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W. KULAGA (Wroctaw)

Abstract. We investigate an algebraic notion of decidability which allows a uniform
investigation of a large class of notions of forcing. Among other things, we show how to
build o-fields of sets connected with Laver and Miller notions of forcing and we show that
these o-fields are closed under the Suslin operation.

1. Introduction. We use standard set-theoretic notation. We denote by
A symmetric difference, that is, t Ay = (x — y) + (y — z).

Let P = (P, <) be a partially ordered set. A subset X C P is dense in
Pif (Vz € P)(Jy € X)(y < x). We denote by D(P) the family of all dense
subsets of P. For z € P we put [z]< = {y € P:y < x}. A subset X C P is
open in P if (Vz € X)([z]< C X).

Let A = (A,+,-,0,1,<) be a Boolean algebra. We denote by A™ the set
of all nonzero elements of A. In this case we put [z]< = {y € AT :y < z}. If
B, C' are subsets of the Boolean algebra A then we put

B+C={b+c:beB&ce(C},
B-C={b—c:beB&ceC}.

For any nonempty subset X we denote by P(X) the Boolean algebra of
all subsets of X with standard set-theoretic operations.

If X C A then ), X denotes the supremum (if exists) of X in A. We
say that a subalgebra B of an algebra A preserves unions if the following
two conditions are satisfied:

(1) (VRS B)(va € B)z =Y 3R~ 2=, R),
(2) VRCB)(Vzxe A)(x =Y 4,R— (xe BANx =) zR)).
The next definitions play a fundamental role in our paper:

DEFINITION 1.1. Let A be a Boolean algebra and =,y € A. We say that
x decides y in A if x <y or x -y = 0. This relation will be denoted by z || y.
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DEFINITION 1.2. Let A be a Boolean algebra and let P be a nonempty
subset of A*. Then we put

(1) dec(P) ={z € A: Yue P)(Fve P)(v<uA(v-z=0Vv<x))}

(2) s(P)={z€A: Vue P)(FveP)(v<uAv-z=0)}

The idea of the above definitions is taken from Burstin and Marczewski.
A system (P(X), X I), where X is a nonempty set, X is a field of subsets
of X, I is an ideal included in X, for which there exists a nonempty set
P C P(X) such that P C dec(P), X = dec(P), s(P) = I is called inner
Marczewski—Burstin representable, or briefly inner MB-representable (see [1],
3)).

In this paper we consider general algebraic properties of systems of the
form (A, dec(P), s(P)). We will prove that if P and A satisfy some general
conditions then the above system has the following properties:

e dec(P)/s(P) preserves unions in A/s(P),
e dec(P)/s(P) is a complete Boolean algebra,
o if A =P(X) then dec(P) is closed under the Suslin operation.

We give applications of this result to Laver and Miller forcing .

2. Algebraic structure of decidable elements. We start with some
observations about the algebraic properties of the above definitions. Some
of these facts have been known for the algebra P(X) (see [2]). Notice that
x € dec(P) if and only if {u € P : u| z} € D(P). Moreover, x € s(P) if and
only if {u € P:u-z =0} € D(P). The next lemma follows directly from
the definitions:

LEMMA 2.1. Let x,y, z be elements of a Boolean algebra A. Then

(1) (@llynz<z)— 2y,

2) zlly—z-zlz-y,

(B) (zllynz-z=0)—=z|(y+2),

(4) zlly — | (—y).

The following theorem summarizes basic algebraic properties of the sets
dec(P) and s(P) and also follows directly from the definitions:

THEOREM 2.2. Let P C AT be a nonempty subset of a Boolean algebra A.
Then

(1) dec(P) is a subalgebra of A,

(2) s(P) is an ideal in A, s(P) C dec(P) and PN s(P) =,

(3) (Vx € dec(P) \ s(P))(Fu € P)(u < xz).

In the next theorem we show how the sets dec(P) and s(P) are related
to the basic set P.

For subsets P,Q C AT we will write P < Q if (Vu € Q)(Jv € P)(v < u).
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THEOREM 2.3. Suppose that P, C AT are two nonempty subsets of the
Boolean algebra A. Then:

(1) (Vo € dec(P) \ s (P))(deC(Pﬂ[] ) = (dec(P) N [z]<) + [-2]<),

(2) (Vo € dec(P) \ s(P))(s(P N [z]<) = (s(P) N[z]<) + [-2]<),

(3) if P <Q and Q < P then dec(P) = dec(Q) and s(P) = s(Q),

(4) if P,Q C dec(P) = dec(Q) and s(P) = s(Q) then P < @ and
Q=< P.

