VOL. 105

2006

NO. 2

ON FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING

ВY

W. KUŁAGA (Wrocław)

Abstract. We investigate an algebraic notion of decidability which allows a uniform investigation of a large class of notions of forcing. Among other things, we show how to build σ -fields of sets connected with Laver and Miller notions of forcing and we show that these σ -fields are closed under the Suslin operation.

1. Introduction. We use standard set-theoretic notation. We denote by \triangle symmetric difference, that is, $x \triangle y = (x - y) + (y - x)$.

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set. A subset $X \subseteq P$ is *dense* in \mathbb{P} if $(\forall x \in P)(\exists y \in X)(y \leq x)$. We denote by $D(\mathbb{P})$ the family of all dense subsets of \mathbb{P} . For $x \in P$ we put $[x]_{\leq} = \{y \in P : y \leq x\}$. A subset $X \subseteq P$ is *open* in \mathbb{P} if $(\forall x \in X)([x]_{<} \subseteq X)$.

Let $\mathbb{A} = (A, +, \cdot, 0, 1, \leq)$ be a Boolean algebra. We denote by \mathbb{A}^+ the set of all nonzero elements of A. In this case we put $[x] \leq = \{y \in \mathbb{A}^+ : y \leq x\}$. If B, C are subsets of the Boolean algebra \mathbb{A} then we put

$$B + C = \{b + c : b \in B \& c \in C\},\$$

$$B - C = \{b - c : b \in B \& c \in C\}.$$

For any nonempty subset X we denote by $\mathbb{P}(X)$ the Boolean algebra of all subsets of X with standard set-theoretic operations.

If $X \subseteq A$ then $\sum_A X$ denotes the supremum (if exists) of X in A. We say that a subalgebra B of an algebra A preserves unions if the following two conditions are satisfied:

(1)
$$(\forall R \subseteq B)(\forall x \in B)(x = \sum_{B} R \to x = \sum_{A} R),$$

(2) $(\forall R \subseteq B)(\forall x \in A)(x = \sum_{A} R \to (x \in B \land x = \sum_{B} R)).$

The next definitions play a fundamental role in our paper:

DEFINITION 1.1. Let \mathbb{A} be a Boolean algebra and $x, y \in A$. We say that x decides y in \mathbb{A} if $x \leq y$ or $x \cdot y = 0$. This relation will be denoted by $x \parallel y$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A05, 03G05; Secondary 54E52.

Key words and phrases: Boolean algebras, Suslin operation, Laver forcing, Miller forcing, Marczewski ideal.

I would like to thank J. Cichoń and S. Żeberski for many helpful suggestions.

DEFINITION 1.2. Let A be a Boolean algebra and let P be a nonempty subset of \mathbb{A}^+ . Then we put

(1)
$$\operatorname{dec}(P) = \{x \in A : (\forall u \in P) (\exists v \in P) (v \leq u \land (v \cdot x = 0 \lor v \leq x))\},$$

(2) $s(P) = \{x \in A : (\forall u \in P) (\exists v \in P) (v \leq u \land v \cdot x = 0)\}.$

The idea of the above definitions is taken from Burstin and Marczewski. A system $(\mathbb{P}(X), \Sigma, I)$, where X is a nonempty set, Σ is a field of subsets of X, I is an ideal included in Σ , for which there exists a nonempty set $P \subseteq P(X)$ such that $P \subseteq \operatorname{dec}(P)$, $\Sigma = \operatorname{dec}(P)$, s(P) = I is called *inner Marczewski-Burstin representable*, or briefly *inner MB-representable* (see [1], [3]).

In this paper we consider general algebraic properties of systems of the form $(\mathbb{A}, \operatorname{dec}(P), s(P))$. We will prove that if P and \mathbb{A} satisfy some general conditions then the above system has the following properties:

- dec(P)/s(P) preserves unions in A/s(P),
- dec(P)/s(P) is a complete Boolean algebra,
- if $\mathbb{A} = \mathbb{P}(X)$ then dec(P) is closed under the Suslin operation.

We give applications of this result to Laver and Miller forcing .

2. Algebraic structure of decidable elements. We start with some observations about the algebraic properties of the above definitions. Some of these facts have been known for the algebra $\mathbb{P}(X)$ (see [2]). Notice that $x \in \operatorname{dec}(P)$ if and only if $\{u \in P : u \mid x\} \in D(P)$. Moreover, $x \in s(P)$ if and only if $\{u \in P : u \cdot x = 0\} \in D(P)$. The next lemma follows directly from the definitions:

LEMMA 2.1. Let x, y, z be elements of a Boolean algebra \mathbb{A} . Then

- (1) $(x \parallel y \land z \le x) \rightarrow z \parallel y,$
- (2) $x \parallel y \to z \cdot x \parallel z \cdot y$,
- (3) $(x \parallel y \land x \cdot z = 0) \to x \parallel (y + z),$
- (4) $x || y \to x || (-y).$

The following theorem summarizes basic algebraic properties of the sets dec(P) and s(P) and also follows directly from the definitions:

THEOREM 2.2. Let $P \subseteq A^+$ be a nonempty subset of a Boolean algebra \mathbb{A} . Then

- (1) dec(P) is a subalgebra of \mathbb{A} ,
- (2) s(P) is an ideal in \mathbb{A} , $s(P) \subseteq \operatorname{dec}(P)$ and $P \cap s(P) = \emptyset$,
- (3) $(\forall x \in \operatorname{dec}(P) \setminus s(P)) (\exists u \in P) (u \le x).$

In the next theorem we show how the sets dec(P) and s(P) are related to the basic set P.

