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ON FIELDS AND IDEALS CONNECTED WITH NOTIONSOF FORCINGBYW. KU�AGA (Wroªaw)Abstrat. We investigate an algebrai notion of deidability whih allows a uniforminvestigation of a large lass of notions of foring. Among other things, we show how tobuild σ-�elds of sets onneted with Laver and Miller notions of foring and we show thatthese σ-�elds are losed under the Suslin operation.1. Introdution. We use standard set-theoreti notation. We denote by
△ symmetri di�erene, that is, x △ y = (x − y) + (y − x).Let P = (P,≤) be a partially ordered set. A subset X ⊆ P is dense in
P if (∀x ∈ P )(∃y ∈ X)(y ≤ x). We denote by D(P) the family of all densesubsets of P. For x ∈ P we put [x]≤ = {y ∈ P : y ≤ x}. A subset X ⊆ P isopen in P if (∀x ∈ X)([x]≤ ⊆ X).Let A = (A, +, ·, 0, 1,≤) be a Boolean algebra. We denote by A

+ the setof all nonzero elements of A. In this ase we put [x]≤ = {y ∈ A
+ : y ≤ x}. If

B, C are subsets of the Boolean algebra A then we put
B + C = {b + c : b ∈ B & c ∈ C},

B − C = {b − c : b ∈ B & c ∈ C}.For any nonempty subset X we denote by P(X) the Boolean algebra ofall subsets of X with standard set-theoreti operations.If X ⊆ A then ∑
A X denotes the supremum (if exists) of X in A. Wesay that a subalgebra B of an algebra A preserves unions if the followingtwo onditions are satis�ed:(1) (∀R ⊆ B)(∀x ∈ B)(x =

∑
B R → x =

∑
A R),(2) (∀R ⊆ B)(∀x ∈ A)(x =

∑
A R → (x ∈ B ∧ x =

∑
B R)).The next de�nitions play a fundamental role in our paper:Definition 1.1. Let A be a Boolean algebra and x, y ∈ A. We say that

x deides y in A if x ≤ y or x · y = 0. This relation will be denoted by x ‖ y.2000 Mathematis Subjet Classi�ation: Primary 28A05, 03G05; Seondary 54E52.Key words and phrases: Boolean algebras, Suslin operation, Laver foring, Miller for-ing, Marzewski ideal.I would like to thank J. Ciho« and S. �eberski for many helpful suggestions.[271℄



272 W. KU�AGADefinition 1.2. Let A be a Boolean algebra and let P be a nonemptysubset of A
+. Then we put(1) dec(P ) = {x ∈ A : (∀u ∈ P )(∃v ∈ P )(v ≤ u ∧ (v · x = 0 ∨ v ≤ x))},(2) s(P ) = {x ∈ A : (∀u ∈ P )(∃v ∈ P )(v ≤ u ∧ v · x = 0)}.The idea of the above de�nitions is taken from Burstin and Marzewski.A system (P(X), Σ, I), where X is a nonempty set, Σ is a �eld of subsetsof X, I is an ideal inluded in Σ, for whih there exists a nonempty set

P ⊆ P (X) suh that P ⊆ dec(P ), Σ = dec(P ), s(P ) = I is alled innerMarzewski�Burstin representable, or brie�y inner MB-representable (see [1℄,[3℄).In this paper we onsider general algebrai properties of systems of theform (A, dec(P ), s(P )). We will prove that if P and A satisfy some generalonditions then the above system has the following properties:
• dec(P )/s(P ) preserves unions in A/s(P ),
• dec(P )/s(P ) is a omplete Boolean algebra,
• if A = P(X) then dec(P ) is losed under the Suslin operation.We give appliations of this result to Laver and Miller foring .2. Algebrai struture of deidable elements. We start with someobservations about the algebrai properties of the above de�nitions. Someof these fats have been known for the algebra P(X) (see [2℄). Notie that