Proof. (1) Suppose that x € dec(P). First, we prove the inclusion
dec(P N [z]<) C (dec(P) N [z]<) + [—x]<. Suppose that y € dec(P N [z]<).
Since y = (y - =) + (y - —z) it is enough to show that y - = € dec(P). So let
u € P. There exists u; € P such that vy < w and wy ||z. If uy - x = 0 then
up - -y = 0. Otherwise u; < z. Then u; € P N [z]<. Therefore there exists
up € P such that us < u; and ug || y. Hence, y € (dec(P) N [z]|<) + [—7]<.

To prove the opposite inclusion (dec(P)N[z]<) + [—z]< € dec(PN[z]<),
suppose that y = y1 + y2, where y; € dec(P) N [z]< and y2 € [—z]<. Let
u € PN [z]<. Then there exists v < u such that v € P and v|| y;. Since
v - y2 = 0 we see that v || y1 + yo.

(2) The proof is similar to the previous one.

(3) Let « € dec(P). The assumption P < @ implies that for any v € @
there exists w € P N [v]<. There exists u; € P N [u]< such that u; || «.
The assumption ) < P implies that there exists v; € Q N [u1]<. Then
v1 € Q N[v]< and vy || . We have proved that x € dec(Q).

In a similar way we prove the opposite inclusion.

Both inclusions imply that dec(P) = dec(Q). The proof that s(P) = s(Q)
is similar.

(4) If P C dec(P) then P C dec(P) \ s(P). Thus dec(P) \ s(P) =
dec(@) \ s(Q) and we have P C dec(Q) \ s(Q). Theorem 2.2 implies that
Q=< P.

In a similar way we prove that P < Q. =

ExaAMPLE 2.1. Let X be a topological space on a set X. We denote by
Open(X) the family of all nonempty open sets in X and by N (X) the family of
all nowhere dense subsets of X. If we treat Open(X) as a subset of the power
set Boolean algebra P(X) then we have dec(Open™ (X)) = Open(X) A N(X)
and s(Open™ (X)) = N(X).

DEFINITION 2.1. A subset P C AT of an algebra A is separable in A if
P is nonempty and P C dec(P).

EXAMPLE 2.2. Let B # {0,1} be a subalgebra of a Boolean algebra A.
Let x € A be such that -y > 0 and (—z) -y > 0 for any y € BT. It is
easy to see that BT is separable in A and that B* U {x, —z} is not separable
in A.
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LEMMA 2.4. Let A be a Boolean algebra. For any nonempty subset P of
A and for any x € A we have:

(1) (Vue P)(u-z € s(P)— (Fve PNul<)(v-z=0)),

(2) Vue P)(lu—zes(P)— (Fve PNiul<)(v<x)).

Proof. (1) Let u € P and u -z € s(P). There exists v € P N [u]< such
that v - (u- ) = 0. The inequality v < w implies v -z = 0.

The proof of (2) is similar. m

LEMMA 2.5. Let B be a subalgebra of a Boolean algebra A and let J be
an ideal in A included in B. Then

{reB:zAueclJ}={zcA:xhuecJ}.
So, B/J is a subalgebra of A/J.

If a Boolean algebra A and a set P C AT are fixed then we denote by [z]
the set {y € A:x Ay e s(P)}.

THEOREM 2.6. For every Boolean algebra A and any separable subset P
in A the subalgebra dec(P)/s(P) preserves unions in A/s(P).

Proof. (1) Suppose that RCdec(P), z € dec(P) and [2]=3_4ec(p)/s(p)[L-
Let
D={veP:(IreR)(v<rorv-z=0)}

We claim that D is dense in P. Suppose that u € P. Since x € dec(P) there
exists v € PNJu|< such that v-z =0 or v < z. If v-2 = 0 then DN[u]< # 0.
If v < z then we have two possibilities.

If v-r € s(P) for every r € R then r — (x —v) € s(P). Hence [r] < [z —v].
Since x—v € dec(P) and [z—v] < [z] we have [R] < [z —v], which contradicts
the assumptions on z.

