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ON TAME DYNAMICAL SYSTEMS
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Abstract. A dynamical version of the Bourgain–Fremlin–Talagrand dichotomy
shows that the enveloping semigroup of a dynamical system is either very large and
contains a topological copy of βN, or it is a “tame” topological space whose topology
is determined by the convergence of sequences. In the latter case we say that the dy-
namical system is tame. We show that (i) a metric distal minimal system is tame iff it
is equicontinuous, (ii) for an abelian acting group a tame metric minimal system is PI
(hence a weakly mixing minimal system is never tame), and (iii) a tame minimal cascade
has zero topological entropy. We also show that for minimal distal-but-not-equicontinuous
systems the canonical map from the enveloping operator semigroup onto the Ellis semi-
group is never an isomorphism. This answers a long standing open question. We give a
complete characterization of minimal systems whose enveloping semigroup is metrizable.
In particular it follows that for an abelian acting group such a system is equicontinuous.

Introduction. The enveloping (or Ellis) semigroup of a dynamical sys-
tem was introduced by R. Ellis in [12]. It proved to be an indispensable
tool in the abstract theory of topological dynamical systems (see e.g. Ellis
[13]). However explicit computations of enveloping semigroups are quite rare.
Some examples are to be found in Namioka [31] (1984), Milnes [29] (1986)
and [30] (1989), Glasner [16] (1976) and [20] (1993), Berg, Gove & Hadad [4]
(1998), Budak, Işik, Milnes & Pym [9] (2001), and Glasner & Megrelishvili
[23] (2004). Rarely is the enveloping semigroup metrizable (a notable excep-
tion is the case of weakly almost periodic metric systems; see Downarowicz
[10] (1998) and Glasner [22] (2003), Theorem 1.48).

In an interesting paper [28], A. Köhler pointed out the relevance of a
theorem of Bourgain, Fremlin & Talagrand [7] to the study of enveloping
semigroups. She calls a dynamical system, (X, φ), where X is a compact
Hausdorff space and φ : X → X a continuous map, regular if for every
function f ∈ C(X) the sequence {f ◦ φn : n ∈ N} does not contain an ℓ1

subsequence (the sequence {fn}
∞
n=1 is an ℓ1 sequence if there are strictly
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Fréchet compact.

[283]



284 E. GLASNER
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for all n ∈ N and c1, . . . , cn ∈ C). Since the word “regular” is already
overused in topological dynamics I will call such systems tame. It turns
out that for a metric system (X, φ) this is the same as the condition
that E(X, φ), the enveloping semigroup of (X, φ), be a Rosenthal compact
(see [23]).

In the above mentioned paper Köhler also considers another useful no-
tion, that of the enveloping operator semigroup. For a Banach space K and
a bounded linear operator T : K → K this is defined as

E(T ) = clsw∗{Tn : n ∈ N}.

Köhler shows that when (X, φ) is a dynamical system, K = C(X), and
T : C(X)∗ → C(X)∗ is the operator induced by φ on the dual space C(X)∗,
then there is always a surjective homomorphism of dynamical systems

Φ : E(T ) → E(X, φ).

If we view M(X), the compact space of probability measures on X equipped
with the weak∗ topology, as a subset of C(X)∗ with span(M(X)) = C(X)∗,
we see that this map Φ is nothing else than the restriction of an element of E(T )
to the subspace of Dirac measures {δx : x ∈ X}. Theorem 5.3 of [28] says that
for a tame metric dynamical system (X, φ), the map Φ is an isomorphism
of the enveloping operator semigroup onto the Ellis semigroup. (We will
re-prove this theorem in Section 1 as Theorem 1.5.) In this paper I will call a
dynamical system (X, φ) for which Φ is an isomorphism an injective system.

In [28] there are several other cases where systems are shown to be
injective and the author raises the question whether this is always the case.
As she points out, this question was posed earlier by J. S. Pym (see [32]).
In [25], S. Immervoll gives an example of a dynamical system which is not
injective. His example is of the form (X, H) where X = [0, 1] is the unit
interval and H is an uncountable semigroup of continuous maps from X to
itself. This leaves the question open for Z- (or N-) systems, for group actions
and for minimal systems.