x ∈ dec(P ) if and only if {u ∈ P : u ‖x} ∈ D(P ). Moreover, x ∈ s(P ) if andonly if {u ∈ P : u · x = 0} ∈ D(P ). The next lemma follows diretly fromthe de�nitions:Lemma 2.1. Let x, y, z be elements of a Boolean algebra A. Then(1) (x ‖ y ∧ z ≤ x) → z ‖ y,(2) x ‖ y → z · x ‖ z · y,(3) (x ‖ y ∧ x · z = 0) → x ‖ (y + z),(4) x ‖ y → x ‖ (−y).The following theorem summarizes basi algebrai properties of the sets
dec(P ) and s(P ) and also follows diretly from the de�nitions:Theorem 2.2. Let P ⊆ A+ be a nonempty subset of a Boolean algebra A.Then(1) dec(P ) is a subalgebra of A,(2) s(P ) is an ideal in A, s(P ) ⊆ dec(P ) and P ∩ s(P ) = ∅,(3) (∀x ∈ dec(P ) \ s(P ))(∃u ∈ P )(u ≤ x).In the next theorem we show how the sets dec(P ) and s(P ) are relatedto the basi set P .For subsets P, Q ⊆ A

+ we will write P ≺ Q if (∀u ∈ Q)(∃v ∈ P )(v ≤ u).



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 273Theorem 2.3. Suppose that P, Q ⊆ A
+ are two nonempty subsets of theBoolean algebra A. Then:(1) (∀x ∈ dec(P ) \ s(P ))(dec(P ∩ [x]≤) = (dec(P ) ∩ [x]≤) + [−x]≤),(2) (∀x ∈ dec(P ) \ s(P ))(s(P ∩ [x]≤) = (s(P ) ∩ [x]≤) + [−x]≤),(3) if P ≺ Q and Q ≺ P then dec(P ) = dec(Q) and s(P ) = s(Q),(4) if P, Q ⊆ dec(P ) = dec(Q) and s(P ) = s(Q) then P ≺ Q and

Q ≺ P .Proof. (1) Suppose that x ∈ dec(P ). First, we prove the inlusion
dec(P ∩ [x]≤) ⊆ (dec(P ) ∩ [x]≤) + [−x]≤. Suppose that y ∈ dec(P ∩ [x]≤).Sine y = (y · x) + (y · −x) it is enough to show that y · x ∈ dec(P ). So let
u ∈ P . There exists u1 ∈ P suh that u1 ≤ u and u1 ‖x. If u1 · x = 0 then
u1 · x · y = 0. Otherwise u1 ≤ x. Then u1 ∈ P ∩ [x]≤. Therefore there exists
u2 ∈ P suh that u2 ≤ u1 and u2 ‖ y. Hene, y ∈ (dec(P ) ∩ [x]≤) + [−x]≤.To prove the opposite inlusion (dec(P )∩ [x]≤)+ [−x]≤ ⊆ dec(P ∩ [x]≤),suppose that y = y1 + y2, where y1 ∈ dec(P ) ∩ [x]≤ and y2 ∈ [−x]≤. Let
u ∈ P ∩ [x]≤. Then there exists v ≤ u suh that v ∈ P and v ‖ y1. Sine
v · y2 = 0 we see that v ‖ y1 + y2.

(2) The proof is similar to the previous one.
(3) Let x ∈ dec(P ). The assumption P ≺ Q implies that for any v ∈ Qthere exists u ∈ P ∩ [v]≤. There exists u1 ∈ P ∩ [u]≤ suh that u1 ‖ x.The assumption Q ≺ P implies that there exists v1 ∈ Q ∩ [u1]≤. Then

v1 ∈ Q ∩ [v]≤ and v1 ‖ x. We have proved that x ∈ dec(Q).In a similar way we prove the opposite inlusion.Both inlusions imply that dec(P ) = dec(Q). The proof that s(P ) = s(Q)is similar.
(4) If P ⊆ dec(P ) then P ⊆ dec(P ) \ s(P ). Thus dec(P ) \ s(P ) =

