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ON FIELDS AND IDEALS CONNECTED WITH NOTIONSOF FORCINGBYW. KU�AGA (Wro
ªaw)Abstra
t. We investigate an algebrai
 notion of de
idability whi
h allows a uniforminvestigation of a large 
lass of notions of for
ing. Among other things, we show how tobuild σ-�elds of sets 
onne
ted with Laver and Miller notions of for
ing and we show thatthese σ-�elds are 
losed under the Suslin operation.1. Introdu
tion. We use standard set-theoreti
 notation. We denote by
△ symmetri
 di�eren
e, that is, x △ y = (x − y) + (y − x).Let P = (P,≤) be a partially ordered set. A subset X ⊆ P is dense in
P if (∀x ∈ P )(∃y ∈ X)(y ≤ x). We denote by D(P) the family of all densesubsets of P. For x ∈ P we put [x]≤ = {y ∈ P : y ≤ x}. A subset X ⊆ P isopen in P if (∀x ∈ X)([x]≤ ⊆ X).Let A = (A, +, ·, 0, 1,≤) be a Boolean algebra. We denote by A

+ the setof all nonzero elements of A. In this 
ase we put [x]≤ = {y ∈ A
+ : y ≤ x}. If

B, C are subsets of the Boolean algebra A then we put
B + C = {b + c : b ∈ B & c ∈ C},

B − C = {b − c : b ∈ B & c ∈ C}.For any nonempty subset X we denote by P(X) the Boolean algebra ofall subsets of X with standard set-theoreti
 operations.If X ⊆ A then ∑
A X denotes the supremum (if exists) of X in A. Wesay that a subalgebra B of an algebra A preserves unions if the followingtwo 
onditions are satis�ed:(1) (∀R ⊆ B)(∀x ∈ B)(x =

∑
B R → x =

∑
A R),(2) (∀R ⊆ B)(∀x ∈ A)(x =

∑
A R → (x ∈ B ∧ x =

∑
B R)).The next de�nitions play a fundamental role in our paper:Definition 1.1. Let A be a Boolean algebra and x, y ∈ A. We say that

x de
ides y in A if x ≤ y or x · y = 0. This relation will be denoted by x ‖ y.2000 Mathemati
s Subje
t Classi�
ation: Primary 28A05, 03G05; Se
ondary 54E52.Key words and phrases: Boolean algebras, Suslin operation, Laver for
ing, Miller for
-ing, Mar
zewski ideal.I would like to thank J. Ci
ho« and S. �eberski for many helpful suggestions.[271℄



272 W. KU�AGADefinition 1.2. Let A be a Boolean algebra and let P be a nonemptysubset of A
+. Then we put(1) dec(P ) = {x ∈ A : (∀u ∈ P )(∃v ∈ P )(v ≤ u ∧ (v · x = 0 ∨ v ≤ x))},(2) s(P ) = {x ∈ A : (∀u ∈ P )(∃v ∈ P )(v ≤ u ∧ v · x = 0)}.The idea of the above de�nitions is taken from Burstin and Mar
zewski.A system (P(X), Σ, I), where X is a nonempty set, Σ is a �eld of subsetsof X, I is an ideal in
luded in Σ, for whi
h there exists a nonempty set

P ⊆ P (X) su
h that P ⊆ dec(P ), Σ = dec(P ), s(P ) = I is 
alled innerMar
zewski�Burstin representable, or brie�y inner MB-representable (see [1℄,[3℄).In this paper we 
onsider general algebrai
 properties of systems of theform (A, dec(P ), s(P )). We will prove that if P and A satisfy some general
onditions then the above system has the following properties:
• dec(P )/s(P ) preserves unions in A/s(P ),
• dec(P )/s(P ) is a 
omplete Boolean algebra,
• if A = P(X) then dec(P ) is 
losed under the Suslin operation.We give appli
ations of this result to Laver and Miller for
ing .2. Algebrai
 stru
ture of de
idable elements. We start with someobservations about the algebrai
 properties of the above de�nitions. Someof these fa
ts have been known for the algebra P(X) (see [2℄). Noti
e that