For subsets $P, Q \subseteq \mathbb{A}^+$ we will write $P \prec Q$ if $(\forall u \in Q)(\exists v \in P)(v \leq u)$.

THEOREM 2.3. Suppose that $P, Q \subseteq \mathbb{A}^+$ are two nonempty subsets of the Boolean algebra \mathbb{A} . Then:

- (1) $(\forall x \in \operatorname{dec}(P) \setminus s(P))(\operatorname{dec}(P \cap [x]_{\leq}) = (\operatorname{dec}(P) \cap [x]_{\leq}) + [-x]_{\leq}),$
- $(2) \quad (\forall x \in \operatorname{dec}(P) \setminus s(P))(s(P \cap [x]_{\leq}) = (s(P) \cap [x]_{\leq}) + [-x]_{\leq}),$
- (3) if $P \prec Q$ and $Q \prec P$ then $\operatorname{dec}(P) = \operatorname{dec}(Q)$ and s(P) = s(Q),
- (4) if $P, Q \subseteq \operatorname{dec}(P) = \operatorname{dec}(Q)$ and s(P) = s(Q) then $P \prec Q$ and $Q \prec P$.

Proof. (1) Suppose that $x \in \operatorname{dec}(P)$. First, we prove the inclusion $\operatorname{dec}(P \cap [x]_{\leq}) \subseteq (\operatorname{dec}(P) \cap [x]_{\leq}) + [-x]_{\leq}$. Suppose that $y \in \operatorname{dec}(P \cap [x]_{\leq})$. Since $y = (y \cdot x) + (y \cdot -x)$ it is enough to show that $y \cdot x \in \operatorname{dec}(P)$. So let $u \in P$. There exists $u_1 \in P$ such that $u_1 \leq u$ and $u_1 \parallel x$. If $u_1 \cdot x = 0$ then $u_1 \cdot x \cdot y = 0$. Otherwise $u_1 \leq x$. Then $u_1 \in P \cap [x]_{\leq}$. Therefore there exists $u_2 \in P$ such that $u_2 \parallel y$. Hence, $y \in (\operatorname{dec}(P) \cap [x]_{\leq}) + [-x]_{\leq}$.

To prove the opposite inclusion $(\operatorname{dec}(P) \cap [x]_{\leq}) + [-x]_{\leq} \subseteq \operatorname{dec}(P \cap [x]_{\leq})$, suppose that $y = y_1 + y_2$, where $y_1 \in \operatorname{dec}(P) \cap [x]_{\leq}$ and $y_2 \in [-x]_{\leq}$. Let $u \in P \cap [x]_{\leq}$. Then there exists $v \leq u$ such that $v \in P$ and $v \parallel y_1$. Since $v \cdot y_2 = 0$ we see that $v \parallel y_1 + y_2$.

(2) The proof is similar to the previous one.

(3) Let $x \in \operatorname{dec}(P)$. The assumption $P \prec Q$ implies that for any $v \in Q$ there exists $u \in P \cap [v]_{\leq}$. There exists $u_1 \in P \cap [u]_{\leq}$ such that $u_1 \parallel x$. The assumption $Q \prec P$ implies that there exists $v_1 \in Q \cap [u_1]_{\leq}$. Then $v_1 \in Q \cap [v]_{\leq}$ and $v_1 \parallel x$. We have proved that $x \in \operatorname{dec}(Q)$.

In a similar way we prove the opposite inclusion.

Both inclusions imply that dec(P) = dec(Q). The proof that s(P) = s(Q) is similar.

(4) If $P \subseteq \operatorname{dec}(P)$ then $P \subseteq \operatorname{dec}(P) \setminus s(P)$. Thus $\operatorname{dec}(P) \setminus s(P) = \operatorname{dec}(Q) \setminus s(Q)$ and we have $P \subseteq \operatorname{dec}(Q) \setminus s(Q)$. Theorem 2.2 implies that $Q \prec P$.

In a similar way we prove that $P \prec Q$.

EXAMPLE 2.1. Let X be a topological space on a set X. We denote by Open(X) the family of all nonempty open sets in X and by N(X) the family of all nowhere dense subsets of X. If we treat Open(X) as a subset of the power set Boolean algebra $\mathbb{P}(X)$ then we have $\operatorname{dec}(\operatorname{Open}^+(X)) = \operatorname{Open}(X) \bigtriangleup N(X)$ and $s(\operatorname{Open}^+(X)) = N(X)$.