dec(Q) \ s(Q) and we have P ⊆ dec(Q) \ s(Q). Theorem 2.2 implies that
Q ≺ P .In a similar way we prove that P ≺ Q.Example 2.1. Let X be a topologial spae on a set X. We denote by
Open(X) the family of all nonempty open sets in X and by N(X) the family ofall nowhere dense subsets of X. If we treat Open(X) as a subset of the powerset Boolean algebra P(X) then we have dec(Open+(X)) = Open(X)△N(X)and s(Open+(X)) = N(X).Definition 2.1. A subset P ⊆ A

+ of an algebra A is separable in A if
P is nonempty and P ⊆ dec(P ).Example 2.2. Let B 6= {0, 1} be a subalgebra of a Boolean algebra A.Let x ∈ A be suh that x · y > 0 and (−x) · y > 0 for any y ∈ B+. It iseasy to see that B+ is separable in A and that B+∪{x,−x} is not separablein A.



274 W. KU�AGALemma 2.4. Let A be a Boolean algebra. For any nonempty subset P of
A and for any x ∈ A we have:(1) (∀u ∈ P )(u · x ∈ s(P ) → (∃v ∈ P ∩ [u]≤)(v · x = 0)),(2) (∀u ∈ P )(u − x ∈ s(P ) → (∃v ∈ P ∩ [u]≤)(v ≤ x)).Proof. (1) Let u ∈ P and u · x ∈ s(P ). There exists v ∈ P ∩ [u]≤ suhthat v · (u · x) = 0. The inequality v ≤ u implies v · x = 0.The proof of (2) is similar.Lemma 2.5. Let B be a subalgebra of a Boolean algebra A and let J bean ideal in A inluded in B. Then

{x ∈ B : x △ u ∈ J} = {x ∈ A : x △ u ∈ J}.So, B/J is a subalgebra of A/J .If a Boolean algebra A and a set P ⊆ A
+ are �xed then we denote by [x]the set {y ∈ A : x △ y ∈ s(P )}.Theorem 2.6. For every Boolean algebra A and any separable subset Pin A the subalgebra dec(P )/s(P ) preserves unions in A/s(P ).Proof. (1) Suppose that R⊆dec(P ), x∈dec(P ) and [x]=

∑
dec(P )/s(P )[R].Let

D = {v ∈ P : (∃r ∈ R)(v ≤ r or v · x = 0)}.We laim that D is dense in P . Suppose that u ∈ P . Sine x ∈ dec(P ) thereexists v ∈ P ∩ [u]≤ suh that v ·x = 0 or v ≤ x. If v ·x = 0 then D∩ [u]≤ 6= ∅.If v ≤ x then we have two possibilities.If v ·r ∈ s(P ) for every r ∈ R then r−(x−v) ∈ s(P ). Hene [r] ≤ [x−v].Sine x−v ∈ dec(P ) and [x−v] < [x] we have [R] ≤ [x−v], whih ontraditsthe assumptions on x.So, there exists r ∈ R suh that v · r ∈ dec(P ) \ s(P ). By Theorem 2.2there exists v1 ∈ P suh that v1 ≤ v · r. Therefore v1 ≤ r and v1 ≤ u, whih�nishes the proof of the density of D.Suppose that y ∈ A and [R] ≤ [y]. Let v ∈ D. We onsider two ases.If v · x = 0 then v · (x − y) = 0.Otherwise v ≤ r for some r ∈ R. Then [v] ≤ [y] and hene v − y ∈ s(P ).By Lemma 2.4 there exists v1 ∈ P ∩ [v]≤ suh that v1 ≤ y and hene
v1 · (x − y) = 0. Therefore the set {v ∈ P : v · (x − y) = 0} is dense in P .Then x − y ∈ s(P ) and [x] ≤ [y]. We have proved that x is the least upperbound of [R] in A/s(P ).(2) Suppose that ∑