So, there exists r € R such that v -r € dec(P) \ s(P). By Theorem 2.2
there exists v1 € P such that v; < v - r. Therefore v1 < r and v; < u, which
finishes the proof of the density of D.

Suppose that y € A and [R] < [y]. Let v € D. We consider two cases.

Ifv-z=0thenv-(x—y)=0.

Otherwise v < r for some r € R. Then [v] < [y] and hence v — y € s(P).
By Lemma 2.4 there exists v; € P N [v]< such that v; < y and hence
v1 - (z —y) = 0. Therefore the set {v € P :v-(x —y) = 0} is dense in P.
Then © — y € s(P) and [z] < [y]. We have proved that z is the least upper
bound of [R] in A/s(P).

(2) Suppose that 3, /p)[lt] = [z]. Let u € P. We consider two cases.

If [u]-[z] = [0] then u-z € s(P) and by Lemma 2.4 there exists v € PN[u]<
such that v -2 = 0.

Now, assume [u] - [x] # [0]. Then for some r € R we have [u] - [r] # [0]
and [u] - [r] < [z]. Therefore u-r —xz € s(P). Since u-r € dec(P)\ s(P), from
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Theorem 2.2 there exists v € P N [u - 7]<. Therefore v — x € s(P) and then
by Lemma 2.4 there exists w € PN [u|< such that w < x. This proves that
the family {u € P : u || 2} is a dense subset in P and hence = € dec(P). n

THEOREM 2.7. Let (A, B, I) be a system such that A is a Boolean algebra,
B is a subalgebra of A and I C B is an ideal in A. Then the following
conditions are equivalent:

(1) There exists a subset P which is separable in A such that dec(P) = B
and s(P) = 1.
(2) The algebra B/I preserves unions in A/I.

Proof. (1)=-(2). This follows immediately from Theorem 2.6.

(2)=-(1). For a while we will use the following notation: [z]; = {y € A :
x Ay eI} Let x € dec(B\ I). By density of D = {u € B\ I:u | z}in
B\ I the set [D]; = {[u]; : w € D} is dense in B/I. Let E C D be such
that [E]; is a maximal partition in B/I. Put £} = {u € F : u < z} and
Ey = {u € E : u-xz = 0}. Notice that [z]; is an upper bound of [E1];.
Let y € A be such that [y]; is an upper bound of [F4];. If u € E; then
u-(x—y) €1, because u —y € I. If u € FEy then u - (x — y) = 0, because
u-x = 0. Since [E]; is a maximal partition in B/I, we have 3" p /[E]; = [1]1.
So > 4,r[Elr = [1]1. We have [z—y]; = 0. So, [z]1 < [y];. We have shown that
[x]1 is the least upper bound of [E;|; in A/I. Because B/I preserves unions,
we have }_p /[E1]r = [2]r. So 2 € B. We have shown that dec(B\ I) C B.

Because B \ I is separable in A we have B\ I C dec(B\ I). So B =
dec(B\ I).

In a similar way we show that s(B\ I) = I. (Notice that E; =(.) m

3. Disjoint refinement property. In this section we discuss some
properties which imply that the Boolean algebra dec(P)/s(P) is complete.

Let [E]< = U{[a]< : = € E}.

DEFINITION 3.1. A partition E in a Boolean algebra A is called P-
mazimal for a subset P C AT if P N[E]< is a dense open subset in P.

DEFINITION 3.2. We say that a subset P C AT has the disjoint refine-
ment property if for every open dense subset D in P there exists a P-maximal
partition included in D.

LEMMA 3.1. Let A be a complete Boolean algebra. For P C A" and a
P-mazximal partition E we have

(1) (VR C E)(>_ R € dec(P)),
(2) Vexe A)Vu € E)(x-u € s(P) — x € s(P)).
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Proof. (1) This follows directly from the inclusion P N [E]< C {v :
v S RY.

(2) Suppose that x € A and for any u € F we have u -z € s(P). Let
v € P. Then there exist u € F and v; € (PN [v]<)N[ul<. Since u-x € s(P)
we have v - € s(P). Therefore from Lemma 2.4 there exists w € PN [v1]<
such that w -z = 0 and moreover w < v. m

THEOREM 3.2. Let A be a complete Boolean algebra and let P be a sep-
arable subset of A with the disjoint refinement property. Then dec(P)/s(P)
is a complete Boolean algebra and it preserves unions in A/s(P).