DEFINITION 2.1. A subset $P \subseteq \mathbb{A}^+$ of an algebra \mathbb{A} is *separable* in \mathbb{A} if P is nonempty and $P \subseteq \text{dec}(P)$.

EXAMPLE 2.2. Let $B \neq \{0,1\}$ be a subalgebra of a Boolean algebra \mathbb{A} . Let $x \in A$ be such that $x \cdot y > 0$ and $(-x) \cdot y > 0$ for any $y \in B^+$. It is easy to see that B^+ is separable in \mathbb{A} and that $B^+ \cup \{x, -x\}$ is not separable in \mathbb{A} . LEMMA 2.4. Let \mathbb{A} be a Boolean algebra. For any nonempty subset P of A and for any $x \in A$ we have:

(1)
$$(\forall u \in P)(u \cdot x \in s(P) \to (\exists v \in P \cap [u]_{\leq})(v \cdot x = 0)),$$

(2) $(\forall u \in P)(u - x \in s(P) \to (\exists v \in P \cap [u]_{\leq})(v \leq x)).$

Proof. (1) Let $u \in P$ and $u \cdot x \in s(P)$. There exists $v \in P \cap [u]_{\leq}$ such that $v \cdot (u \cdot x) = 0$. The inequality $v \leq u$ implies $v \cdot x = 0$.

The proof of (2) is similar.

LEMMA 2.5. Let B be a subalgebra of a Boolean algebra A and let J be an ideal in A included in B. Then

$$\{x \in B : x \bigtriangleup u \in J\} = \{x \in A : x \bigtriangleup u \in J\}.$$

So, B/J is a subalgebra of A/J.

If a Boolean algebra \mathbb{A} and a set $P \subseteq \mathbb{A}^+$ are fixed then we denote by [x] the set $\{y \in A : x \bigtriangleup y \in s(P)\}$.

THEOREM 2.6. For every Boolean algebra \mathbb{A} and any separable subset P in \mathbb{A} the subalgebra $\operatorname{dec}(P)/s(P)$ preserves unions in A/s(P).

Proof. (1) Suppose that $R \subseteq dec(P)$, $x \in dec(P)$ and $[x] = \sum_{dec(P)/s(P)} [R]$. Let

$$D = \{ v \in P : (\exists r \in R) (v \le r \text{ or } v \cdot x = 0) \}.$$

We claim that D is dense in P. Suppose that $u \in P$. Since $x \in \operatorname{dec}(P)$ there exists $v \in P \cap [u]_{\leq}$ such that $v \cdot x = 0$ or $v \leq x$. If $v \cdot x = 0$ then $D \cap [u]_{\leq} \neq \emptyset$. If $v \leq x$ then we have two possibilities.

If $v \cdot r \in s(P)$ for every $r \in R$ then $r - (x - v) \in s(P)$. Hence $[r] \leq [x - v]$. Since $x - v \in dec(P)$ and [x - v] < [x] we have $[R] \leq [x - v]$, which contradicts the assumptions on x.

So, there exists $r \in R$ such that $v \cdot r \in \operatorname{dec}(P) \setminus s(P)$. By Theorem 2.2 there exists $v_1 \in P$ such that $v_1 \leq v \cdot r$. Therefore $v_1 \leq r$ and $v_1 \leq u$, which finishes the proof of the density of D.

Suppose that $y \in A$ and $[R] \leq [y]$. Let $v \in D$. We consider two cases. If $v \cdot x = 0$ then $v \cdot (x - y) = 0$.

Otherwise $v \leq r$ for some $r \in R$. Then $[v] \leq [y]$ and hence $v - y \in s(P)$. By Lemma 2.4 there exists $v_1 \in P \cap [v]_{\leq}$ such that $v_1 \leq y$ and hence $v_1 \cdot (x - y) = 0$. Therefore the set $\{v \in P : v \cdot (x - y) = 0\}$ is dense in P. Then $x - y \in s(P)$ and $[x] \leq [y]$. We have proved that x is the least upper bound of [R] in $\mathbb{A}/s(P)$.

(2) Suppose that $\sum_{\mathbb{A}/s(P)} [R] = [x]$. Let $u \in P$. We consider two cases.

If $[u] \cdot [x] = [0]$ then $u \cdot x \in s(P)$ and by Lemma 2.4 there exists $v \in P \cap [u]_{\leq}$ such that $v \cdot x = 0$.

Now, assume $[u] \cdot [x] \neq [0]$. Then for some $r \in R$ we have $[u] \cdot [r] \neq [0]$ and $[u] \cdot [r] \leq [x]$. Therefore $u \cdot r - x \in s(P)$. Since $u \cdot r \in dec(P) \setminus s(P)$, from Theorem 2.2 there exists $v \in P \cap [u \cdot r]_{\leq}$. Therefore $v - x \in s(P)$ and then by Lemma 2.4 there exists $w \in P \cap [u]_{\leq}$ such that $w \leq x$. This proves that the family $\{u \in P : u \mid x\}$ is a dense subset in P and hence $x \in dec(P)$.