A/s(P )[R] = [x]. Let u ∈ P. We onsider two ases.If [u]·[x] = [0] then u·x ∈ s(P ) and by Lemma 2.4 there exists v ∈ P∩[u]≤suh that v · x = 0.Now, assume [u] · [x] 6= [0]. Then for some r ∈ R we have [u] · [r] 6= [0]and [u] · [r] ≤ [x]. Therefore u ·r−x ∈ s(P ). Sine u ·r ∈ dec(P )\s(P ), from



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 275Theorem 2.2 there exists v ∈ P ∩ [u · r]≤. Therefore v − x ∈ s(P ) and thenby Lemma 2.4 there exists w ∈ P ∩ [u]≤ suh that w ≤ x. This proves thatthe family {u ∈ P : u ‖ x} is a dense subset in P and hene x ∈ dec(P ).Theorem 2.7. Let (A, B, I) be a system suh that A is a Boolean algebra,
B is a subalgebra of A and I ⊆ B is an ideal in A. Then the followingonditions are equivalent :(1) There exists a subset P whih is separable in A suh that dec(P ) = Band s(P ) = I.(2) The algebra B/I preserves unions in A/I.Proof. (1)⇒(2). This follows immediately from Theorem 2.6.(2)⇒(1). For a while we will use the following notation: [x]I = {y ∈ A :
x △ y ∈ I}. Let x ∈ dec(B \ I). By density of D = {u ∈ B \ I : u ‖ x} in
B \ I the set [D]I = {[u]I : u ∈ D} is dense in B/I. Let E ⊆ D be suhthat [E]I is a maximal partition in B/I. Put E1 = {u ∈ E : u ≤ x} and
E2 = {u ∈ E : u · x = 0}. Notie that [x]I is an upper bound of [E1]I .Let y ∈ A be suh that [y]I is an upper bound of [E1]I . If u ∈ E1 then
u · (x − y) ∈ I, beause u − y ∈ I. If u ∈ E2 then u · (x − y) = 0, beause
u ·x = 0. Sine [E]I is a maximal partition in B/I, we have ∑

B/I [E]I = [1]I .So ∑
A/I [E]I = [1]I . We have [x−y]I = 0. So, [x]I ≤ [y]I . We have shown that

[x]I is the least upper bound of [E1]I in A/I. Beause B/I preserves unions,we have ∑
B/I [E1]I = [x]I . So x ∈ B. We have shown that dec(B \ I) ⊆ B.Beause B \ I is separable in A we have B \ I ⊆ dec(B \ I). So B =

dec(B \ I).In a similar way we show that s(B \ I) = I. (Notie that E1 = ∅.)3. Disjoint re�nement property. In this setion we disuss someproperties whih imply that the Boolean algebra dec(P )/s(P ) is omplete.Let [E]≤ =
⋃
{[x]≤ : x ∈ E}.Definition 3.1. A partition E in a Boolean algebra A is alled P -maximal for a subset P ⊆ A

+ if P ∩ [E]≤ is a dense open subset in P .Definition 3.2. We say that a subset P ⊆ A+ has the disjoint re�ne-ment property if for every open dense subset D in P there exists a P -maximalpartition inluded in D.Lemma 3.1. Let A be a omplete Boolean algebra. For P ⊆ A
+ and a

P -maximal partition E we have(1) (∀R ⊆ E)(
∑

R ∈ dec(P )),(2) (∀x ∈ A)(∀u ∈ E)(x · u ∈ s(P ) → x ∈ s(P )).



276 W. KU�AGAProof. (1) This follows diretly from the inlusion P ∩ [E]≤ ⊆ {v :
v ‖

∑
R}.