x ∈ dec(P ) if and only if {u ∈ P : u ‖x} ∈ D(P ). Moreover, x ∈ s(P ) if andonly if {u ∈ P : u · x = 0} ∈ D(P ). The next lemma follows dire
tly fromthe de�nitions:Lemma 2.1. Let x, y, z be elements of a Boolean algebra A. Then(1) (x ‖ y ∧ z ≤ x) → z ‖ y,(2) x ‖ y → z · x ‖ z · y,(3) (x ‖ y ∧ x · z = 0) → x ‖ (y + z),(4) x ‖ y → x ‖ (−y).The following theorem summarizes basi
 algebrai
 properties of the sets
dec(P ) and s(P ) and also follows dire
tly from the de�nitions:Theorem 2.2. Let P ⊆ A+ be a nonempty subset of a Boolean algebra A.Then(1) dec(P ) is a subalgebra of A,(2) s(P ) is an ideal in A, s(P ) ⊆ dec(P ) and P ∩ s(P ) = ∅,(3) (∀x ∈ dec(P ) \ s(P ))(∃u ∈ P )(u ≤ x).In the next theorem we show how the sets dec(P ) and s(P ) are relatedto the basi
 set P .For subsets P, Q ⊆ A

+ we will write P ≺ Q if (∀u ∈ Q)(∃v ∈ P )(v ≤ u).



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 273Theorem 2.3. Suppose that P, Q ⊆ A
+ are two nonempty subsets of theBoolean algebra A. Then:(1) (∀x ∈ dec(P ) \ s(P ))(dec(P ∩ [x]≤) = (dec(P ) ∩ [x]≤) + [−x]≤),(2) (∀x ∈ dec(P ) \ s(P ))(s(P ∩ [x]≤) = (s(P ) ∩ [x]≤) + [−x]≤),(3) if P ≺ Q and Q ≺ P then dec(P ) = dec(Q) and s(P ) = s(Q),(4) if P, Q ⊆ dec(P ) = dec(Q) and s(P ) = s(Q) then P ≺ Q and

Q ≺ P .Proof. (1) Suppose that x ∈ dec(P ). First, we prove the in
lusion
dec(P ∩ [x]≤) ⊆ (dec(P ) ∩ [x]≤) + [−x]≤. Suppose that y ∈ dec(P ∩ [x]≤).Sin
e y = (y · x) + (y · −x) it is enough to show that y · x ∈ dec(P ). So let
u ∈ P . There exists u1 ∈ P su
h that u1 ≤ u and u1 ‖x. If u1 · x = 0 then
u1 · x · y = 0. Otherwise u1 ≤ x. Then u1 ∈ P ∩ [x]≤. Therefore there exists
u2 ∈ P su
h that u2 ≤ u1 and u2 ‖ y. Hen
e, y ∈ (dec(P ) ∩ [x]≤) + [−x]≤.To prove the opposite in
lusion (dec(P )∩ [x]≤)+ [−x]≤ ⊆ dec(P ∩ [x]≤),suppose that y = y1 + y2, where y1 ∈ dec(P ) ∩ [x]≤ and y2 ∈ [−x]≤. Let
u ∈ P ∩ [x]≤. Then there exists v ≤ u su
h that v ∈ P and v ‖ y1. Sin
e
v · y2 = 0 we see that v ‖ y1 + y2.

(2) The proof is similar to the previous one.
(3) Let x ∈ dec(P ). The assumption P ≺ Q implies that for any v ∈ Qthere exists u ∈ P ∩ [v]≤. There exists u1 ∈ P ∩ [u]≤ su
h that u1 ‖ x.The assumption Q ≺ P implies that there exists v1 ∈ Q ∩ [u1]≤. Then

v1 ∈ Q ∩ [v]≤ and v1 ‖ x. We have proved that x ∈ dec(Q).In a similar way we prove the opposite in
lusion.Both in
lusions imply that dec(P ) = dec(Q). The proof that s(P ) = s(Q)is similar.
(4) If P ⊆ dec(P ) then P ⊆ dec(P ) \ s(P ). Thus dec(P ) \ s(P ) =