THEOREM 2.7. Let (\mathbb{A}, B, I) be a system such that \mathbb{A} is a Boolean algebra, B is a subalgebra of \mathbb{A} and $I \subseteq B$ is an ideal in \mathbb{A} . Then the following conditions are equivalent:

- (1) There exists a subset P which is separable in \mathbb{A} such that dec(P) = Band s(P) = I.
- (2) The algebra B/I preserves unions in A/I.

Proof. $(1) \Rightarrow (2)$. This follows immediately from Theorem 2.6.

 $\begin{array}{ll} (2) \Rightarrow (1). \mbox{ For a while we will use the following notation: } [x]_I = \{y \in A : x \bigtriangleup y \in I\}. \mbox{ Let } x \in \operatorname{dec}(B \setminus I). \mbox{ By density of } D = \{u \in B \setminus I : u \parallel x\} \mbox{ in } B \setminus I \mbox{ the set } [D]_I = \{[u]_I : u \in D\} \mbox{ is dense in } B/I. \mbox{ Let } E \subseteq D \mbox{ be such that } [E]_I \mbox{ is a maximal partition in } B/I. \mbox{ Put } E_1 = \{u \in E : u \leq x\} \mbox{ and } E_2 = \{u \in E : u \cdot x = 0\}. \mbox{ Notice that } [x]_I \mbox{ is an upper bound of } [E_1]_I. \mbox{ Let } y \in A \mbox{ be such that } [y]_I \mbox{ is an upper bound of } [E_1]_I. \mbox{ If } u \in E_1 \mbox{ then } u \cdot (x - y) \in I, \mbox{ because } u - y \in I. \mbox{ If } u \in E_2 \mbox{ then } u \cdot (x - y) = 0, \mbox{ because } u \cdot x = 0. \mbox{ Since } [E]_I \mbox{ is a maximal partition in } B/I, \mbox{ we have } \sum_{B/I} [E]_I = [1]_I. \mbox{ We have } [x - y]_I = 0. \mbox{ So, } [x]_I \leq [y]_I. \mbox{ We have shown that } [x]_I \mbox{ is the least upper bound of } [E_1]_I \mbox{ in } A/I. \mbox{ Because } B/I \mbox{ preserves unions, we have } \sum_{B/I} [E_1]_I = [x]_I. \mbox{ So } x \in B. \mbox{ We have shown that } \mbox{ dec}(B \setminus I) \subseteq B. \end{tabular}$

Because $B \setminus I$ is separable in A we have $B \setminus I \subseteq \operatorname{dec}(B \setminus I)$. So $B = \operatorname{dec}(B \setminus I)$.

In a similar way we show that $s(B \setminus I) = I$. (Notice that $E_1 = \emptyset$.)

3. Disjoint refinement property. In this section we discuss some properties which imply that the Boolean algebra dec(P)/s(P) is complete.

Let $[E] \leq \bigcup \{ [x] \leq : x \in E \}.$

DEFINITION 3.1. A partition E in a Boolean algebra A is called *P*maximal for a subset $P \subseteq \mathbb{A}^+$ if $P \cap [E]_{\leq}$ is a dense open subset in *P*.

DEFINITION 3.2. We say that a subset $P \subseteq A^+$ has the *disjoint refine*ment property if for every open dense subset D in P there exists a P-maximal partition included in D.

LEMMA 3.1. Let \mathbb{A} be a complete Boolean algebra. For $P \subseteq \mathbb{A}^+$ and a *P*-maximal partition *E* we have

(1) $(\forall R \subseteq E)(\sum R \in \operatorname{dec}(P)),$

(2) $(\forall x \in A)(\forall u \in E)(x \cdot u \in s(P) \to x \in s(P)).$

Proof. (1) This follows directly from the inclusion $P \cap [E]_{\leq} \subseteq \{v : v \parallel \sum R\}$.

(2) Suppose that $x \in A$ and for any $u \in E$ we have $u \cdot x \in s(P)$. Let $v \in P$. Then there exist $u \in E$ and $v_1 \in (P \cap [v]_{\leq}) \cap [u]_{\leq}$. Since $u \cdot x \in s(P)$ we have $v_1 \cdot x \in s(P)$. Therefore from Lemma 2.4 there exists $w \in P \cap [v_1]_{\leq}$ such that $w \cdot x = 0$ and moreover $w \leq v$.

THEOREM 3.2. Let \mathbb{A} be a complete Boolean algebra and let P be a separable subset of A with the disjoint refinement property. Then $\operatorname{dec}(P)/s(P)$ is a complete Boolean algebra and it preserves unions in $\mathbb{A}/s(P)$.