(2) Suppose that x ∈ A and for any u ∈ E we have u · x ∈ s(P ). Let
v ∈ P . Then there exist u ∈ E and v1 ∈ (P ∩ [v]≤)∩ [u]≤. Sine u · x ∈ s(P )we have v1 · x ∈ s(P ). Therefore from Lemma 2.4 there exists w ∈ P ∩ [v1]≤suh that w · x = 0 and moreover w ≤ v.Theorem 3.2. Let A be a omplete Boolean algebra and let P be a sep-arable subset of A with the disjoint re�nement property. Then dec(P )/s(P )is a omplete Boolean algebra and it preserves unions in A/s(P ).Proof. Let R be any subset of dec(P ). We de�ne

D1 = {v ∈ P : (∃r ∈ R)(v − r ∈ s(P ))}and
D2 = {v ∈ P : (∀r ∈ R)(v · r ∈ s(P ))}.By separability of P the set D1 ∪D2 is dense and open in P . By the disjointre�nement property of P there exists a maximal disjoint subset E inludedin D1∪D2. Let E1 = E ∩D1 and E2 = E ∩D2. From Lemma 3.1 we deduethat ∑

E1 ∈ dec(P ).Suppose that r ∈ R and u ∈ E. If u ∈ E1 then u·(r−
∑

E1) = 0. If u ∈ E2then u · (r −
∑

E1) ∈ s(P ). From Lemma 3.1 we see that r −
∑

E1 ∈ s(P ).This proves that [r] ≤ [
∑

E1] and therefore [
∑

E1] is an upper bound forthe family [R] in dec(P )/s(P ). Let w ∈ dec(P ) be suh that r − w ∈ s(P )for any r ∈ R. Let u ∈ E. If u ∈ E1 then there exists r ∈ R suh that
u − r ∈ s(P ). Sine r − w ∈ s(P ) we have u − w ∈ s(P ). This proves that
u · (

∑
E1 − w) ∈ s(P ).If u ∈ E2 then u · (

∑
E1 − w) = 0. Lemma 3.1 implies that ∑

E1 − w ∈
s(P ). We have proved that [

∑
E1] ≤ [w], so that [

∑
E1] is the least upperbound of the family [R] in dec(P )/s(P ).Example 3.1. Let X be a topologial spae. With the notation fromExample 2.1, (Open(X)△N(X))/N(X) is omplete and preserves unions in

P(X)/N(X).Corollary 3.3. Let κ be an in�nite ardinal. Let A be a ompleteBoolean algebra and let P be a separable subset of A of size κ. If s(P ) isa κ-omplete ideal then P has the disjoint re�nement property and the sub-algebra dec(P )/s(P ) is omplete and preserves unions in A/s(P ).Proof. Let D = {uξ : ξ ∈ η} be a dense open subset in P , η ≤ κ. Weonstrut a sequene (vξ : ξ ∈ η). Let v0 = u0. Assume we have de�ned
(vξ : ξ ∈ λ) for some λ ∈ η. If {vξ : uλ · vξ /∈ s(P ), ξ ∈ λ} 6= ∅ then let vλ beany element of the above set. In the other ase {uλ · vξ : ξ ∈ λ} ⊆ s(P ). So,beause λ < κ and s(P ) is κ-omplete, we have rλ =

∑
{uλ · vξ : ξ ∈ λ} ∈
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s(P ). So uλ − rλ ∈ dec(P ) \ s(P ). We have P ∩ [uλ − rλ]≤ 6= ∅. By densityof D we have D ∩ [uλ − rλ]≤ 6= ∅. Let vλ be any element of the latter set.Let E = {vξ : ξ ∈ η}. Diretly from the onstrution it follows that E isinluded in D and is a partition.We will show that ⋃
{[v]≤ : v ∈ E} is dense in P . Let x ∈ P. By densityof D we an hoose u ∈ D ∩ [x]≤. Then u = uξ for some ξ ∈ η. By theonstrution of the sequene (vξ : ξ ∈ η) we know that vξ · uξ /∈ s(P ). So

[vξ]≤ ∩ [x]≤ 6= ∅. Sine vξ ∈ E we have ⋃
{[v]≤ : v ∈ E} ∩ [x]≤ 6= ∅.Now, we an apply Theorem 3.2 to get the desired onlusion.4. Closedness under the Suslin operation. Reall that a family B ⊆