Proof. Let R be any subset of dec(P). We define
Di={veP:(IreR)(v—res(P))}

and

Dy={veP:(VreR)(v-res(P))}

By separability of P the set D1 U Dy is dense and open in P. By the disjoint
refinement property of P there exists a maximal disjoint subset E included
in DyUDs. Let B4 = ENDy and E5 = ENDy. From Lemma 3.1 we deduce
that > Ey € dec(P).

Suppose that r € Randu € E. If u € By thenu-(r—>_  F1) =0.Ifu € E>
then w- (r —>_ E1) € s(P). From Lemma 3.1 we see that » — > E; € s(P).
This proves that [r] < [>_ E1] and therefore [Y Ej] is an upper bound for
the family [R] in dec(P)/s(P). Let w € dec(P) be such that r — w € s(P)
for any » € R. Let w € E. If w € E; then there exists » € R such that
u—1r € s(P). Since r —w € s(P) we have u — w € s(P). This proves that
u- (O E —w) € s(P).

If w € By then w- (> By —w) = 0. Lemma 3.1 implies that > Ey —w €
s(P). We have proved that [ Eq] < [w], so that [Y E1] is the least upper
bound of the family [R] in dec(P)/s(P). =

ExamMpPLE 3.1. Let X be a topological space. With the notation from
Example 2.1, (Open(X) A N(X))/N (X) is complete and preserves unions in
P(X)/N(X).

COROLLARY 3.3. Let k be an infinite cardinal. Let A be a complete
Boolean algebra and let P be a separable subset of A of size k. If s(P) is
a Kk-complete ideal then P has the disjoint refinement property and the sub-
algebra dec(P)/s(P) is complete and preserves unions in A/s(P).

Proof. Let D = {u¢ : £ € n} be a dense open subset in P, n < x. We
construct a sequence (ve : & € 1). Let vy = up. Assume we have defined
(ve : £ € A) for some X € 1. If {vg s uy - ve ¢ s(P), £ € A} # 0 then let vy be
any element of the above set. In the other case {uy - ve : £ € A} C s(P). So,
because A < k and s(P) is k-complete, we have 7\ = > {uy-ve : { € A} €
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s(P). So uy —ry € dec(P) \ s(P). We have P N [uy — ryl< # (. By density
of D we have D N [uy — ry]< # (0. Let vy be any element of the latter set.

Let E = {v¢ : £ € n}. Directly from the construction it follows that E' is
included in D and is a partition.

We will show that | J{[v]< : v € E} is dense in P. Let € P. By density
of D we can choose v € D N [z]<. Then u = ug¢ for some § € 7). By the
construction of the sequence (ve¢ : £ € 1) we know that ve - ug ¢ s(P). So
[ve]< N [x]< # 0. Since ve € E we have J{[v]< : v € E} N [z]< # 0.

Now, we can apply Theorem 3.2 to get the desired conclusion. =

4. Closedness under the Suslin operation. Recall that a family B C
P(X) is closed under the Suslin operation if for every function ¢ : W< — B

the set
Alp) = J (e

TCWw® sCx
belongs to B.

LEMMA 4.1. Let P be a separable subset of a complete Boolean algebra A.
If s(P) is a k-complete ideal then dec(P) is a k-complete subalgebra of A.

Proof. Suppose that R C dec(P) and |R| < k. Let v e P. If v-r € s(P)
for any r € R then v- () R) € s(P) because s(P) is k-complete. By Lemma
2.4 there exists w € P - [v]< such that w- (D] R) = 0. If » € R is such that
v-r ¢ s(P) then v -r € dec(P)\s(P) and from Theorem 2.2 there exists
w € PN [v-r]<. This implies that w € PN [v]< and w <> R. m

The starting point of the proof of the next theorem is the following clas-
sical result of Marczewski:

THEOREM 4.2 (Marczewski). Let B be a o-field of subsets of a set X
and let J be an ideal in P(X) included in B such that

VZCX)EMeB)(ZCMA(NNEeB)(ZCN—-M\N €J)).
Then B is closed under the Suslin operation.

LEMMA 4.3. Assume that A is a Boolean algebra. Let B be a subalgebra
of A and let I be an ideal of A included in B. Suppose B/I is complete and

(VR C B) (2Rl = [x] = 22 4,[R] = [2]).
Then for every y € A there exists x € B such that y < x and
(Vr)re BANy<r—xz—rel).

