∈ R2µb+1 be

defined as in the proof of Proposition 2.9. Recall that R2µb

k = T
Lb/gcd(Lb,mb)
b,k ,

so that o(R2µb

k ) = t(R2µb

k ), and also that R2µb+1
k = R2µb

k αk. Again from the
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proof of Proposition 2.9, the map xb lifts to the map P 2µb+1 → P 1 given by

o(R2µb+1) ⊗ t(R2µb+1) 7→





∑Ab

i=1 βk 1 · · ·βk i−1 ⊗ βk i+1 · · ·βk Ab

if R2µb+1 = R2µb+1
k for k = 0, . . . , mb − 1,

0 otherwise,

where the path αk = βk 1βk 2 · · ·βk Ab
with arrows βk 1, βk 2, . . . , βk Ab

, and
where βk 1 · · ·βk i−1⊗βk i+1 · · ·βk Ab

lies in the component Λo(βk i)⊗ t(βk i)Λ
of P 1.

For each k = 0, . . . , mb − 1, the only element of R2µb+2 which con-
tains R2µb+1

k as a subpath is obtained from σk(Wb) in R2 maximally over-

lapping R2µb+1
k , with overlap R2µb

k σk(Wb). Let R2µb+2
k = R2µb

k σk(Wb) for
k = 0, . . . , mb − 1. Then the map xb lifts to the map P 2µb+2 → P 2 given by

o(R2µb+2)⊗t(R2µb+2) 7→





o(σk(Wb)) ⊗ t(σk(Wb)) if R2µb+2 = R2µb+2
k

for k = 0, . . . , mb − 1,

0 otherwise.
Hence, for 1 ≤ a ≤ u, the composition of xb with xa is zero since the relation
Csa

a is not in ̺Tb
.

For u + 1 ≤ a ≤ r, we now specify further liftings of the map xb in order
to compute xbxa.

Let Rn ∈ Rn for some n ≥ 2µb be such that Rn contains some element of
̺Tb

as a subpath. Then Rn is formed from elements of ̺Tb
in the sense that

Rn lies on Tb. Moreover there are precisely mb elements of Rn which are
formed in this way. We may label these elements as Rn

k for k = 0, . . . , mb−1

in such a way that the element Rn
k starts at the vertex ek. Since R2µb

k is

a path in ekKQek, we also have R2µb+q
k = R2µb

k Rq
k for k = 0, . . . , mb − 1,

Rq
k ∈ Rq and q ≥ 2. Thus for each q ≥ 2, xb lifts to the map P 2µb+q → P q

given by

o(R2µb+q) ⊗ t(R2µb+q) 7→





o(Rq
k) ⊗ t(Rq

k) if R2µb+q = R2µb+q
k

for k = 0, . . . , mb − 1,

0 otherwise.
It is now clear that the composition xbxa is zero for a 6= b and u+1 ≤ a ≤ r,
since for each n, the elements of the sets Rn formed from the Aa-trail Ta

are distinct from the elements of the sets Rn formed from the Ab-trail Tb.

As noted earlier, for each i = 1, . . . , r, the elements xi being non-
nilpotent implies that if

∑r
i=1 cix

ti
i is a homogeneous element in HH∗(Λ)

for some ti ≥ 1 and scalars ci ∈ K and if
∑r

i=1 cix
ti
i = 0, then each ci = 0.

Hence

K[x1, . . . , xr]/〈xaxb for a 6= b〉

is a subalgebra of HH∗(Λ) and the proof is complete.
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In Section 3, we apply this theorem to the class of (D, A)-stacked mono-
mial algebras (see Definition 3.1), which includes the Koszul monomial al-
gebras, but we first present two examples illustrating Theorem 2.13.

Example 2.14. Distinct Ai-trails considered in Theorem 2.13 may have
vertices in common as the following example illustrates. Let Λ = KQ/I
where Q is the quiver

·

β
��

·

η

��
·

αggOOOOOO

ζ 77oooooo

· γ

77oooooo ·θ

ggOOOOOO

and I = 〈αβ, βγ, γα, ζη, ηθ, θζ〉. Then we may apply Theorem 2.13 with
trails αβγ and ζηθ (so Ai = 1) to show HH∗(Λ) has K[x, y]/(xy) as a
subalgebra where x and y are both in degree 6.