dec(Q) \ s(Q) and we have P ⊆ dec(Q) \ s(Q). Theorem 2.2 implies that
Q ≺ P .In a similar way we prove that P ≺ Q.Example 2.1. Let X be a topologi
al spa
e on a set X. We denote by
Open(X) the family of all nonempty open sets in X and by N(X) the family ofall nowhere dense subsets of X. If we treat Open(X) as a subset of the powerset Boolean algebra P(X) then we have dec(Open+(X)) = Open(X)△N(X)and s(Open+(X)) = N(X).Definition 2.1. A subset P ⊆ A

+ of an algebra A is separable in A if
P is nonempty and P ⊆ dec(P ).Example 2.2. Let B 6= {0, 1} be a subalgebra of a Boolean algebra A.Let x ∈ A be su
h that x · y > 0 and (−x) · y > 0 for any y ∈ B+. It iseasy to see that B+ is separable in A and that B+∪{x,−x} is not separablein A.



274 W. KU�AGALemma 2.4. Let A be a Boolean algebra. For any nonempty subset P of
A and for any x ∈ A we have:(1) (∀u ∈ P )(u · x ∈ s(P ) → (∃v ∈ P ∩ [u]≤)(v · x = 0)),(2) (∀u ∈ P )(u − x ∈ s(P ) → (∃v ∈ P ∩ [u]≤)(v ≤ x)).Proof. (1) Let u ∈ P and u · x ∈ s(P ). There exists v ∈ P ∩ [u]≤ su
hthat v · (u · x) = 0. The inequality v ≤ u implies v · x = 0.The proof of (2) is similar.Lemma 2.5. Let B be a subalgebra of a Boolean algebra A and let J bean ideal in A in
luded in B. Then

{x ∈ B : x △ u ∈ J} = {x ∈ A : x △ u ∈ J}.So, B/J is a subalgebra of A/J .If a Boolean algebra A and a set P ⊆ A
+ are �xed then we denote by [x]the set {y ∈ A : x △ y ∈ s(P )}.Theorem 2.6. For every Boolean algebra A and any separable subset Pin A the subalgebra dec(P )/s(P ) preserves unions in A/s(P ).Proof. (1) Suppose that R⊆dec(P ), x∈dec(P ) and [x]=

∑
dec(P )/s(P )[R].Let

D = {v ∈ P : (∃r ∈ R)(v ≤ r or v · x = 0)}.We 
laim that D is dense in P . Suppose that u ∈ P . Sin
e x ∈ dec(P ) thereexists v ∈ P ∩ [u]≤ su
h that v ·x = 0 or v ≤ x. If v ·x = 0 then D∩ [u]≤ 6= ∅.If v ≤ x then we have two possibilities.If v ·r ∈ s(P ) for every r ∈ R then r−(x−v) ∈ s(P ). Hen
e [r] ≤ [x−v].Sin
e x−v ∈ dec(P ) and [x−v] < [x] we have [R] ≤ [x−v], whi
h 
ontradi
tsthe assumptions on x.So, there exists r ∈ R su
h that v · r ∈ dec(P ) \ s(P ). By Theorem 2.2there exists v1 ∈ P su
h that v1 ≤ v · r. Therefore v1 ≤ r and v1 ≤ u, whi
h�nishes the proof of the density of D.Suppose that y ∈ A and [R] ≤ [y]. Let v ∈ D. We 
onsider two 
ases.If v · x = 0 then v · (x − y) = 0.Otherwise v ≤ r for some r ∈ R. Then [v] ≤ [y] and hen
e v − y ∈ s(P ).By Lemma 2.4 there exists v1 ∈ P ∩ [v]≤ su
h that v1 ≤ y and hen
e
v1 · (x − y) = 0. Therefore the set {v ∈ P : v · (x − y) = 0} is dense in P .Then x − y ∈ s(P ) and [x] ≤ [y]. We have proved that x is the least upperbound of [R] in A/s(P ).(2) Suppose that ∑