Proof. Let R be any subset of dec(P). We define

$$D_1 = \{ v \in P : (\exists r \in R) (v - r \in s(P)) \}$$

and

$$D_2 = \{ v \in P : (\forall r \in R) (v \cdot r \in s(P)) \}.$$

By separability of P the set $D_1 \cup D_2$ is dense and open in P. By the disjoint refinement property of P there exists a maximal disjoint subset E included in $D_1 \cup D_2$. Let $E_1 = E \cap D_1$ and $E_2 = E \cap D_2$. From Lemma 3.1 we deduce that $\sum E_1 \in \text{dec}(P)$.

Suppose that $r \in R$ and $u \in E$. If $u \in E_1$ then $u \cdot (r - \sum E_1) = 0$. If $u \in E_2$ then $u \cdot (r - \sum E_1) \in s(P)$. From Lemma 3.1 we see that $r - \sum E_1 \in s(P)$. This proves that $[r] \leq [\sum E_1]$ and therefore $[\sum E_1]$ is an upper bound for the family [R] in $\operatorname{dec}(P)/s(P)$. Let $w \in \operatorname{dec}(P)$ be such that $r - w \in s(P)$ for any $r \in R$. Let $u \in E$. If $u \in E_1$ then there exists $r \in R$ such that $u - r \in s(P)$. Since $r - w \in s(P)$ we have $u - w \in s(P)$. This proves that $u \cdot (\sum E_1 - w) \in s(P)$.

If $u \in E_2$ then $u \cdot (\sum E_1 - w) = 0$. Lemma 3.1 implies that $\sum E_1 - w \in s(P)$. We have proved that $[\sum E_1] \leq [w]$, so that $[\sum E_1]$ is the least upper bound of the family [R] in dec(P)/s(P).

EXAMPLE 3.1. Let \mathbb{X} be a topological space. With the notation from Example 2.1, $(\text{Open}(\mathbb{X}) \bigtriangleup N(\mathbb{X}))/N(\mathbb{X})$ is complete and preserves unions in $\mathbb{P}(X)/N(\mathbb{X})$.

COROLLARY 3.3. Let κ be an infinite cardinal. Let \mathbb{A} be a complete Boolean algebra and let P be a separable subset of \mathbb{A} of size κ . If s(P) is a κ -complete ideal then P has the disjoint refinement property and the subalgebra dec(P)/s(P) is complete and preserves unions in A/s(P).

Proof. Let $D = \{u_{\xi} : \xi \in \eta\}$ be a dense open subset in $P, \eta \leq \kappa$. We construct a sequence $(v_{\xi} : \xi \in \eta)$. Let $v_0 = u_0$. Assume we have defined $(v_{\xi} : \xi \in \lambda)$ for some $\lambda \in \eta$. If $\{v_{\xi} : u_{\lambda} \cdot v_{\xi} \notin s(P), \xi \in \lambda\} \neq \emptyset$ then let v_{λ} be any element of the above set. In the other case $\{u_{\lambda} \cdot v_{\xi} : \xi \in \lambda\} \subseteq s(P)$. So, because $\lambda < \kappa$ and s(P) is κ -complete, we have $r_{\lambda} = \sum\{u_{\lambda} \cdot v_{\xi} : \xi \in \lambda\} \in$

s(P). So $u_{\lambda} - r_{\lambda} \in \operatorname{dec}(P) \setminus s(P)$. We have $P \cap [u_{\lambda} - r_{\lambda}] \leq \neq \emptyset$. By density of D we have $D \cap [u_{\lambda} - r_{\lambda}] < \neq \emptyset$. Let v_{λ} be any element of the latter set.

Let $E = \{v_{\xi} : \xi \in \eta\}$. Directly from the construction it follows that E is included in D and is a partition.

We will show that $\bigcup \{ [v]_{\leq} : v \in E \}$ is dense in P. Let $x \in P$. By density of D we can choose $u \in D \cap [x]_{\leq}$. Then $u = u_{\xi}$ for some $\xi \in \eta$. By the construction of the sequence $(v_{\xi} : \xi \in \eta)$ we know that $v_{\xi} \cdot u_{\xi} \notin s(P)$. So $[v_{\xi}]_{\leq} \cap [x]_{\leq} \neq \emptyset$. Since $v_{\xi} \in E$ we have $\bigcup \{ [v]_{\leq} : v \in E \} \cap [x]_{\leq} \neq \emptyset$.

Now, we can apply Theorem 3.2 to get the desired conclusion. \blacksquare

4. Closedness under the Suslin operation. Recall that a family $\mathcal{B} \subseteq \mathbb{P}(X)$ is closed under the Suslin operation if for every function $\varphi : \omega^{<\omega} \to \mathcal{B}$ the set

$$A(\varphi) = \bigcup_{x \in \omega^{\omega}} \bigcap_{s \subset x} \varphi(s)$$

belongs to \mathcal{B} .