P(X) is losed under the Suslin operation if for every funtion ϕ : ω<ω → Bthe set
A(ϕ) =

⋃

x∈ωω

⋂

s⊂x

ϕ(s)belongs to B.Lemma 4.1. Let P be a separable subset of a omplete Boolean algebra A.If s(P ) is a κ-omplete ideal then dec(P ) is a κ-omplete subalgebra of A.Proof. Suppose that R ⊆ dec(P ) and |R| < κ. Let v ∈ P . If v · r ∈ s(P )for any r ∈ R then v · (
∑

R) ∈ s(P ) beause s(P ) is κ-omplete. By Lemma2.4 there exists w ∈ P · [v]≤ suh that w · (
∑

R) = 0. If r ∈ R is suh that
v · r /∈ s(P ) then v · r ∈ dec(P )\s(P ) and from Theorem 2.2 there exists
w ∈ P ∩ [v · r]≤. This implies that w ∈ P ∩ [v]≤ and w ≤

∑
R.The starting point of the proof of the next theorem is the following las-sial result of Marzewski:Theorem 4.2 (Marzewski). Let B be a σ-�eld of subsets of a set Xand let J be an ideal in P(X) inluded in B suh that

(∀Z ⊆ X)(∃M ∈ B)(Z ⊆ M ∧ (∀N ∈ B)(Z ⊆ N → M \ N ∈ J)).Then B is losed under the Suslin operation.Lemma 4.3. Assume that A is a Boolean algebra. Let B be a subalgebraof A and let I be an ideal of A inluded in B. Suppose B/I is omplete and
(∀R ⊆ B)(

∑
B/I [R] = [x] →

∑
A/I [R] = [x]).Then for every y ∈ A there exists x ∈ B suh that y ≤ x and

(∀r)(r ∈ B ∧ y ≤ r → x − r ∈ I).Proof. Let y ∈ A. Put R = {r ∈ B : y ≤ r}. By ompleteness of B/I wehave ∏
B/I [R] = [z] for some z ∈ B. By assumption ∏

A/I [R] = [z]. Notiethat [y] ≤ [r] for every r ∈ R. So [y] ≤
∏

A/I [R] = [z]. Thus, [y] ≤ [z]. Put
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x = z ∨ y − z. Notie that y − z ∈ I. So x ∈ B and y ≤ x. If r ∈ B, y ≤ rthen r ∈ R. So, [z] ≤ [r] and [z] = [x]. Thus x − r ∈ I.Reall that an ideal I ⊆ P(X) is σ-losed if it is losed under ountableunions.Similarly, an ideal I ⊆ P(X) is ω1-losed if for every family A ⊆ I suhthat |A| ≤ ω1 we have ⋃

A ∈ I.Theorem 4.4. Suppose that P is separable and has the disjoint re�ne-ment property in P(X) and that the ideal s(P ) is σ-losed. Then the algebra
dec(P ) is losed under the Suslin operation.Proof. By Theorem 3.2 the Boolean algebra dec(P )/s(P ) is ompleteand preserves unions in P(X)/s(P ).We show that the assumptions of Theorem 4.2 are satis�ed. Beause Pis separable and s(P ) is a σ-losed ideal, Lemma 4.1 shows that dec(P ) is
σ-�eld.Let Z ⊆ X. By Lemma 4.3, putting B = dec(P ), I = s(P ), A = P (X),there exists M ∈ dec(P ) suh that Z ⊆ M and for every N ∈ dec(P ) with
Z ⊆ N we have M − N ∈ s(P ).Hene dec(P ) is losed under the Suslin operation.Corollary 4.5. Let P be a separable subset of P(κ) for a regular ar-dinal number κ. If s(P ) is κ-omplete and |P | ≤ κ then(1) P has the disjoint re�nement property.(2) dec(P )/s(P ) is omplete and preserves unions in P(κ)/s(P ).(3) If κ ≥ ω1 then dec(P ) is losed under the Suslin operation.Proof. (1) and (2) follow from Corollary 3.3.(3) If κ ≥ ω1 then dec(P ) is a σ-�eld by Lemma 4.1. So, the assertionfollows from Theorem 4.4.Corollary 4.6. If P is a separable subset in P(X) suh that s(P ) is
ω1-losed then dec(P ) is losed under the Suslin operation.Proof. It is a lassial fat that if A ∈ Suslin(B) and B is σ-losed thenthere exists a family {Aξ}ξ<ω1