Example 2.15. This example shows that distinct closed paths consid-
ered in Theorem 2.13 may have arrows in common. Let Λ = KQ/I where
Q is the quiver

· α // ·

β
��

·
ηoo

·

δ

OO

·
γ

oo
ε

// ·

ζ

OO

C1 = αβγδ, C2 = ζηβε and I is the ideal 〈C2
1 , C2

2 , αβε〉. Then, from The-
orem 2.13, K[x, y]/(xy) is a subalgebra of HH∗(Λ) where x and y are in
degree 2.

Since HH∗(Λ) is a graded commutative ring, we have the following corol-
lary to Theorem 2.13.

Corollary 2.16. With the hypotheses and notation of Theorem 2.13,
let S = K[x1, . . . , xr]/〈xaxb for a 6= b〉. Then S ∩ N = {0} and hence there

is an embedding of S into HH∗(Λ)/N .

3. (D, A)-stacked algebras. In this section we determine the quotient
HH∗(Λ)/N for all (D, A)-stacked monomial algebras Λ when char K 6= 2,
showing that the subalgebra of Corollary 2.16 is isomorphic to the ring
HH∗(Λ)/N . This class includes all Koszul monomial algebras. Moreover, we
show that HH∗(Λ)/N is a finitely generated K-algebra of Krull dimension
at most 1, giving an affirmative answer to the conjecture of [11] for these
algebras.

Definition 3.1. Let Λ = KQ/I be a finite-dimensional monomial alge-
bra, where I is an admissible ideal with minimal set of generators ̺. Then
Λ is said to be a (D, A)-stacked monomial algebra if there is some D ≥ 2
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and A ≥ 1 such that, for all n ≥ 2 and Rn ∈ Rn,

ℓ(Rn) =

{ n
2D if n is even,
n−1

2 D + A if n is odd.

In particular all relations in ̺ are of length D.

Remark. By [5], a monomial algebra Λ is (D, A)-stacked if and only if
̺ = R2 has the following properties:

(1) every path in ̺ is of length D;
(2) if R2

2 ∈ R2 properly overlaps R2
1 ∈ R2 with overlap R2

1u then ℓ(u)
≥ A and there exists R2

3 ∈ R2 which properly overlaps R2
1 with

overlap R2
1u

′, ℓ(u′) = A and u′ is a prefix of u.

For D ≥ 2, A ≥ 1 with A dividing D we now give an algebra Λ which is
a (D, A)-stacked monomial algebra. We denote the global dimension of an
algebra Λ by gldimΛ.

Example 3.2. Let D ≥ 2, A ≥ 1 with D = dA for some d ≥ 2.
Let Q be the oriented cycle with D vertices v0, v1, . . . , vD−1 and D arrows
α0, α1, . . . , αD−1 with o(αi) = vi for all i. Let I be the ideal

〈αk Aαk A+1 · · ·αD−1α0 · · ·αk A−1 : 0 ≤ k ≤ d − 1〉.

Then Λ = KQ/I is a (D, A)-stacked monomial algebra of infinite global
dimension.

In Proposition 3.3 we will show that if Λ is a (D, A)-stacked monomial
algebra with gldimΛ ≥ 4 then necessarily A divides D.

Let r denote the Jacobson radical of a finite-dimensional algebra Λ. The
Ext algebra E(Λ) of Λ is defined by

E(Λ) = Ext∗Λ(Λ/r, Λ/r) =
⊕

i≥0

ExtiΛ(Λ/r, Λ/r).

Remark. (1) From [7], the (D, A)-stacked monomial algebras are pre-
cisely the monomial algebras for which every projective module in the mini-
mal projective resolution of Λ/r over Λ is generated in a single degree and for
which the Ext algebra of Λ is finitely generated as a K-algebra. Moreover,
from [7], E(Λ) is generated in degrees 0, 1, 2 and 3.

(2) The (2, 1)-stacked monomial algebras are precisely the quadratic
monomial algebras, or equivalently, the Koszul monomial algebras. In this
case, E(Λ) is generated in degrees 0 and 1.