In the present work the setup is that of a compact (mostly metrizable)
Γ dynamical system (X, Γ ) where Γ is an arbitrary topological group. In
[23] we have shown that metrizable weakly almost periodic (WAP) systems
and more generally metrizable hereditarily almost equicontinuous (HAE)
systems are tame. However, most of the results presented here are con-
cerned with the case where (X, Γ ) is a minimal dynamical system. In the
first section it is shown that a tame dynamical system is injective. This,
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in conjunction with a theorem of Ellis and an old work of mine on affine
dynamical systems ([19]), is used to deduce that a metric distal minimal sys-
tem is injective iff it is equicontinuous. It therefore follows that every metric
minimal distal-but-not-equicontinuous system serves as a counterexample
to the question of Pym and Köhler. It is also shown that a tame minimal
cascade (X, T ) has zero topological entropy.

In the second section I show that for abelian Γ a metric minimal tame
system is PI (proximal-isometric), hence in particular a minimal weakly
mixing Γ -system is never tame. In the third section I consider the case when
(X, Γ ) is minimal and E = E(X, Γ ) is metrizable. Under these assumptions
it is shown that there is a unique minimal ideal I in E, that the group K
of automorphisms of the system (I, Γ ) is compact, and that the quotient
dynamical system (I/K, Γ ) is proximal. If we also assume that Γ is abelian
then (X, Γ ) is equicontinuous. In the last section I consider the question
how big E(X, Γ ) can be in XX .

The reader is referred to the sources [13], [16], [34], [8], [2], [35] and [21],
on the abstract theory of topological dynamics and the structure theory of
minimal dynamical systems including the notion of PI systems.

The questions treated in this paper arose during the work on another
one, [23], written jointly with Michael Megrelishvili. I owe him much for
fruitful discussions on these subjects. I am also indebted to Benjy Weiss for
helpful conversations; in particular the content of Section 4 was the subject
of a conversation over lunch several years ago.

1. Tame systems are injective. Recall that a topological space K
is called a Rosenthal compact [24] if it is homeomorphic to a pointwise
compact subset of the space B1(X) of functions of the first Baire class on a
Polish space X. All metric compact spaces are Rosenthal. An example of a
separable non-metrizable Rosenthal compact is the Helly compact of all (not
only strictly) increasing self-maps of [0, 1] in the pointwise topology. Another
is the “two arrows” space of Aleksandrov and Urysohn (see Engelking [15]).

A topological space K is a Fréchet space if for every A ⊂ K and every
x ∈ A there exists a sequence xn ∈ A with limn→∞ xn = x (see [15]).
A topological space K is angelic if every relatively countably compact subset
A ⊂ K has the properties: (i) A is relatively compact and (ii) for every x ∈ A
there exists a sequence xn ∈ A with limn→∞ xn = x. Thus a compact space
is angelic iff it is Fréchet. Clearly, βN, the Stone–Čech compactification of
the natural numbers, cannot be embedded into a Fréchet space.

The following theorem is due to Bourgain, Fremlin and Talagrand [7,
Theorem 3F], generalizing a result of Rosenthal. The second assertion (BFT
dichotomy) is presented as in the book of Todorčević [33] (see Proposition 1
of Section 13).
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1.1. Theorem.

1. Every Rosenthal compact space K is angelic.

2. (BFT dichotomy) Let X be a Polish space and let {fn}
∞
n=1 ⊂ C(X) be

a sequence of real-valued functions which is pointwise bounded (i.e.
for each x ∈ X the sequence {fn(x)}∞n=1 is bounded in R). Let K be

the pointwise closure of {fn}
∞
n=1 in R

X . Then either K ⊂ B1(X) (i.e.
K is Rosenthal compact) or K contains a homeomorphic copy of βN.

The following dynamical BFT dichotomy is derived in [23].

1.2. Theorem (A dynamical BFT dichotomy). Let (X, Γ ) be a metric

dynamical system and let E = E(X, Γ ) be its enveloping semigroup. We

have the following alternative. Either

1. E is a separable Rosenthal compact , hence card E≤2ℵ0 ; or

2. the compact space E contains a homeomorphic copy of βN, hence

card E = 22ℵ0 .

1.3. Definition. We will say that an enveloping semigroup E(X, Γ ) is
tame if it is separable and Fréchet. A dynamical system (X, Γ ) is tame when
E(X, Γ ) is tame.