LEMMA 4.1. Let P be a separable subset of a complete Boolean algebra \mathbb{A} . If s(P) is a κ -complete ideal then dec(P) is a κ -complete subalgebra of \mathbb{A} .

Proof. Suppose that $R \subseteq \operatorname{dec}(P)$ and $|R| < \kappa$. Let $v \in P$. If $v \cdot r \in s(P)$ for any $r \in R$ then $v \cdot (\sum R) \in s(P)$ because s(P) is κ -complete. By Lemma 2.4 there exists $w \in P \cdot [v]_{\leq}$ such that $w \cdot (\sum R) = 0$. If $r \in R$ is such that $v \cdot r \notin s(P)$ then $v \cdot r \in \operatorname{dec}(P) \setminus s(P)$ and from Theorem 2.2 there exists $w \in P \cap [v \cdot r]_{\leq}$. This implies that $w \in P \cap [v]_{\leq}$ and $w \leq \sum R$.

The starting point of the proof of the next theorem is the following classical result of Marczewski:

THEOREM 4.2 (Marczewski). Let **B** be a σ -field of subsets of a set X and let J be an ideal in $\mathbb{P}(X)$ included in **B** such that

$$(\forall Z \subseteq X)(\exists M \in \mathbf{B})(Z \subseteq M \land (\forall N \in \mathbf{B})(Z \subseteq N \to M \setminus N \in J))$$

Then B is closed under the Suslin operation.

LEMMA 4.3. Assume that \mathbb{A} is a Boolean algebra. Let B be a subalgebra of \mathbb{A} and let I be an ideal of \mathbb{A} included in B. Suppose B/I is complete and

$$(\forall R \subseteq B)(\sum_{B/I} [R] = [x] \rightarrow \sum_{A/I} [R] = [x]).$$

Then for every $y \in A$ there exists $x \in B$ such that $y \leq x$ and

$$(\forall r)(r \in B \land y \leq r \to x - r \in I).$$

Proof. Let $y \in A$. Put $R = \{r \in B : y \leq r\}$. By completeness of B/I we have $\prod_{B/I}[R] = [z]$ for some $z \in B$. By assumption $\prod_{A/I}[R] = [z]$. Notice that $[y] \leq [r]$ for every $r \in R$. So $[y] \leq \prod_{A/I}[R] = [z]$. Thus, $[y] \leq [z]$. Put

 $x = z \lor y - z$. Notice that $y - z \in I$. So $x \in B$ and $y \le x$. If $r \in B$, $y \le r$ then $r \in R$. So, $[z] \le [r]$ and [z] = [x]. Thus $x - r \in I$.

Recall that an ideal $\mathcal{I} \subseteq \mathbb{P}(X)$ is σ -closed if it is closed under countable unions.

Similarly, an ideal $\mathcal{I} \subseteq \mathbb{P}(X)$ is ω_1 -closed if for every family $\mathcal{A} \subseteq \mathcal{I}$ such that $|\mathcal{A}| \leq \omega_1$ we have $\bigcup \mathcal{A} \in \mathcal{I}$.

THEOREM 4.4. Suppose that P is separable and has the disjoint refinement property in $\mathbb{P}(X)$ and that the ideal s(P) is σ -closed. Then the algebra dec(P) is closed under the Suslin operation.

Proof. By Theorem 3.2 the Boolean algebra dec(P)/s(P) is complete and preserves unions in $\mathbb{P}(X)/s(P)$.

We show that the assumptions of Theorem 4.2 are satisfied. Because P is separable and s(P) is a σ -closed ideal, Lemma 4.1 shows that dec(P) is σ -field.

Let $Z \subseteq X$. By Lemma 4.3, putting $B = \operatorname{dec}(P)$, I = s(P), A = P(X), there exists $M \in \operatorname{dec}(P)$ such that $Z \subseteq M$ and for every $N \in \operatorname{dec}(P)$ with $Z \subseteq N$ we have $M - N \in s(P)$.

Hence dec(P) is closed under the Suslin operation.

COROLLARY 4.5. Let P be a separable subset of $\mathbb{P}(\kappa)$ for a regular cardinal number κ . If s(P) is κ -complete and $|P| \leq \kappa$ then

- (1) P has the disjoint refinement property.
- (2) dec(P)/s(P) is complete and preserves unions in $\mathbb{P}(\kappa)/s(P)$.
- (3) If $\kappa \geq \omega_1$ then dec(P) is closed under the Suslin operation.

Proof. (1) and (2) follow from Corollary 3.3.

(3) If $\kappa \geq \omega_1$ then dec(P) is a σ -field by Lemma 4.1. So, the assertion follows from Theorem 4.4.

COROLLARY 4.6. If P is a separable subset in $\mathbb{P}(X)$ such that s(P) is ω_1 -closed then dec(P) is closed under the Suslin operation.