Proof. Let y € A. Put R = {r € B :y < r}. By completeness of B/I we
have [[//[R] = [2] for some z € B. By assumption ][, ,;[R] = [2]. Notice
that [y] < [r] for every r € R. So [y] < [[4/;[R] = [2]. Thus, [y] < [2]. Put
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x=2zVy—=z Noticethat y—z€ l.Sox e Bandy<z.lfre B,y <r
then r € R. So, [2] < [r] and [z] = [z]. Thusz —r € . »

Recall that an ideal Z C P(X) is o-closed if it is closed under countable
unions.

Similarly, an ideal Z C P(X) is w;-closed if for every family A C Z such
that |A| <w; we have |JA € 7.

THEOREM 4.4. Suppose that P is separable and has the disjoint refine-
ment property in P(X) and that the ideal s(P) is o-closed. Then the algebra
dec(P) is closed under the Suslin operation.

Proof. By Theorem 3.2 the Boolean algebra dec(P)/s(P) is complete
and preserves unions in P(X)/s(P).

We show that the assumptions of Theorem 4.2 are satisfied. Because P
is separable and s(P) is a o-closed ideal, Lemma 4.1 shows that dec(P) is
o-field.

Let Z C X. By Lemma 4.3, putting B = dec(P), I = s(P), A = P(X),
there exists M € dec(P) such that Z C M and for every N € dec(P) with
Z C N we have M — N € s(P).

Hence dec(P) is closed under the Suslin operation. =

COROLLARY 4.5. Let P be a separable subset of P(k) for a regular car-
dinal number k. If s(P) is k-complete and |P| < k then

(1) P has the disjoint refinement property.

(2) dec(P)/s(P) is complete and preserves unions in P(k)/s(P).
(3) If Kk > wy then dec(P) is closed under the Suslin operation.
Proof. (1) and (2) follow from Corollary 3.3.

(3) If K > wy then dec(P) is a o-field by Lemma 4.1. So, the assertion
follows from Theorem 4.4. m

COROLLARY 4.6. If P is a separable subset in P(X) such that s(P) is
wi-closed then dec(P) is closed under the Suslin operation.

Proof. 1t is a classical fact that if A € Suslin(B) and B is o-closed then
there exists a family {A¢}ec., € B such that

A= Ae
fcwr
From Lemma 4.1 we deduce that dec(P) is wi-closed. Using the above fact

we deduce that dec(P) is closed under the Suslin operation. =

EXAMPLE 4.1. Let (X,S,pu) be a complete measure space such that
u(X) <oo.Let J={A€S:pu(A)=0}and ST ={4A €5 :u(4d) > 0}
Then ST is separable and has the disjoint refinement property in P(X).
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Moreover dec(S*) = S and s(ST) = J. From Theorem 4.4 we obtain the
classical result of Sierpiniski about closedness of S under the Suslin operation.

EXAMPLE 4.2 (Marczewski sets). Let X be a Polish space without iso-
lated points. We denote by Perf(X) the family of all nonempty compact
dense-in-themselves subsets of X . Marczewski (see [7]) introduced the notion
of sets with property S and the ideal s°. in our terminology these objects may
be defined as follows: S = dec(Perf(X)) and s’ = s(Perf(X)). Marczewski
proved that s% is a o-closed ideal.

Suppose that U is an open subset in X and F' € Perf(X). f UNF # ()
then there exists H € Perf(X) N [F]< such that H C U N F. It follows
that Open(X) C S and in consequence the family Perf(X) is separable. In
Perf(X) any dense open family D has size c. If A C X and F' € Perf(X)
and |A] < c then there exists H € Perf(X) N [F]< such that H N A = 0.
Using this property, in a standard way we may conclude that Perf(X) has the
disjoint refinement property in P(X). From Theorem 3.2 we conclude that the
subalgebra S/s is complete (see [9]) and preserves unions in P(X)/s” and,
moreover, S is closed under the Suslin operation (see [7]) by Theorem 4.4.

Let p be a closed dense-in-itself subset of w* in the standard topology. For
s € w<¥ we put p(s) =pN{z € w* : s C z}. Let Py; denote the family of all
nonempty closed dense-in-themselves subsets p of w* such that for any s €
w<¥ with p(s) # 0 there exists ¢t O s such that [{n € w: p(t"n) # 0} = No.
The family Py is called the Miller forcing. It is known that the ideal s(Pyp)
is o-closed (see [8]).