In these terms Theorem 1.2 can be rephrased as saying that a metric

dynamical system (X, Γ ) is either tame or E(X, Γ ) contains a topological

copy of βN. When (X, Γ ) is a metrizable system the group Γ is embedded
in the Polish group Homeo(X) of homeomorphisms of X equipped with the
topology of uniform convergence. From this fact it is easy to deduce that the
enveloping semigroup E(X, Γ ) is separable. If moreover (X, Γ ) is tame then
E = E(X, Γ ) is Fréchet and every element p ∈ E is the limit of a sequence
of elements of Γ , p = limn→∞ γn.

Examples of tame dynamical systems include metric minimal equicon-
tinuous systems, almost periodic (WAP) systems (E. Akin, J. Auslander
and K. Berg [1]), and hereditarily nonsensitive (HNS) systems (Glasner and
Megrelishvili [23]).

The cardinality distinction between the two cases entails the first part
of the following proposition.

1.4. Proposition.

1. For metric dynamical systems tameness is preserved by taking

(a) subsystems,
(b) countable self-products, and

(c) factors.

2. Every metric dynamical system (X, Γ ) admits a unique maximal tame

factor.
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Proof. As pointed out, the first statement follows from cardinality ar-
guments (note that E(X, Γ ) = E(Xκ, Γ ) for any cardinal number κ). To
prove the second, use Zorn’s lemma, the first part of the theorem, and the
fact that a chain of factors of a metric system is necessarily countable to
find a maximal tame factor. Then use the first part again to deduce that
such a maximal factor is unique.

As was mentioned in the Introduction the following theorem is due to
Köhler; our proof, though, is different (see also [22, Lemma 1.49]).

1.5. Theorem. Let (X, Γ ) be a metric tame dynamical system. Let

M(X) denote the compact convex set of probability measures on X (with

the weak∗ topology). Then each element p ∈ E(X, Γ ) defines an element

p∗ ∈ E(M(X), Γ ) and the map p 7→ p∗ is both a dynamical system and a

semigroup isomorphism of E(X, Γ ) onto E(M(X), Γ ).

Proof. Since E(X, Γ ) is Fréchet we have for every p ∈ E a sequence
γi of elements of Γ converging to p. Now for every f ∈ C(X) and every
probability measure ν ∈ M(X) we get, by the Riesz representation theorem
and Lebesgue’s dominated convergence theorem,

γiν(f) = ν(f ◦ γi) → ν(f ◦ p) =: p∗ν(f).

Since the Baire class 1 function f◦p is well defined and does not depend upon
the choice of the convergent sequence γi → p, this defines the map p 7→ p∗
uniquely. It is easy to see that this map is an isomorphism of dynamical
systems, whence a semigroup isomorphism. Finally, as Γ is dense in both
enveloping semigroups, it follows that this isomorphism is onto.

1.6. Definition. We will say that the dynamical system (X, Γ ) is in-

jective if the natural map E(M(X), Γ ) → E(X, Γ ) is an isomorphism.

In these terms the previous theorem can be restated as follows. A tame

dynamical system is injective. Our next theorem, which relies on [17], an-
swers a question of J. S. Pym and A. Köhler (see also S. Immervoll [25]).

1.7. Theorem. A minimal distal metric dynamical system is injective

iff it is equicontinuous.

Proof. It is well known that when (X, Γ ) is equicontinuous, E = E(X, Γ )
is a compact topological group and in that case it is easy to see that (X, Γ )
is injective. By a theorem of Ellis (see e.g. [13]), a system (X, Γ ) is distal
iff E(X, Γ ) is a group. Thus, if (X, Γ ) is distal, metric and injective then
E(X, Γ ) = E(M(X), Γ ) is a group and it follows that the dynamical sys-
tem (M(X), Γ ) is also distal. By Theorem 1.1 of [17], the system (X, Γ ) is
equicontinuous.
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1.8. Corollary. A minimal distal metric system is tame iff it is equi-

continuous.

Proof. A metric minimal equicontinuous system is isomorphic to its own
enveloping semigroup. For the other direction observe that if (X, Γ ) is tame
then by Theorem 1.5 it is injective, and hence, by Theorem 1.7, it is equicon-
tinuous.