(3) The (D, 1)-stacked monomial algebras for D ≥ 2 are also known
as D-Koszul monomial algebras ([2, 6]). In this case, E(Λ) is generated in
degrees 0, 1 and 2.
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(4) The algebra defined in Example 2.11 is a (6, 2)-stacked monomial
algebra and, using [10], one may check that E(Λ) is generated in degrees 0,
1, 2 and 3, but not in degrees 0, 1 and 2.

We now give some properties of these algebras.

Proposition 3.3. Let Λ be a (D, A)-stacked monomial algebra. Then

(1) for n ≥ 2, each path in R2n can be written as R2
1R

2
2 · · ·R

2
n with

R2
i ∈ ̺;

(2) if gldimΛ ≥ 3 then D > A;
(3) if gldimΛ ≥ 4 then D = dA for some d ≥ 2.

Proof. (1) The proof is by induction on n. The result is clear when n = 1.
Assume true for n− 1 and consider a path R2n ∈ R2n. Write R2n = R2n−1q
and R2n−1 = R2n−2q′ for some paths q, q′, so that R2n = R2n−2q′q. By
induction, R2n−2 = R2

1 · · ·R
2
n−1 with R2

i ∈ ̺. We know that ℓ(R2n−2) =
(n − 1)D and ℓ(R2n) = nD so that ℓ(q′q) = D. Suppose that R2n is the
overlap formed from R2

n ∈ R2 maximally overlapping R2n−1. Then R2
n is

a suffix of q′q. Since R2
n has length D it follows that R2

n = q′q and so
R2n = R2

1 · · ·R
2
n−1R

2
n, and the proof is complete.

(2) Suppose gldimΛ ≥ 3. Then R3 6= ∅ so there is some R3 ∈ R3,
and ℓ(R3) = D + A. The element R3 is constructed from an element of R2

maximally overlapping an element of R2, and both these elements have
length D. Hence D + A < 2D so that A < D.

(3) Suppose gldimΛ ≥ 4. Then there is some R4 ∈ R4. From (1) we may
write R4 = R2

1R
2
3 with R2

1, R
2
3 ∈ ̺ and suppose R2

2 is the relation which
maximally overlaps R2

1; we illustrate R4 with the following diagram:

�

R2
1

�

�
R2

2
�

�

R2
3

�

The path R2
3 ∈ R2 overlaps R2

2 ∈ R2 with overlap of length 2D − A. Then

there is some relation, R̃2
3 say, which maximally overlaps R2

2 with overlap of

length D + A. The paths R2
2, R2

3 and R̃2
3 are placed as follows:

�

R2
2

�

�
R̃2

3
�

�
R2

3
�

By maximality, D+A ≤ 2D−A. If R2
3 = R̃2

3 then D = 2A and we are done.

So suppose R2
3 6= R̃2

3 and D > 2A.

Now the path R2
3 ∈ R2 overlaps R̃2

3 ∈ R2 with overlap of length 2D−2A.

Then there is some relation, R̃2
4 say, which maximally overlaps R̃2

3 with
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overlap of length D +A. By maximality, D +A ≤ 2D−2A. If R2
3 = R̃2

4 then

D = 3A and we are done. So suppose R2
3 6= R̃2

4 and D > 3A.
Continuing in this way, at the (d−1)-st stage we get D+A ≤ 2D−(d−1)A

and so D ≥ dA. This process must terminate eventually with equality and
hence D = dA for some d ≥ 2.

With the notation of Proposition 3.3, if R2n∈R2n is written as R2
1 · · ·R

2
n,

then we say that R2
1 is the first relation in R2n, and that R2

n is the last

relation in R2n.

We now prove our main theorem, and include in our hypotheses the re-
quirement that gldimΛ ≥ 4. Note that if gldimΛ is finite then HH∗(Λ)/N ∼=
K and there are no closed paths C or A-trails T which satisfy the hypotheses
of Theorem 3.4.