Proof. It is a classical fact that if $A \in \text{Suslin}(B)$ and B is σ -closed then there exists a family $\{A_{\xi}\}_{\xi < \omega_1} \subseteq B$ such that

$$A = \bigcup_{\xi \in \omega_1} A_{\xi}.$$

From Lemma 4.1 we deduce that dec(P) is ω_1 -closed. Using the above fact we deduce that dec(P) is closed under the Suslin operation.

EXAMPLE 4.1. Let (X, S, μ) be a complete measure space such that $\mu(X) < \infty$. Let $J = \{A \in S : \mu(A) = 0\}$ and $S^+ = \{A \in S : \mu(A) > 0\}$. Then S^+ is separable and has the disjoint refinement property in $\mathbb{P}(X)$. Moreover $dec(S^+) = S$ and $s(S^+) = J$. From Theorem 4.4 we obtain the classical result of Sierpiński about closedness of S under the Suslin operation.

EXAMPLE 4.2 (Marczewski sets). Let X be a Polish space without isolated points. We denote by Perf(X) the family of all nonempty compact dense-in-themselves subsets of X. Marczewski (see [7]) introduced the notion of sets with property S and the ideal s^0 in our terminology these objects may be defined as follows: S = dec(Perf(X)) and $s^0 = s(Perf(X))$. Marczewski proved that s^0 is a σ -closed ideal.

Suppose that U is an open subset in X and $F \in \operatorname{Perf}(X)$. If $U \cap F \neq \emptyset$ then there exists $H \in \operatorname{Perf}(X) \cap [F]_{\leq}$ such that $H \subseteq U \cap F$. It follows that $\operatorname{Open}(X) \subseteq S$ and in consequence the family $\operatorname{Perf}(X)$ is separable. In $\operatorname{Perf}(X)$ any dense open family D has size c. If $A \subseteq X$ and $F \in \operatorname{Perf}(X)$ and $|A| < \mathbf{c}$ then there exists $H \in \operatorname{Perf}(X) \cap [F]_{\leq}$ such that $H \cap A = \emptyset$. Using this property, in a standard way we may conclude that $\operatorname{Perf}(X)$ has the disjoint refinement property in $\mathbb{P}(X)$. From Theorem 3.2 we conclude that the subalgebra S/s^0 is complete (see [9]) and preserves unions in $\mathbb{P}(X)/s^0$ and, moreover, S is closed under the Suslin operation (see [7]) by Theorem 4.4.

Let p be a closed dense-in-itself subset of ω^{ω} in the standard topology. For $s \in \omega^{<\omega}$ we put $p(s) = p \cap \{x \in \omega^{\omega} : s \subseteq x\}$. Let P_{M} denote the family of all nonempty closed dense-in-themselves subsets p of ω^{ω} such that for any $s \in \omega^{<\omega}$ with $p(s) \neq \emptyset$ there exists $t \supseteq s$ such that $|\{n \in \omega : p(t \cap n) \neq \emptyset\}| = \aleph_0$. The family P_{M} is called the *Miller forcing*. It is known that the ideal $s(P_{\mathrm{M}})$ is σ -closed (see [8]).

Let $P_{\rm L}$ denote the family of all nonempty closed dense-in-themselves subsets p of ω^{ω} such that there exists s for which $p(s) \neq \emptyset$ and, for every t, if $p(t) \neq \emptyset$ then $t \subseteq s$ or $|\{n \in \omega : p(t \cap n) \neq \emptyset\}| = \aleph_0$. The family $P_{\rm L}$ is called the *Laver forcing*. It is known that the ideal $s(P_{\rm L})$ is σ -closed (see [6]).

COROLLARY 4.7. (CH) Let $Q = P_M$ or $Q = P_L$. Then

- (1) Q is separable and has the disjoint refinement property,
- (2) $\operatorname{dec}(Q)/s(Q)$ is complete and preserves unions in $\mathbb{P}(\omega^{\omega})$,
- (3) dec(Q) is a σ -closed field, contains all Borel subsets of ω^{ω} and is closed under the Suslin operation.

Proof. Similarly to Example 4.2 we prove that $\text{Open}(\omega^{\omega})$ is included in dec(Q). From this it is easy to see that dec(Q) is separable. Since s(Q) is σ -closed, the Borel subsets are contained in dec(Q). The disjoint refinement property follows from Corollary 3.3. Assertions (2) and (3) follow immediately from Theorem 4.4.

5. A generalization of first category sets. We will generalize the notion of first category sets to the class of complete Boolean algebras.

DEFINITION 5.1.

- (1) For a complete Boolean algebra \mathbb{A} and a separable subset P in A we say that $x \in \mathbb{A}$ is of the *first category* for dec(P) if x is the supremum of a countable family included in s(P).
- (2) The family of all subsets of the first category for dec(P) will be denoted by I(P).

LEMMA 5.1. Let \mathbb{A} be a Boolean algebra and let P be a separable subset with the disjoint refinement property in \mathbb{A} . Let I be an ideal in \mathbb{A} such that $dec(P) \cap I = s(P)$. Then P - I is separable and has the disjoint refinement property.