Let P, denote the family of all nonempty closed dense-in-themselves
subsets p of w* such that there exists s for which p(s) # () and, for every ¢, if
p(t) # 0 then t C sor [{n € w:p(t~n) # 0} = Ny. The family Py, is called
the Laver forcing. It is known that the ideal s(P,) is o-closed (see [6]).

COROLLARY 4.7. (CH) Let Q = Py or Q = Pr,. Then

(1) @ is separable and has the disjoint refinement property,

(2) dec(Q)/s(Q) is complete and preserves unions in P(w®),

(3) dec(Q) is a o-closed field, contains all Borel subsets of w* and is
closed under the Suslin operation.

Proof. Similarly to Example 4.2 we prove that Open(w®) is included in
dec(®). From this it is easy to see that dec(Q) is separable. Since s(Q) is
o-closed, the Borel subsets are contained in dec(Q). The disjoint refinement
property follows from Corollary 3.3. Assertions (2) and (3) follow immedi-
ately from Theorem 4.4.

5. A generalization of first category sets. We will generalize the
notion of first category sets to the class of complete Boolean algebras.
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DEFINITION 5.1.

(1) For a complete Boolean algebra A and a separable subset P in A we
say that x € A is of the first category for dec(P) if x is the supremum
of a countable family included in s(P).

(2) The family of all subsets of the first category for dec(P) will be
denoted by I(P).

LEMMA 5.1. Let A be a Boolean algebra and let P be a separable subset
with the disjoint refinement property in A. Let I be an ideal in A such that
dec(P) NI = s(P). Then P — I is separable and has the disjoint refinement
property.

Proof. Notice that (P—TI)NI = (. We will use the letters r, s for elements
of I. Let u—r and v — s be any elements of P —I. Since there is w € PNv]<
such that w || w, we have w — (r 4+ s) || w — r. This proves that P — I is
separable in A.

If D is any dense open subset in P — I then

H={ueP:(3r)(rel&u—reD)}

is open dense in P. Let E be a P-maximal disjoint family included in H.
For any u let r, be such that w —r, € D. Then {u —r, : v € E} is a
(P — I)-maximal disjoint family included in D. =

The next lemma is a reformulation of the well-known Banach lemma ([4])
in our language.

LEMMA 5.2. Suppose that P is a separable subset in a complete Boolean
algebra A and E is a P-maximal partition included in P. Then

(1) If x € A is such that - w € I(P) for any u € E then x € I(P).
(2) For any subset M C E we have Y , M € dec(P).

Proof. (1) For any u € E take a family {r,(u) : n € w)} with least upper
bound z - u. Set 1, = > {rn(u) : w € E}. It follows from Lemma 3.1 that
x-ry, € s(P) for any n € w. From the equality z = Y {(z-u):u € E}
+x- (=Y E)} it follows that x = > {(x-r,) :n € w} +x- (= > F). Since
(=>_F) € s(P) we have x € I(P).

(2) This follows immediately from the definition of a P-maximal parti-
tion. m

THEOREM 5.3. Let A be a complete Boolean algebra, let P be separable
and PNI(P) =0 and let P have the disjoint refinement property. Then

(1) P—I(P) is separable and has the disjoint refinement property in A.
(2) dec(P — I(P)) =dec(P) AI(P) and s(P — I(P)) = I(P).

Proof. (1) follows directly from Lemma 5.1.
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(2) Fix x € dec(P — I(P)) and let
D={veP:3relP)(v—r|ax)}

Let E be a P-maximal disjoint family in D. Let £} = {u € E : u—x € I(P)}.
In a standard way we prove that u- (z A )Y, Eq) € I(P) for any u € E.
Lemma 5.2 yields « A" , By € I(P) and ) 4 E1 € dec(P). This shows that
dec(P — I(P)) C dec(P) A I(P).

In a similar way we prove that s(P — I(P)) C I(P).
The reverse inclusions can be proved similarly. m

We get the following example (see [5]):
EXAMPLE 5.1. Let X be a topological space and let I(X) denote the ideal

of the first category subsets of X. Then dec(Open™ (X) — I(X)) = Baire(X)
and s(Open™ (X) — I(X)) = I(X).

(1]
2]
3]
[4]
[5]

[6]
(7]

18]
[9]
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