Theorem 3.4. Let Λ = KQ/I be a finite-dimensional (D, A)-stacked
monomial algebra, where I is an admissible ideal with minimal set of gen-

erators ̺. Suppose charK 6= 2 and gldimΛ ≥ 4.
Let C1, . . . , Cu be all the closed paths in the quiver Q at the vertices

v1, . . . , vu respectively , such that for each Ci with 1 ≤ i ≤ u, we have Ci 6= pri

i
for any path pi with ri ≥ 2, Cd

i ∈ ̺ where d = D/A, and there are no overlaps

of Cd
i with any relation in ̺ \ {Cd

i }.
Let Tu+1, . . . , Tr be all the distinct closed A-trails in the quiver Q such

that for each Ti with u + 1 ≤ i ≤ r, the set ̺Ti
of paths of length D which

are associated to the trail Ti is contained in ̺ but , if Ti = αi 0αi 1 · · ·αi mi−1,
then no path αi j of length A has overlaps with any relation in ̺ \ ̺Ti

.

Then

HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉

where

(a) for j = 1, . . . , u, the vertices v1, . . . , vu are distinct , and the ele-

ment xj corresponding to the closed path Cj is in degree 2 and is

represented by the map P 2 → Λ where, for R2 ∈ R2,

o(R2) ⊗ t(R2) 7→

{
vj if R2 = Cd

j ,

0 otherwise,

(b) for j = u + 1, . . . , r, let Tj,0, . . . , Tj,mj−1 denote the complete set of

A-trails on the closed path Tj . Then the element xj corresponding to

the closed A-trail Tj is, in the above notation, in degree 2µj where

µj = mj/gcd(d, mj) and is represented by the map P 2µj → Λ where,
for R2µj ∈ R2µj ,

o(R2µj ) ⊗ t(R2µj) 7→





o(Tj,k) if R2µj = T
d/gcd(d,mj)
j,k

for k = 0, . . . , mj − 1,

0 otherwise.
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Proof. Consider Theorem 2.13 and its notation. We begin by showing
that s = d and each Ai = A and Li = d.

Let C be a closed path in the quiver Q at the vertex v such that C 6= pr

for any path p with r ≥ 2, Cs ∈ ̺ for some s ≥ 2 and there are no overlaps
of Cs with any relation in ̺\{Cs}. Then, from the proof of Proposition 2.5,
Cs ∈ R2 and Cs+1 ∈ R3. Hence ℓ(Cs) = D and ℓ(Cs+1) = D + A. Thus
ℓ(C) = A and hence As = D. Thus s = d.

In the notation of Theorem 2.13, let Ti be an Ai-trail with ̺Ti
containing

paths of length AiLi. Since all paths in ̺ are necessarily of length D, we
have AiLi = D. Now, from the proof of Proposition 2.9, we have Wi ∈ R2

and Wiα[l] ∈ R3 with α[l] a path of length Ai. Since Λ is (D, A)-stacked,
we know that ℓ(Wi) = D and ℓ(Wiα[l]) = D + A. Hence ℓ(α[l]) = A and
Ai = A. Now we have ALi = D and so Li = d.

Thus, applying Theorem 2.13 and Corollary 2.16, and with the above
notation, we see that K[x1, . . . , xr]/〈xaxb for a 6= b〉 is isomorphic to a sub-
algebra of HH∗(Λ)/N .

Since charK 6= 2 and HH∗(Λ) is graded commutative, every homoge-
neous element of odd degree in HH∗(Λ) is nilpotent and thus is in N . So,
in order to determine HH∗(Λ)/N , it is enough to consider an arbitrary el-
ement χ ∈ HH2n(Λ) represented by the map χ : P 2n → Λ. We claim that
χ =

∑u
j=1 cjx

n
j +

∑r
j=u+1 cjx

qj

j +η for some qj ≥ 0 with 2n = 2µjqj , cj ∈ K

and η nilpotent. Hence HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉, thus
proving the result. Our proof proceeds by altering χ by a nilpotent element
η1 and then by elements of the form

∑u
j=1 cjx

n
j and

∑r
j=u+1 cjx

qj

j , result-

ing in an element of HH2n(Λ) whose image is in r. Since such elements are
nilpotent from [11, Proposition 4.4], we will be done.

First suppose that R̃2n ∈ R2n does not occur in any element of R2n+1.
We modify χ so that χ(o(R̃2n)⊗t(R̃2n)) = 0. Define η1 : P 2n → Λ as follows.
If R2n ∈ R2n then

o(R2n) ⊗ t(R2n) 7→





χ(o(R2n) ⊗ t(R2n))

if R2n does not occur in any element of R2n+1,

0 otherwise.