By way of illustration consider, given an irrational number α ∈ R, the
minimal distal dynamical Z-system on the two-torus (T2, T ) given by

T (x, y) = (x + α, y + x) (mod1).

Since this system is not equicontinuous Theorem 1.7 and Corollary 1.8 show
that it is neither tame nor injective.

The fact that tame systems are injective also yields the result that metric
tame minimal systems have zero topological entropy. For this we need the
following (simplified version of a) theorem of Blanchard, Glasner, Kolyada
and Maass [5, Theorem 2.3]. Recall that a pair of points {x, y} ⊆ X is said
to be a Li–Yorke pair if simultaneously

lim sup
n→∞

d(Tnx, Tny) = δ > 0 and lim inf
n→∞

d(Tnx, Tny) = 0.

In particular a Li–Yorke pair is proximal. A set S ⊆ X is called scrambled

if any pair of distinct points {x, y} ⊆ S is a Li–Yorke pair. A dynamical
system (X, T ) is called chaotic in the sense of Li and Yorke if X contains
an uncountable scrambled set.

1.9. Theorem. Let (X, T ) be a topological dynamical system such that

htop(X, T ) > 0. Let µ be a T -ergodic probability measure with supp(µ) = X
and hµ(X, T ) > 0. Then there exists a topologically transitive subsystem

(W, T × T ) with W ⊆ X ×X such that for every open U ⊆ X there exists a

Cantor scrambled set K ⊆ U with K ×K \∆X ⊆ Wtr, where Wtr is the set

of transitive points in W . Thus a dynamical system with positive topological

entropy is chaotic in the sense of Li and Yorke.

We note that the set W in Theorem 1.9 has the following special form.
There exists a measure-theoretical weakly mixing factor map π : (X, X, µ, T )
→ (Y, Y, ν, T ) with a corresponding measure disintegration

µ =
\
Y

µy dν(y)

having the property that µy is nonatomic for ν-a.e. y. The subsystem W is
then given as W = supp(λ), where

λ = µ ×
ν

µ =
\
Y

µy × µy dν(y).
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Consequently, if X0 ⊂ X is any µ-measurable set with µ(X0) = 1 then with
no loss of generality we can assume that for ν-almost every y the measure
µy satisfies the condition µy(X0) = 1. It then follows that the Cantor set in
Theorem 1.9 can be chosen to be a subset of X0.

1.10. Theorem. A minimal metric tame Z dynamical system (X, T )
has zero topological entropy.

Proof. By the variational principle it suffices to show that hµ(T ) = 0 for
every T -invariant probability measure µ on X. Let µ be such a measure. By
Theorem 1.5, (X, T ) is injective and therefore v∗(µ) = µ for any minimal
idempotent v ∈ E = E(X, T ). Since v∗µ(f) = µ(f ◦v) for every f ∈ C(X) it
follows that µ(vX) = 1. (Note that vX is an analytic set hence universally
measurable.) Now if hµ(T ) > 0 then by Theorem 1.9 with X0 = vX, there
is a Cantor set K ⊂ X0 such that for any distinct points x, x′ in K the pair
(x, x′) is proximal. However, since pairs (x, x′) ∈ vX × vX with x 6= x′ are
almost periodic (i.e. have minimal orbit closure in X × X) they are never
proximal and we conclude that hµ(T ) = 0.

1.11. Remark. In the proof of Theorem 1.10, with slight modifications,
one can use instead of the results in [5] a theorem of Blanchard, Host and
Ruette [6] on the abundance of asymptotic pairs in a system (X, T ) with
positive topological entropy.

2. Minimal tame systems are PI. As we have seen, when (X, Γ ) is
a metrizable tame system the enveloping semigroup E(X, Γ ) is a separable
Fréchet space. Therefore each element p ∈ E is a limit of a sequence of
elements of Γ , p = limn→∞ γn. It follows that the subset C(p) of continuity
points of each p ∈ E is a dense Gδ subset of X. More generally, if Y ⊂ X
is any closed subset then the set CY (p) of continuity points of the map
p↾Y : Y → X is a dense Gδ subset of Y . For an idempotent v = v2 ∈ E we
write Cv for CvX(v).

2.1. Lemma. Let (X, Γ ) be a metrizable tame dynamical system, and

E = E(X, Γ ) its enveloping semigroup.