A/s(P )[R] = [x]. Let u ∈ P. We 
onsider two 
ases.If [u]·[x] = [0] then u·x ∈ s(P ) and by Lemma 2.4 there exists v ∈ P∩[u]≤su
h that v · x = 0.Now, assume [u] · [x] 6= [0]. Then for some r ∈ R we have [u] · [r] 6= [0]and [u] · [r] ≤ [x]. Therefore u ·r−x ∈ s(P ). Sin
e u ·r ∈ dec(P )\s(P ), from



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 275Theorem 2.2 there exists v ∈ P ∩ [u · r]≤. Therefore v − x ∈ s(P ) and thenby Lemma 2.4 there exists w ∈ P ∩ [u]≤ su
h that w ≤ x. This proves thatthe family {u ∈ P : u ‖ x} is a dense subset in P and hen
e x ∈ dec(P ).Theorem 2.7. Let (A, B, I) be a system su
h that A is a Boolean algebra,
B is a subalgebra of A and I ⊆ B is an ideal in A. Then the following
onditions are equivalent :(1) There exists a subset P whi
h is separable in A su
h that dec(P ) = Band s(P ) = I.(2) The algebra B/I preserves unions in A/I.Proof. (1)⇒(2). This follows immediately from Theorem 2.6.(2)⇒(1). For a while we will use the following notation: [x]I = {y ∈ A :
x △ y ∈ I}. Let x ∈ dec(B \ I). By density of D = {u ∈ B \ I : u ‖ x} in
B \ I the set [D]I = {[u]I : u ∈ D} is dense in B/I. Let E ⊆ D be su
hthat [E]I is a maximal partition in B/I. Put E1 = {u ∈ E : u ≤ x} and
E2 = {u ∈ E : u · x = 0}. Noti
e that [x]I is an upper bound of [E1]I .Let y ∈ A be su
h that [y]I is an upper bound of [E1]I . If u ∈ E1 then
u · (x − y) ∈ I, be
ause u − y ∈ I. If u ∈ E2 then u · (x − y) = 0, be
ause
u ·x = 0. Sin
e [E]I is a maximal partition in B/I, we have ∑

B/I [E]I = [1]I .So ∑
A/I [E]I = [1]I . We have [x−y]I = 0. So, [x]I ≤ [y]I . We have shown that

[x]I is the least upper bound of [E1]I in A/I. Be
ause B/I preserves unions,we have ∑
B/I [E1]I = [x]I . So x ∈ B. We have shown that dec(B \ I) ⊆ B.Be
ause B \ I is separable in A we have B \ I ⊆ dec(B \ I). So B =

dec(B \ I).In a similar way we show that s(B \ I) = I. (Noti
e that E1 = ∅.)3. Disjoint re�nement property. In this se
tion we dis
uss someproperties whi
h imply that the Boolean algebra dec(P )/s(P ) is 
omplete.Let [E]≤ =
⋃
{[x]≤ : x ∈ E}.Definition 3.1. A partition E in a Boolean algebra A is 
alled P -maximal for a subset P ⊆ A

+ if P ∩ [E]≤ is a dense open subset in P .Definition 3.2. We say that a subset P ⊆ A+ has the disjoint re�ne-ment property if for every open dense subset D in P there exists a P -maximalpartition in
luded in D.Lemma 3.1. Let A be a 
omplete Boolean algebra. For P ⊆ A
+ and a

P -maximal partition E we have(1) (∀R ⊆ E)(
∑

R ∈ dec(P )),(2) (∀x ∈ A)(∀u ∈ E)(x · u ∈ s(P ) → x ∈ s(P )).



276 W. KU�AGAProof. (1) This follows dire
tly from the in
lusion P ∩ [E]≤ ⊆ {v :
v ‖

∑
R}.