Any element R2n+1 in R2n+1 may be written in the form R2n+1 =
R2np1 = p2R̃

2n for some R2n, R̃2n ∈ R2n and paths p1, p2. Then

η1δ
2n+1(o(R2n+1) ⊗ t(R2n+1))

= η1(o(R
2n) ⊗ t(R2n))p1 − p2η1(o(R̃

2n) ⊗ t(R̃2n)) = 0

since both R2n and R̃2n occur in R2n+1. Thus η1 ∈ HH2n(Λ). Moreover there
is a lifting of η1 to the zero map P 2n+1 → P 1 and hence η2

1 = 0. Thus η1 is
nilpotent. So, without loss of generality, we may replace χ by χ − η1, and
the new χ has the desired property.
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We now proceed with our next modification. For j = 1, . . . , u, from the
proof of Proposition 2.5, the element xn

j is represented by the map P 2n → Λ

where, for R2n ∈ R2n,

o(R2n) ⊗ t(R2n) 7→

{
vj if R2n = Cnd

j ,

0 otherwise.

Thus we may subtract a suitable scalar multiple cj of each xn
j from χ so that

χ(o(Cnd
j ) ⊗ t(Cnd

j )) ∈ r for each 1 ≤ j ≤ u. We also denote this resulting

element in HH2n(Λ) by χ.

It is therefore enough to show that this new element χ is of the form∑r
j=u+1 cjx

qj

j + η with η nilpotent. Note that if R2n ∈ R2n and o(R2n) 6=

t(R2n), then χ(o(R2n) ⊗ t(R2n)) ∈ r. Thus χ : P 2n → Λ satisfies, for R2n

∈ R2n,

χ(o(R2n) ⊗ t(R2n)) ∈





{0} if R2n does not occur in any element of R2n+1,

r if o(R2n) 6= t(R2n),

r if R2n = Cnd
j for j = 1, . . . , u.

For j = u + 1, . . . , r, if 2µj divides 2n with 2n = 2µjqj then x
qj

j is in

degree 2n and, from Proposition 2.9, x
qj

j is represented by the map P 2n → Λ

where, for R2n ∈ R2n,

o(R2n) ⊗ t(R2n) 7→

{
o(Tj,k) if R2n = T

qjd/gcd(d,mj)
j,k for k = 0, . . . , mj − 1,

0 otherwise.

We now show that we may subtract suitable scalar multiples of the el-
ements x

qu+1

u+1 , . . . , xqr
r from χ to give an element η in HH2n(Λ) represented

by P 2n → Λ where η(o(R2n) ⊗ t(R2n)) ∈ r for all R2n ∈ R2n.

Consider all R2n ∈ R2n such that R2n ∈ vKQv for some vertex v,
R2n 6= Cnd

j for any j, and R2n occurs in some element of R2n+1. Then

v = o(R2n) = t(R2n) and, for such R2n, we may write χ(o(R2n)⊗ t(R2n)) =
κo(R2n) + y with κ ∈ K, y ∈ r. Let

Z = {R2n ∈ R2n : χ(o(R2n) ⊗ t(R2n)) = κo(R2n) + y with κ 6= 0}.

Note that if R2n ∈ Z then R2n ∈ vKQv for some vertex v, R2n 6= Cnd
j for

any j, and R2n occurs in some element of R2n+1. Hence if Z = ∅ then we
are done.

Assume Z 6= ∅. Let R2n
1 ∈ Z so that χ(o(R2n

1 )⊗ t(R2n
1 )) = κ1o(R

2n
1 )+y1

with κ1 6= 0 and y1 ∈ r. Since R2n
1 must occur in some element of R2n+1 we

have R2n+1
1 ∈ R2n+1 and R2n

2 ∈ R2n with either R2n+1
1 = R2n

1 a1 = a2R
2n
2 or

R2n+1
1 = a1R

2n
1 = R2n

2 a2 for some paths a1, a2. Without loss of generality,

suppose R2n+1
1 = R2n

1 a1 = a2R
2n
2 .
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Since χ ∈ HH2n(Λ), we have

0 = χδ2n+1(o(R2n+1
1 ) ⊗ t(R2n+1

1 ))

= χ(o(R2n
1 ) ⊗ t(R2n

1 ))a1 − a2χ(o(R2n
2 ) ⊗ t(R2n

2 ))

= κ1a1 + y1a1 − a2χ(o(R2n
2 ) ⊗ t(R2n

2 )).