1. For every p ∈ E the set C(p) ⊂ X is a dense Gδ subset of X.

2. For every minimal idempotent v ∈ E, we have Cv ⊂ vX.

3. When Γ is commutative we have C(v) ⊂ vX.

Proof. 1. See the remark above.
2. Given x ∈ Cv choose a sequence xn ∈ vX with limn→∞ xn = x. We

then have vx = limn→∞ vxn = limn→∞ xn = x, hence Cv ⊂ vX.
3. When Γ is commutative we have γp = pγ for every γ ∈ Γ and p ∈ E.

In particular the subset vX is Γ -invariant, hence dense in X. Thus vX = X,
hence C(v) = Cv ⊂ vX by part 2.
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We next proceed to the main theorem of this section.

2.2. Definition. Let (X, Γ ) be a dynamical system. We say that a
closed Γ -invariant set W ⊂ X ×X is an M -set if it satisfies the conditions:

1. The system (W, Γ ) is topologically transitive.
2. The almost periodic points are dense in W .

A theorem of Bronshtĕın asserts that a metric system (X, Γ ) is PI iff
every M -set in X × X is minimal ([8], see also [21]).

2.3. Theorem. Let Γ be a commutative group. Then any metric tame

minimal system (X, Γ ) is PI.

Proof. We will prove that the Bronshtĕın condition holds, i.e. that every
M -set in X × X is minimal. So let W ⊂ X × X be an M -set. Let v = v2

be some minimal idempotent in E(X, Γ ). By Lemma 2.1.3 the set C(v) of
continuity points of the map v : X → X is a dense Gδ subset of X and
moreover C(v) ⊂ vX. Let U be a relatively open subset of W ; then there
exists a minimal subset M ⊂ W with M ∩U 6= ∅. Let πi : M → X, i = 1, 2,
denote the projection maps. Because M is minimal we have πi(M) = X and
the map πi is semi-open, i.e. int(πi(V )) 6= ∅ for every nonempty open subset
V of M (see e.g. [18, Lemma 1.5]; these observations are due to Auslander
and Markley). It follows that the sets π−1

i (C(v)), i = 1, 2, are dense Gδ

subsets of M and therefore so is the set

(C(v) × C(v)) ∩ M = π−1
1 (C(v)) ∩ π−1

2 (C(v)).

In particular U ∩ (C(v) × C(v)) 6= ∅ and we conclude that W0 = (C(v) ×
C(v)) ∩ W is a dense Gδ subset of W .

Let Wtr be the dense Gδ subset of transitive points in W and observe
that W0 ∩Wtr 6= ∅. If (x, x′) is a point in W0 ∩Wtr, then Γ (x, x′) = W , and
since (x, x′) ∈ vX × vX it follows that W is minimal.

2.4. Corollary. Let Γ be a commutative group and (X, Γ ) a minimal

weakly mixing metric tame dynamical system. Then (X, Γ ) is trivial.

Proof. A minimal system which is weakly mixing and PI is necessarily
trivial.

A direct proof of Corollary 2.4 that does not require the PI theory is as
follows. Fix a minimal idempotent u ∈ E and let C(u) ⊂ X be the dense
Gδ subset of continuity points of u. Fix some x ∈ X; then, by a theorem of
Weiss, P [x], the proximal cell of x, is also a dense Gδ subset of X (see [22,
Theorem 1.13]). Set A = C(u) ∩ P [x]; then for y ∈ A there is a sequence
γj ∈ Γ such that limj→∞ γjx = limj→∞ γjy = x. By the continuity of u at x
we have

ux = u lim
j→∞

γjx = lim
j→∞

γjux = u lim
j→∞

γjy = lim
j→∞

γjuy,



TAME DYNAMICAL SYSTEMS 291

so that (ux, uy) ∈ P . This implies ux = uy and we conclude that ux = uy
for every y ∈ A. For an arbitrary element γ ∈ Γ , the set γ−1A ∩ A is a
residual subset of X and for each y in this set we get ux = uγy = γuy = uy.
Since Γ is commutative and (Γ, X) is minimal we conclude that γz = z
for every z ∈ X. Thus Γ acts trivially on X and the minimality of (Γ, X)
implies that X is a one-point space.