⊆ B suh that
A =

⋃

ξ∈ω1

Aξ.From Lemma 4.1 we dedue that dec(P ) is ω1-losed. Using the above fatwe dedue that dec(P ) is losed under the Suslin operation.Example 4.1. Let (X, S, µ) be a omplete measure spae suh that
µ(X) < ∞. Let J = {A ∈ S : µ(A) = 0} and S+ = {A ∈ S : µ(A) > 0}.Then S+ is separable and has the disjoint re�nement property in P(X).



FIELDS AND IDEALS CONNECTED WITH NOTIONS OF FORCING 279Moreover dec(S+) = S and s(S+) = J . From Theorem 4.4 we obtain thelassial result of Sierpi«ski about losedness of S under the Suslin operation.Example 4.2 (Marzewski sets). Let X be a Polish spae without iso-lated points. We denote by Perf(X) the family of all nonempty ompatdense-in-themselves subsets of X. Marzewski (see [7℄) introdued the notionof sets with property S and the ideal s0. in our terminology these objets maybe de�ned as follows: S = dec(Perf(X)) and s0 = s(Perf(X)). Marzewskiproved that s0 is a σ-losed ideal.Suppose that U is an open subset in X and F ∈ Perf(X). If U ∩ F 6= ∅then there exists H ∈ Perf(X) ∩ [F ]≤ suh that H ⊆ U ∩ F . It followsthat Open(X) ⊆ S and in onsequene the family Perf(X) is separable. InPerf(X) any dense open family D has size c. If A ⊆ X and F ∈ Perf(X)and |A| < c then there exists H ∈ Perf(X) ∩ [F ]≤ suh that H ∩ A = ∅.Using this property, in a standard way we may onlude that Perf(X) has thedisjoint re�nement property in P(X). From Theorem 3.2 we onlude that thesubalgebra S/s0 is omplete (see [9℄) and preserves unions in P(X)/s0 and,moreover, S is losed under the Suslin operation (see [7℄) by Theorem 4.4.Let p be a losed dense-in-itself subset of ωω in the standard topology. For
s ∈ ω<ω we put p(s) = p∩{x ∈ ωω : s ⊆ x}. Let PM denote the family of allnonempty losed dense-in-themselves subsets p of ωω suh that for any s ∈
ω<ω with p(s) 6= ∅ there exists t ⊇ s suh that |{n ∈ ω : p(tan) 6= ∅}| = ℵ0.The family PM is alled the Miller foring. It is known that the ideal s(PM)is σ-losed (see [8℄).Let PL denote the family of all nonempty losed dense-in-themselvessubsets p of ωω suh that there exists s for whih p(s) 6= ∅ and, for every t, if
p(t) 6= ∅ then t ⊆ s or |{n ∈ ω : p(tan) 6= ∅}| = ℵ0. The family PL is alledthe Laver foring. It is known that the ideal s(PL) is σ-losed (see [6℄).Corollary 4.7. (CH) Let Q = PM or Q = PL. Then(1) Q is separable and has the disjoint re�nement property ,(2) dec(Q)/s(Q) is omplete and preserves unions in P(ωω),(3) dec(Q) is a σ-losed �eld , ontains all Borel subsets of ωω and islosed under the Suslin operation.Proof. Similarly to Example 4.2 we prove that Open(ωω) is inluded in
dec(Q). From this it is easy to see that dec(Q) is separable. Sine s(Q) is
σ-losed, the Borel subsets are ontained in dec(Q). The disjoint re�nementproperty follows from Corollary 3.3. Assertions (2) and (3) follow immedi-ately from Theorem 4.4.5. A generalization of �rst ategory sets. We will generalize thenotion of �rst ategory sets to the lass of omplete Boolean algebras.