Write χ(o(R2n
2 ) ⊗ t(R2n

2 )) = κ2o(R
2n
2 ) + y2 with κ2 ∈ K, y2 ∈ r. Then

0 = κ1a1 + y1a1 − κ2a2 − a2y2. By hypothesis ℓ(R2n+1
1 ) = nD + A and

ℓ(R2n
i ) = nD so the paths a1, a2 are of length A. Then by length arguments,

noting that ℓ(y1a1), ℓ(a2y2) ≥ A + 1, it follows that 0 = κ1a1 − κ2a2. But
κ1 6= 0 and so a1 = a2 and κ1 = κ2. Hence κ2 6= 0 and R2n

2 ∈ Z. Thus we
have R2n+1

1 = R2n
1 a1 = a1R

2n
2 with R2n

1 , R2n
2 ∈ Z and κ1 = κ2.

From R2n
1 a1 = a1R

2n
2 , the first relation R2 of R2n

1 has prefix the path a1

and the last relation of R2n
2 has suffix the path a1. Now we may write

R2n
2 = R2n−1p for some R2n−1 ∈ R2n−1 and path p; moreover the path p

has length D −A. From Proposition 3.3, D −A ≥ A, and so the path p has
suffix a1, and R2 overlaps p. Thus there is a maximal overlap of a relation
with R2n

2 giving the element R2n+1
2 = R2n

2 b2 ∈ R2n+1 for some path b2.
Write R2n+1

2 = R2n
2 b2 = b3R

2n
3 for some path b3 and R2n

3 ∈ R2n, noting
that ℓ(b2) = ℓ(b3) = A. Repeating the above argument shows that b2 = b3,
R2n

3 ∈ Z and κ2 = κ3.
Continuing in this way gives a sequence R2n

1 , . . . , R2n
h of elements of Z

and R2n+1
1 , . . . , R2n+1

h−1 ∈ R2n+1 with κ1 = κ2 = · · · = κh 6= 0 and R2n+1
i =

R2n
i αi = αiR

2n
i+1 for i = 1, . . . , h − 1 and paths α1, . . . , αh of length A.

Since Z is a finite set there is some h minimal such that R2n
h = R2n

t with
t < h. Suppose for contradiction that t 6= 1. Now R2n

t−1αt−1 = αt−1R
2n
t and

R2n
h−1αh−1 = αh−1R

2n
h . Thus R2n

t has suffix αt−1 and R2n
h has suffix αh−1.

But R2n
h = R2n

t so αt−1 = αh−1. Thus R2n
t−1αt−1 = αt−1R

2n
t = αh−1R

2n
h =

R2n
h−1αh−1 and hence it follows that R2n

t−1 = R2n
h−1, contradicting the mini-

mality of h. Hence t = 1. Thus there is some h minimal such that R2n
h = R2n

1 ,
and h ≥ 2.

So we have constructed R2n
1 , . . . , R2n

h−1 ∈ Z giving the following equali-
ties:

R2n
1 α1α2 · · ·αh−1 = α1R

2n
2 α2 · · ·αh−1

= α1α2R
2n
3 · · ·αh−1

...

= α1α2 · · ·R2n
h−1αh−1

= α1α2 · · ·αh−1R
2n
1 .

Similarly,

R2n
i αi · · ·αh−1α1 · · ·αi−1 = αi · · ·αh−1α1 · · ·αi−1R

2n
i

for i = 1, . . . , h − 1.



HOCHSCHILD COHOMOLOGY RING 255

Our next goal is to show, for i = 1, . . . , h − 1, that each R2n
i is a power

of a closed A-trail. For this we start by showing that if αf = αg then
αf+1 = αg+1.

Suppose that there is some f such that αf = αg with f < g. Write
R2n

f+1 = R2n−1p with R2n−1 ∈ R2n−1, p a path of length D − A. Since

R2n
f αf = αfR2n

f+1 and D − A ≥ A we see that p has suffix αf of length A.