In [23] there is an example of a minimal tame dynamical cascade (i.e.
a Z-system) on the Cantor set with an enveloping semigroup which is not
metrizable (in fact E in this example is homeomorphic to the “two arrows”
space). This system has the structure of an almost 1-1 (hence proximal)
extension of an irrational rotation on the circle T. Another such example is
in R. Ellis [14] where the enveloping semigroup of the SL(2, R) action on the
projective line P is shown to be tame but not metrizable. Here the system
(P, SL(2, R)) is proximal. In view of these examples, Corollary 1.8, Theorem
1.10, Corollary 2.4, and Theorem 3.1 below, it is reasonable to raise the
following question.

2.5. Problem. Is it true that every minimal metrizable tame system
(X, Γ ) with an abelian acting group is a proximal extension of an equicontin-
uous system? (Or, for the general acting group, is X proximally equivalent
to a factor of an isometric extension of a proximal system?)

3. Metrizable enveloping semigroups. In this section we consider
the case of a minimal dynamical system for which E = E(X, Γ ) is metriz-
able. Of course then E is tame and if I ⊂ E is a minimal (left) ideal in E
then the dynamical system (I, Γ ) is metric with E(I, Γ ) ∼= E(X, Γ ) so that
it is also tame.

3.1. Theorem. Let (X, Γ ) be a minimal dynamical system such that

E = E(X, Γ ) is metrizable. Then:

1. There is a unique minimal ideal I ⊂ E = E(X, Γ ) ∼= E(I, Γ ).
2. The Polish group GU = Aut(I, Γ ), of automorphisms of the system

(I, Γ ) equipped with the topology of uniform convergence, is compact.

3. The quotient dynamical system (I/K, Γ ) is proximal.

4. The quotient map π : I → I/K is a K-extension.

5. If in addition (X, Γ ) is incontractible then I = K and Γ acts on K by

translations via a continuous homomorphism J : Γ → K with J(Γ )
dense in K. In particular (I, Γ ), and hence also (X, Γ ), is equicon-

tinuous.

6. If Γ is commutative then X = I = K and K = cls J(Γ ) is also

commutative.

Proof. We split the proof into several steps.
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I. If I ⊂ E is a minimal left ideal then (X, Γ ) is a factor of the dynam-
ical system (I, Γ ) and the enveloping semigroup E(I, Γ ) is isomorphic to
E(X, Γ ), where each p ∈ E is identified with the map Lp : E → E, q 7→ pq.

II. Let u = u2 be a fixed idempotent in I, and as usual define G = uI ⊂ I.
Then to each α ∈ G corresponds an automorphism α̂ : I → I defined by
α̂(p) = pα, ∀p ∈ I. The map G → GU , α 7→ α̂, is a surjective algebraic
isomorphism. The inverse map GU → G ⊂ I is given by α̂ 7→ α̂(u) = uα = α.
Thus GU acts on I by right multiplication. In what follows we will identify
α̂ with α.

III. By Lemma 2.1, for each idempotent v = v2 ∈ I, the restricted
map v : vI → vI, q 7→ vq, has a dense Gδ subset Cv ⊂ vI of continuity
points. Again by Lemma 2.1, Cv ⊂ vI. Since clearly CvG ⊂ Cv, we get
Cv = vG = vI.

IV. If p ∈ vI then also p : vI → vI and thus its set of continuity points
Cp is also a dense Gδ subset of vI. Therefore Cp ∩ Cv = Cp ∩ vI 6= ∅, and
since CpG ⊂ Cp we conclude that Cp ⊃ vI.

V. The G-dynamical system (I, G) admits a minimal subset M , and it
is clearly of the form M = vI = vG for some v = v2 ∈ I. By minimal-
ity we have M = wI for any other idempotent w = w2 ∈ vI. Since, by
step III, Cv = vI and Cw = wI are residual subsets of M , their inter-
section is nonempty and the structure of I as a disjoint union of groups
implies that v = w, hence wI = vI = M . Thus v : I → I, p 7→ vp, has a
closed range vI and the right action of G on M = vI = vG is algebraically
transitive. (The right action of G on I, hence also on vI, is free.) More-
over, from step IV we see that every α ∈ G acts continuously on vI on
the left ; that is pn → p, for pn, p ∈ vI, implies αpn → αp. Thus in the
compact group vG, with the topology inherited from I, both left and right
multiplications are continuous. By a theorem of Ellis ([11]) it follows that
vG is a compact topological group. Being a closed subset of I it is also
Polish.