(2) Suppose that x ∈ A and for any u ∈ E we have u · x ∈ s(P ). Let
v ∈ P . Then there exist u ∈ E and v1 ∈ (P ∩ [v]≤)∩ [u]≤. Sin
e u · x ∈ s(P )we have v1 · x ∈ s(P ). Therefore from Lemma 2.4 there exists w ∈ P ∩ [v1]≤su
h that w · x = 0 and moreover w ≤ v.Theorem 3.2. Let A be a 
omplete Boolean algebra and let P be a sep-arable subset of A with the disjoint re�nement property. Then dec(P )/s(P )is a 
omplete Boolean algebra and it preserves unions in A/s(P ).Proof. Let R be any subset of dec(P ). We de�ne

D1 = {v ∈ P : (∃r ∈ R)(v − r ∈ s(P ))}and
D2 = {v ∈ P : (∀r ∈ R)(v · r ∈ s(P ))}.By separability of P the set D1 ∪D2 is dense and open in P . By the disjointre�nement property of P there exists a maximal disjoint subset E in
ludedin D1∪D2. Let E1 = E ∩D1 and E2 = E ∩D2. From Lemma 3.1 we dedu
ethat ∑

E1 ∈ dec(P ).Suppose that r ∈ R and u ∈ E. If u ∈ E1 then u·(r−
∑

E1) = 0. If u ∈ E2then u · (r −
∑

E1) ∈ s(P ). From Lemma 3.1 we see that r −
∑

E1 ∈ s(P ).This proves that [r] ≤ [
∑

E1] and therefore [
∑

E1] is an upper bound forthe family [R] in dec(P )/s(P ). Let w ∈ dec(P ) be su
h that r − w ∈ s(P )for any r ∈ R. Let u ∈ E. If u ∈ E1 then there exists r ∈ R su
h that
u − r ∈ s(P ). Sin
e r − w ∈ s(P ) we have u − w ∈ s(P ). This proves that
u · (

∑
E1 − w) ∈ s(P ).If u ∈ E2 then u · (

∑
E1 − w) = 0. Lemma 3.1 implies that ∑

E1 − w ∈
s(P ). We have proved that [

∑
E1] ≤ [w], so that [

∑
E1] is the least upperbound of the family [R] in dec(P )/s(P ).Example 3.1. Let X be a topologi
al spa
e. With the notation fromExample 2.1, (Open(X)△N(X))/N(X) is 
omplete and preserves unions in

P(X)/N(X).Corollary 3.3. Let κ be an in�nite 
ardinal. Let A be a 
ompleteBoolean algebra and let P be a separable subset of A of size κ. If s(P ) isa κ-
omplete ideal then P has the disjoint re�nement property and the sub-algebra dec(P )/s(P ) is 
omplete and preserves unions in A/s(P ).Proof. Let D = {uξ : ξ ∈ η} be a dense open subset in P , η ≤ κ. We
onstru
t a sequen
e (vξ : ξ ∈ η). Let v0 = u0. Assume we have de�ned
(vξ : ξ ∈ λ) for some λ ∈ η. If {vξ : uλ · vξ /∈ s(P ), ξ ∈ λ} 6= ∅ then let vλ beany element of the above set. In the other 
ase {uλ · vξ : ξ ∈ λ} ⊆ s(P ). So,be
ause λ < κ and s(P ) is κ-
omplete, we have rλ =

∑
{uλ · vξ : ξ ∈ λ} ∈
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s(P ). So uλ − rλ ∈ dec(P ) \ s(P ). We have P ∩ [uλ − rλ]≤ 6= ∅. By densityof D we have D ∩ [uλ − rλ]≤ 6= ∅. Let vλ be any element of the latter set.Let E = {vξ : ξ ∈ η}. Dire
tly from the 
onstru
tion it follows that E isin
luded in D and is a partition.We will show that ⋃
{[v]≤ : v ∈ E} is dense in P . Let x ∈ P. By densityof D we 
an 
hoose u ∈ D ∩ [x]≤. Then u = uξ for some ξ ∈ η. By the
onstru
tion of the sequen
e (vξ : ξ ∈ η) we know that vξ · uξ /∈ s(P ). So

[vξ]≤ ∩ [x]≤ 6= ∅. Sin
e vξ ∈ E we have ⋃
{[v]≤ : v ∈ E} ∩ [x]≤ 6= ∅.Now, we 
an apply Theorem 3.2 to get the desired 
on
lusion.4. Closedness under the Suslin operation. Re
all that a family B ⊆