For each i = 1, . . . , h − 1, the first D arrows of R2n
i form a relation in ̺.

Since each αi is of length A and D = dA, each αiαi+1 · · ·αd+i−1 is in ̺.
Thus, since αf = αg, the relation αgαg+1 · · ·αd+g−1 overlaps p. So there
is a maximal overlap R2n+1 = R2n

f+1U ∈ R2n+1 of a relation in R2 with

R2n
f+1 ∈ R2n such that R2n+1 is a prefix of the path R2n

f+1αg+1 · · ·αd+g−1.

By hypothesis ℓ(U) = A so that U = αg+1 and R2n+1 = R2n
f+1αg+1. Then

R2n+1 = R2n
f+1αg+1 = γR2n with R2n ∈ R2n and γ a path of length A. Since

χ ∈ HH2n(Λ), by the argument immediately following the definition of Z,
we have αg+1 = γ. Hence αf+1 = αg+1.

Now we show that α1, . . . , αh−1 are all distinct paths. Suppose for con-
tradiction that αf = αg with 1 ≤ f < g ≤ h− 1. From the above considera-
tions, αf+1 = αg+1, αf+2 = αg+2, . . . . Hence R2n

f = αfαf+1 · · ·αf+nd−1 =

αgαg+1 · · ·αg+nd−1 = R2n
g . This contradicts the choice of h. Thus α1 · · ·αh−1

is a closed A-trail.

Let T denote the closed A-trail α1 · · ·αh−1. Then R2n
1 T = TR2n

1 . From
Lemma 2.3, there is a path p and integers r, s ≥ 1 such that R2n

1 = pr and
T = ps. We show that s = 1 so that T = p and R2n

1 = T r for some r ≥ 1.

Suppose for contradiction that s ≥ 2. If A does not divide ℓ(p) then
write ℓ(p) = λA + s̃ where 1 ≤ s̃ < A. Then p = α1 · · ·αλq with ℓ(q) = s̃
and αλ+1 = qq̃ for some path q̃. Let R2 be the first relation in R2n

1 and let

R̃2 be the first relation in R2n
λ+1. Since T = ps with s ≥ 2 we know that q̃

is a prefix of α1 and hence of R2. Therefore R2 overlaps R̃2 with overlap of
length D + ℓ(q). But ℓ(q) < A. Hence there is an element of R3 of length
strictly less than D+A, which is a contradiction. Now if A divides ℓ(p) then
write ℓ(p) = λA so that p = α1 · · ·αλ. Since s ≥ 2 and λ ≤ h − 2, we have
αλ+1 = α1, which contradicts the choice of h. Hence s = 1.

Thus R2n
1 = TnD/(h−1)A = Tnd/(h−1). Similarly, each R2n

i equals T
nd/(h−1)
i

where T = T1 and T1, . . . , Th−1 is the complete set of closed A-trails on the
closed path T .

Finally, we show that, for each i, the path αi has no overlaps with any
relation in ̺ \ ̺T . Suppose for contradiction that some relation R2 in ̺ \ ̺T

overlaps α1. Write R2 = α′
1α2 · · ·αg−1α

′
gbβ where α1 = α′′

1α
′
1 with ℓ(α′

1) ≥ 1,
αg = α′

gα
′′
g with ℓ(α′′

g) ≥ 1, b is an arrow, and the first arrow of α′′
g is not

equal to b. Note that 2 ≤ g ≤ d + 1.
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First suppose that g = d + 1. Since ℓ(R2) = D we have ℓ(α′
1) < A

and 1 ≤ ℓ(α′
d+1bβ) < A. We see that R2 overlaps the relation α1 · · ·αd

with overlap α1 · · ·αdα
′
d+1bβ. So there is a maximal overlap in R3 of length

strictly less than D + A, which is a contradiction.

Thus we may assume that 2 ≤ g ≤ d. Consider

R2n
g = (αg · · ·αh−1α1 · · ·αg−1)

nd/(h−1).

Write R2n
g = R2n−1q for some R2n−1 ∈ R2n−1 and path q with ℓ(q) = D−A.