280 W. KU�AGADefinition 5.1.(1) For a omplete Boolean algebra A and a separable subset P in A wesay that x ∈ A is of the �rst ategory for dec(P ) if x is the supremumof a ountable family inluded in s(P ).(2) The family of all subsets of the �rst ategory for dec(P ) will bedenoted by I(P ).Lemma 5.1. Let A be a Boolean algebra and let P be a separable subsetwith the disjoint re�nement property in A. Let I be an ideal in A suh that
dec(P ) ∩ I = s(P ). Then P − I is separable and has the disjoint re�nementproperty.Proof. Notie that (P−I)∩I = ∅. We will use the letters r, s for elementsof I. Let u−r and v−s be any elements of P −I. Sine there is w ∈ P ∩ [v]≤suh that w ‖ u, we have w − (r + s) ‖ u − r. This proves that P − I isseparable in A.If D is any dense open subset in P − I then

H = {u ∈ P : (∃r)(r ∈ I & u − r ∈ D)}is open dense in P. Let E be a P -maximal disjoint family inluded in H.For any u let ru be suh that u − ru ∈ D. Then {u − ru : u ∈ E} is a
(P − I)-maximal disjoint family inluded in D.The next lemma is a reformulation of the well-known Banah lemma ([4℄)in our language.Lemma 5.2. Suppose that P is a separable subset in a omplete Booleanalgebra A and E is a P -maximal partition inluded in P . Then(1) If x ∈ A is suh that x · u ∈ I(P ) for any u ∈ E then x ∈ I(P ).(2) For any subset M ⊆ E we have ∑

M ∈ dec(P ).Proof. (1) For any u ∈ E take a family {rn(u) : n ∈ ω)} with least upperbound x · u. Set rn =
∑

{rn(u) : u ∈ E}. It follows from Lemma 3.1 that
x · rn ∈ s(P ) for any n ∈ ω. From the equality x =

∑
{(x · u) : u ∈ E}

+ x · (−
∑

E)} it follows that x =
∑

{(x · rn) : n ∈ ω} + x · (−
∑

E). Sine
(−

∑
E) ∈ s(P ) we have x ∈ I(P ).

(2) This follows immediately from the de�nition of a P -maximal parti-tion.Theorem 5.3. Let A be a omplete Boolean algebra, let P be separableand P ∩ I(P ) = ∅ and let P have the disjoint re�nement property. Then(1) P − I(P ) is separable and has the disjoint re�nement property in A.(2) dec(P − I(P )) = dec(P ) △ I(P ) and s(P − I(P )) = I(P ).Proof. (1) follows diretly from Lemma 5.1.
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(2) Fix x ∈ dec(P − I(P )) and let
D = {v ∈ P : (∃r ∈ I(P ))(v − r ‖ x)}.Let E be a P -maximal disjoint family in D. Let E1 = {u ∈ E : u−x ∈ I(P )}.In a standard way we prove that u · (x △

∑
A E1) ∈ I(P ) for any u ∈ E.Lemma 5.2 yields x△

∑
A E1 ∈ I(P ) and ∑

A E1 ∈ dec(P ). This shows that
dec(P − I(P )) ⊆ dec(P ) △ I(P ).In a similar way we prove that s(P − I(P )) ⊆ I(P ).The reverse inlusions an be proved similarly.We get the following example (see [5℄):Example 5.1. Let X be a topologial spae and let I(X) denote the idealof the �rst ategory subsets of X. Then dec(Open+(X) − I(X)) = Baire(X)and s(Open+(X) − I(X)) = I(X).
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