P(X) is 
losed under the Suslin operation if for every fun
tion ϕ : ω<ω → Bthe set
A(ϕ) =

⋃

x∈ωω

⋂

s⊂x

ϕ(s)belongs to B.Lemma 4.1. Let P be a separable subset of a 
omplete Boolean algebra A.If s(P ) is a κ-
omplete ideal then dec(P ) is a κ-
omplete subalgebra of A.Proof. Suppose that R ⊆ dec(P ) and |R| < κ. Let v ∈ P . If v · r ∈ s(P )for any r ∈ R then v · (
∑

R) ∈ s(P ) be
ause s(P ) is κ-
omplete. By Lemma2.4 there exists w ∈ P · [v]≤ su
h that w · (
∑

R) = 0. If r ∈ R is su
h that
v · r /∈ s(P ) then v · r ∈ dec(P )\s(P ) and from Theorem 2.2 there exists
w ∈ P ∩ [v · r]≤. This implies that w ∈ P ∩ [v]≤ and w ≤

∑
R.The starting point of the proof of the next theorem is the following 
las-si
al result of Mar
zewski:Theorem 4.2 (Mar
zewski). Let B be a σ-�eld of subsets of a set Xand let J be an ideal in P(X) in
luded in B su
h that

(∀Z ⊆ X)(∃M ∈ B)(Z ⊆ M ∧ (∀N ∈ B)(Z ⊆ N → M \ N ∈ J)).Then B is 
losed under the Suslin operation.Lemma 4.3. Assume that A is a Boolean algebra. Let B be a subalgebraof A and let I be an ideal of A in
luded in B. Suppose B/I is 
omplete and
(∀R ⊆ B)(

∑
B/I [R] = [x] →

∑
A/I [R] = [x]).Then for every y ∈ A there exists x ∈ B su
h that y ≤ x and

(∀r)(r ∈ B ∧ y ≤ r → x − r ∈ I).Proof. Let y ∈ A. Put R = {r ∈ B : y ≤ r}. By 
ompleteness of B/I wehave ∏
B/I [R] = [z] for some z ∈ B. By assumption ∏

A/I [R] = [z]. Noti
ethat [y] ≤ [r] for every r ∈ R. So [y] ≤
∏

A/I [R] = [z]. Thus, [y] ≤ [z]. Put
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x = z ∨ y − z. Noti
e that y − z ∈ I. So x ∈ B and y ≤ x. If r ∈ B, y ≤ rthen r ∈ R. So, [z] ≤ [r] and [z] = [x]. Thus x − r ∈ I.Re
all that an ideal I ⊆ P(X) is σ-
losed if it is 
losed under 
ountableunions.Similarly, an ideal I ⊆ P(X) is ω1-
losed if for every family A ⊆ I su
hthat |A| ≤ ω1 we have ⋃

A ∈ I.Theorem 4.4. Suppose that P is separable and has the disjoint re�ne-ment property in P(X) and that the ideal s(P ) is σ-
losed. Then the algebra
dec(P ) is 
losed under the Suslin operation.Proof. By Theorem 3.2 the Boolean algebra dec(P )/s(P ) is 
ompleteand preserves unions in P(X)/s(P ).We show that the assumptions of Theorem 4.2 are satis�ed. Be
ause Pis separable and s(P ) is a σ-
losed ideal, Lemma 4.1 shows that dec(P ) is
σ-�eld.Let Z ⊆ X. By Lemma 4.3, putting B = dec(P ), I = s(P ), A = P (X),there exists M ∈ dec(P ) su
h that Z ⊆ M and for every N ∈ dec(P ) with
Z ⊆ N we have M − N ∈ s(P ).Hen
e dec(P ) is 
losed under the Suslin operation.Corollary 4.5. Let P be a separable subset of P(κ) for a regular 
ar-dinal number κ. If s(P ) is κ-
omplete and |P | ≤ κ then(1) P has the disjoint re�nement property.(2) dec(P )/s(P ) is 
omplete and preserves unions in P(κ)/s(P ).(3) If κ ≥ ω1 then dec(P ) is 
losed under the Suslin operation.Proof. (1) and (2) follow from Corollary 3.3.(3) If κ ≥ ω1 then dec(P ) is a σ-�eld by Lemma 4.1. So, the assertionfollows from Theorem 4.4.Corollary 4.6. If P is a separable subset in P(X) su
h that s(P ) is
ω1-
losed then dec(P ) is 
losed under the Suslin operation.Proof. It is a 
lassi
al fa
t that if A ∈ Suslin(B) and B is σ-
losed thenthere exists a family {Aξ}ξ<ω1