Since g ≤ d, we have ℓ(α′
1α2 · · ·αg−1) ≤ (g − 1)A ≤ (d − 1)A = D − A so

R2 overlaps q. Hence there is a maximal overlap R2n+1 = R2n
g U ∈ R2n+1

of a relation in R2 with R2n
g ∈ R2n, such that R2n+1 is a prefix of the

path R2n
g α′

gbβ. Since ℓ(α′′
g) ≥ 1 we see that ℓ(α′

g) < A. Noting also that

ℓ(U) = A, we deduce that α′
gb is a prefix of U . Then R2n+1 = R2n

g U = γR2n

with R2n ∈ R2n and γ a path of length A. Since χ ∈ HH2n(Λ), by the
argument immediately following the definition of Z, it follows that U = γ.
Hence U = αg, which is a contradiction. Thus, for each i, the path αi has
no overlaps with any relation in ̺ \ ̺T .

Hence T is a closed A-trail in Q such that the set ̺T of paths of length D
associated to the A-trail T is contained in ̺, but no path αi of length A has
overlaps with any relation in ̺ \ ̺T .

By hypothesis, it follows that T ∈ {Tu+1, . . . , Tr}. Thus we may write
T = Tj for some j with u + 1 ≤ j ≤ r. Moreover, for i = 1, . . . , h − 1,
since κ1 = · · · = κh−1, we have χ(o(R2n

i ) ⊗ t(R2n
i )) = κ1o(R

2n
i ) + yi with

yi ∈ r. Thus χ − κ1x
qj

j is such that (χ − κ1x
qj

j )(o(R2n
i ) ⊗ t(R2n

i )) ∈ r for
i = 1, . . . , h − 1.

Since Z is a finite set, we may continue subtracting suitable scalar
multiples of the x

qj

j from χ. Thus there are scalars cj ∈ K such that

χ −
∑r

j=u+1 cjx
qj

j is represented by a map η : P 2n → Λ where η(o(R2n) ⊗

t(R2n)) ∈ r for all R2n ∈ R2n. This completes the proof.

Example 3.5. Theorem 3.4 applies to Examples 2.11, 2.12 and 2.14 with
charK 6= 2 to show that the subalgebra described there is indeed isomorphic
to the quotient HH∗(Λ)/N .

The final theorem follows from Theorem 3.4 and gives an affirmative
answer to the conjecture of [11] for (D, A)-stacked monomial algebras.

Theorem 3.6. Let Λ = KQ/I be a finite-dimensional (D, A)-stacked
monomial algebra, where I is an admissible ideal. Suppose charK 6= 2. Then

HH∗(Λ)/N is finitely generated as an algebra and the number of generators

is bounded above by the number of paths of length A in the quiver. Moreover

HH∗(Λ)/N is of Krull dimension at most 1.
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Proof. Note first that if gldimΛ ≤ 3 then HH∗(Λ)/N ∼= K and the
theorem is immediate. Thus suppose gldimΛ ≥ 4. The ideal I has minimal
set of generators ̺ where ̺ is a finite set since Λ is finite-dimensional. So,
using Theorem 3.4 with the notation thereof,

HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉

where r is finite. Hence HH∗(Λ)/N is finitely generated as an algebra and
of Krull dimension at most 1.

Moreover, the generators x1, . . . , xr are defined precisely in terms of the
paths {C1, . . . , Cu} ∪ {αi j : j = 0, . . . , mi − 1, i = u + 1, . . . , r}, each of
which is of length A in the quiver Q. It is easy to verify that these paths are
all distinct, since there are no overlaps of Cd

i with any relation in ̺ \ {Cd
i },

and there are no overlaps of any αi j with any relation in ̺ \ ̺Ti
. Thus the

number r of generators of HH∗(Λ)/N is bounded above by the number of
paths of length A in the quiver Q.

The final example is of a (D, 1)-stacked monomial algebra where the
number of generators of HH∗(Λ)/N is equal to the number of arrows in Q.

Example 3.7. Let Λ = KQ/I where Q is the quiver

1

α
��

and I = 〈α2〉 with charK 6= 2. Then Λ is a Koszul algebra. From Theo-
rem 3.4, HH∗(Λ)/N ∼= K[x] with x in degree 2.

If A > 1, it is open as to whether or not the number of paths of length
A in Q is the best possible upper bound for the number of generators of
HH∗(Λ)/N .
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