Proof. Notice that $(P-I) \cap I = \emptyset$. We will use the letters r, s for elements of I. Let u-r and v-s be any elements of P-I. Since there is $w \in P \cap [v]_{\leq}$ such that $w \parallel u$, we have $w - (r+s) \parallel u - r$. This proves that P-I is separable in A.

If D is any dense open subset in P - I then

$$H = \{ u \in P : (\exists r) (r \in I \& u - r \in D) \}$$

is open dense in P. Let E be a P-maximal disjoint family included in H. For any u let r_u be such that $u - r_u \in D$. Then $\{u - r_u : u \in E\}$ is a (P - I)-maximal disjoint family included in D.

The next lemma is a reformulation of the well-known Banach lemma ([4]) in our language.

LEMMA 5.2. Suppose that P is a separable subset in a complete Boolean algebra \mathbb{A} and E is a P-maximal partition included in P. Then

- (1) If $x \in A$ is such that $x \cdot u \in I(P)$ for any $u \in E$ then $x \in I(P)$.
- (2) For any subset $M \subseteq E$ we have $\sum M \in \operatorname{dec}(P)$.

Proof. (1) For any $u \in E$ take a family $\{r_n(u) : n \in \omega\}$ with least upper bound $x \cdot u$. Set $r_n = \sum \{r_n(u) : u \in E\}$. It follows from Lemma 3.1 that $x \cdot r_n \in s(P)$ for any $n \in \omega$. From the equality $x = \sum \{(x \cdot u) : u \in E\}$ $+ x \cdot (-\sum E)\}$ it follows that $x = \sum \{(x \cdot r_n) : n \in \omega\} + x \cdot (-\sum E)$. Since $(-\sum E) \in s(P)$ we have $x \in I(P)$.

(2) This follows immediately from the definition of a P-maximal partition. \blacksquare

THEOREM 5.3. Let \mathbb{A} be a complete Boolean algebra, let P be separable and $P \cap I(P) = \emptyset$ and let P have the disjoint refinement property. Then

- (1) P I(P) is separable and has the disjoint refinement property in A.
- (2) $\operatorname{dec}(P I(P)) = \operatorname{dec}(P) \bigtriangleup I(P)$ and s(P I(P)) = I(P).

Proof. (1) follows directly from Lemma 5.1.

(2) Fix
$$x \in \operatorname{dec}(P - I(P))$$
 and let
 $D = \{v \in P : (\exists r \in I(P))(v - r \parallel x)\}.$

Let *E* be a *P*-maximal disjoint family in *D*. Let $E_1 = \{u \in E : u - x \in I(P)\}$. In a standard way we prove that $u \cdot (x \bigtriangleup \sum_A E_1) \in I(P)$ for any $u \in E$. Lemma 5.2 yields $x \bigtriangleup \sum_A E_1 \in I(P)$ and $\sum_A E_1 \in \operatorname{dec}(P)$. This shows that $\operatorname{dec}(P - I(P)) \subseteq \operatorname{dec}(P) \bigtriangleup I(P)$.

In a similar way we prove that $s(P - I(P)) \subseteq I(P)$.

The reverse inclusions can be proved similarly.

We get the following example (see [5]):

EXAMPLE 5.1. Let \mathbb{X} be a topological space and let $I(\mathbb{X})$ denote the ideal of the first category subsets of X. Then dec(Open⁺(\mathbb{X}) – $I(\mathbb{X})$) = Baire(\mathbb{X}) and $s(Open⁺(<math>\mathbb{X}$) – $I(\mathbb{X})$) = $I(\mathbb{X})$.

REFERENCES

- M. Balcerzak, A. Bartoszewicz and K. Ciesielski, Algebras with inner MB-representation, Real Anal. Exchange 29 (2003/2004), 265–274.
- M. Balcerzak, A. Bartoszewicz, J. Rzepecka and S. Wroński, Marczewski fields and ideals, ibid. 26 (2000/2001), 703-715.
- S. Baldwin, The Marczewski hull property and complete Boolean algebras, ibid. 28 (2002/2003), 415-428.
- [4] S. Banach, Théorème sur les ensembles de première catégorie, Fund. Math. 16 (1930), 395-398.
- [5] J. B. Brown and H. Elalaoui-Talibi, Marczewski-Burstin characterizations of σ algebras, ideals, and measurable functions, Colloq. Math. 82 (1999), 277–286.
- [6] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151–169.
- [7] E. Marczewski, Sur un classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1937), 17–34.
- [8] A. Miller, Rational perfect set forcing, in: Contemp. Math. 31, Amer. Math. Soc., 1984, 143–159.
- [9] J. Morgan II, Point Set Theory, Dekker, New York, 1990.

Estońska 40a/26 54-401 Wrocław, Poland E-mail: wieslaw.kulaga@wp.pl

> Received 8 March 2005; revised 4 December 2005 (4574)