⊆ B su
h that
A =

⋃

ξ∈ω1

Aξ.From Lemma 4.1 we dedu
e that dec(P ) is ω1-
losed. Using the above fa
twe dedu
e that dec(P ) is 
losed under the Suslin operation.Example 4.1. Let (X, S, µ) be a 
omplete measure spa
e su
h that
µ(X) < ∞. Let J = {A ∈ S : µ(A) = 0} and S+ = {A ∈ S : µ(A) > 0}.Then S+ is separable and has the disjoint re�nement property in P(X).



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 279Moreover dec(S+) = S and s(S+) = J . From Theorem 4.4 we obtain the
lassi
al result of Sierpi«ski about 
losedness of S under the Suslin operation.Example 4.2 (Mar
zewski sets). Let X be a Polish spa
e without iso-lated points. We denote by Perf(X) the family of all nonempty 
ompa
tdense-in-themselves subsets of X. Mar
zewski (see [7℄) introdu
ed the notionof sets with property S and the ideal s0. in our terminology these obje
ts maybe de�ned as follows: S = dec(Perf(X)) and s0 = s(Perf(X)). Mar
zewskiproved that s0 is a σ-
losed ideal.Suppose that U is an open subset in X and F ∈ Perf(X). If U ∩ F 6= ∅then there exists H ∈ Perf(X) ∩ [F ]≤ su
h that H ⊆ U ∩ F . It followsthat Open(X) ⊆ S and in 
onsequen
e the family Perf(X) is separable. InPerf(X) any dense open family D has size c. If A ⊆ X and F ∈ Perf(X)and |A| < c then there exists H ∈ Perf(X) ∩ [F ]≤ su
h that H ∩ A = ∅.Using this property, in a standard way we may 
on
lude that Perf(X) has thedisjoint re�nement property in P(X). From Theorem 3.2 we 
on
lude that thesubalgebra S/s0 is 
omplete (see [9℄) and preserves unions in P(X)/s0 and,moreover, S is 
losed under the Suslin operation (see [7℄) by Theorem 4.4.Let p be a 
losed dense-in-itself subset of ωω in the standard topology. For
s ∈ ω<ω we put p(s) = p∩{x ∈ ωω : s ⊆ x}. Let PM denote the family of allnonempty 
losed dense-in-themselves subsets p of ωω su
h that for any s ∈
ω<ω with p(s) 6= ∅ there exists t ⊇ s su
h that |{n ∈ ω : p(tan) 6= ∅}| = ℵ0.The family PM is 
alled the Miller for
ing. It is known that the ideal s(PM)is σ-
losed (see [8℄).Let PL denote the family of all nonempty 
losed dense-in-themselvessubsets p of ωω su
h that there exists s for whi
h p(s) 6= ∅ and, for every t, if
p(t) 6= ∅ then t ⊆ s or |{n ∈ ω : p(tan) 6= ∅}| = ℵ0. The family PL is 
alledthe Laver for
ing. It is known that the ideal s(PL) is σ-
losed (see [6℄).Corollary 4.7. (CH) Let Q = PM or Q = PL. Then(1) Q is separable and has the disjoint re�nement property ,(2) dec(Q)/s(Q) is 
omplete and preserves unions in P(ωω),(3) dec(Q) is a σ-
losed �eld , 
ontains all Borel subsets of ωω and is
losed under the Suslin operation.Proof. Similarly to Example 4.2 we prove that Open(ωω) is in
luded in
dec(Q). From this it is easy to see that dec(Q) is separable. Sin
e s(Q) is
σ-
losed, the Borel subsets are 
ontained in dec(Q). The disjoint re�nementproperty follows from Corollary 3.3. Assertions (2) and (3) follow immedi-ately from Theorem 4.4.5. A generalization of �rst 
ategory sets. We will generalize thenotion of �rst 
ategory sets to the 
lass of 
omplete Boolean algebras.
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omplete Boolean algebra A and a separable subset P in A wesay that x ∈ A is of the �rst 
ategory for dec(P ) if x is the supremumof a 
ountable family in
luded in s(P ).(2) The family of all subsets of the �rst 
ategory for dec(P ) will bedenoted by I(P ).Lemma 5.1. Let A be a Boolean algebra and let P be a separable subsetwith the disjoint re�nement property in A. Let I be an ideal in A su
h that
dec(P ) ∩ I = s(P ). Then P − I is separable and has the disjoint re�nementproperty.Proof. Noti
e that (P−I)∩I = ∅. We will use the letters r, s for elementsof I. Let u−r and v−s be any elements of P −I. Sin
e there is w ∈ P ∩ [v]≤su
h that w ‖ u, we have w − (r + s) ‖ u − r. This proves that P − I isseparable in A.If D is any dense open subset in P − I then