VI. Now the map v : GU → vG, α 7→ vα, is clearly a continuous surjective
1-1 homomorphism of Polish topological groups and a theorem of Banach
([3]) implies that it is a topological isomorphism (see also [19, Lemma 3]).
We therefore conclude that GU is a compact subgroup of Aut(I, Γ ).

Now, letting K = GU makes all the assertions of the theorem follow
readily.

3.2. Remark. Let Γ be a topological group and J : Γ → K a continuous
homomorphism, where K is a compact metrizable topological group and
J(Γ ) is dense in K. In addition let H be a closed subgroup of K for which⋂

k∈K kHk−1 = {e}. Then the dynamical system (X, Γ ) = (K/H, Γ ), where
γ(kH) = J(γ)kH (γ ∈ Γ , k ∈ K), is a minimal dynamical system with
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E(X, Γ ) = K. In fact, these are the only examples I know of minimal
systems with metrizable enveloping semigroup.

3.3. Problem. Is there a nontrivial minimal proximal system with a
metrizable enveloping semigroup?

4. When is E(X, Γ ) all of XX? We say that the system (X, Γ ) is n-

complete if for every point (x1, . . . , xn) ∈ Xn with distinct components the
orbit Γ (x1, . . . , xn) is dense in Xn. It is called complete when it is n-complete
for every n ∈ N.

4.1. Theorem. Let (X, Γ ) be a dynamical system. Then E(X, Γ ) = XX

if and only if (X, Γ ) is complete.

Proof. Suppose E(X, Γ ) = XX and let (x1, . . . , xn), (x′
1, . . . , x

′
n) ∈ Xn.

Then there exists an element p ∈ E with pxi = x′
i, i = 1, . . . , n, hence

Γ (x1, . . . , xn) = Xn and (X, Γ ) is complete.
Conversely, if (X, Γ ) is complete then clearly every element of XX can

be approximated by an element from Γ . As E is closed this concludes the
proof.

4.2. Corollary. Let X be a topological space which is n-homogeneous

for every n ∈ N (i.e. the group Homeo(X) acts n-transitively on X for

every n). Then for any dense subgroup Γ ⊂ Homeo(X) the dynamical system

(X, Γ ) is complete, hence E(X, Γ ) = XX . For example this is the case for

the Cantor set C, for any sphere Sn, n ≥ 2, and for the Hilbert cube Q.

If φ is a nontrivial continuous automorphism of a system (X, Γ ) then
φp = pφ for every p ∈ E = E(X, Γ ). Thus when the group Aut(X, Γ ) is
nontrivial then E ⊂ {p ∈ XX : φp = pφ, ∀φ ∈ Aut(X, Γ )}. In particular,
when Γ is commutative,

E ⊂ {p ∈ XX : pγ = γp, ∀γ ∈ Γ}.

Are there dynamical systems (X, Γ ) for which this inclusion is an equal-
ity? A Z-dynamical system (X, T ) is said to have 2-fold topological mini-

mal self-joinings ([26], [27]) if it satisfies the following condition: For every
pair (x, x′) ∈ X × X with x′ 6∈ {Tnx : n ∈ Z}, the orbit {Tn(x, x′) :
n ∈ Z} is dense in X × X. If it satisfies the analogous condition for ev-
ery point (x1, . . . , xn) ∈ Xn whose coordinates belong to n distinct orbits,
then (X, Γ ) has n-fold topological minimal self-joinings. As in the proof of
Theorem 4.1 it is easy to see that

E(X, T ) = {p ∈ XX : pT = Tp}

iff (X, Γ ) has n-fold topological minimal self-joinings for all n ≥ 1. Now,
in [27], J. King shows that no nontrivial map has 4-fold topological minimal
self-joinings. We thus get the following.
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4.3. Theorem. There exists no infinite minimal cascade (X, T ) with

E(X, T ) = {p ∈ XX : pT = Tp}.

4.4. Remark. In [36], B. Weiss shows that every aperiodic ergodic zero
entropy measure preserving system has a topological model which has two-
fold topological minimal self-joinings (doubly minimal in his terminology).
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