H = {u ∈ P : (∃r)(r ∈ I & u − r ∈ D)}is open dense in P. Let E be a P -maximal disjoint family in
luded in H.For any u let ru be su
h that u − ru ∈ D. Then {u − ru : u ∈ E} is a
(P − I)-maximal disjoint family in
luded in D.The next lemma is a reformulation of the well-known Bana
h lemma ([4℄)in our language.Lemma 5.2. Suppose that P is a separable subset in a 
omplete Booleanalgebra A and E is a P -maximal partition in
luded in P . Then(1) If x ∈ A is su
h that x · u ∈ I(P ) for any u ∈ E then x ∈ I(P ).(2) For any subset M ⊆ E we have ∑

M ∈ dec(P ).Proof. (1) For any u ∈ E take a family {rn(u) : n ∈ ω)} with least upperbound x · u. Set rn =
∑

{rn(u) : u ∈ E}. It follows from Lemma 3.1 that
x · rn ∈ s(P ) for any n ∈ ω. From the equality x =

∑
{(x · u) : u ∈ E}

+ x · (−
∑

E)} it follows that x =
∑

{(x · rn) : n ∈ ω} + x · (−
∑

E). Sin
e
(−

∑
E) ∈ s(P ) we have x ∈ I(P ).

(2) This follows immediately from the de�nition of a P -maximal parti-tion.Theorem 5.3. Let A be a 
omplete Boolean algebra, let P be separableand P ∩ I(P ) = ∅ and let P have the disjoint re�nement property. Then(1) P − I(P ) is separable and has the disjoint re�nement property in A.(2) dec(P − I(P )) = dec(P ) △ I(P ) and s(P − I(P )) = I(P ).Proof. (1) follows dire
tly from Lemma 5.1.
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(2) Fix x ∈ dec(P − I(P )) and let
D = {v ∈ P : (∃r ∈ I(P ))(v − r ‖ x)}.Let E be a P -maximal disjoint family in D. Let E1 = {u ∈ E : u−x ∈ I(P )}.In a standard way we prove that u · (x △

∑
A E1) ∈ I(P ) for any u ∈ E.Lemma 5.2 yields x△

∑
A E1 ∈ I(P ) and ∑

A E1 ∈ dec(P ). This shows that
dec(P − I(P )) ⊆ dec(P ) △ I(P ).In a similar way we prove that s(P − I(P )) ⊆ I(P ).The reverse in
lusions 
an be proved similarly.We get the following example (see [5℄):Example 5.1. Let X be a topologi
al spa
e and let I(X) denote the idealof the �rst 
ategory subsets of X. Then dec(Open+(X) − I(X)) = Baire(X)and s(Open+(X) − I(X)) = I(X).
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