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ON THE CONVERGENCE OF MOMENTS IN THE CLT FOR

TRIANGULAR ARRAYS WITH AN APPLICATION

TO RANDOM POLYNOMIALS

BY

CHRISTOPHE CUNY (Noumea) and MICHEL WEBER (Strasbourg)

Abstract. We give a proof of convergence of moments in the Central Limit Theorem
(under the Lyapunov–Lindeberg condition) for triangular arrays, yielding a new estimate
of the speed of convergence expressed in terms of νth moments. We also give an application
to the convergence in the mean of the pth moments of certain random trigonometric poly-
nomials built from triangular arrays of independent random variables, thereby extending
some recent work of Borwein and Lockhart.

1. Introduction and results. This paper concerns the convergence of
moments of order ν in the CLT for triangular arrays of independent random
variables, and more precisely the speed of convergence. We obtain a general
estimate of the speed of convergence and a new explicit simple form when
ν > 5 (with a good control for large ν based on the use of an optimal
Rosenthal inequality). This proof is based on a classical approach (replacing
step by step the variables under consideration with normal variables, see e.g.
Billingsley [3]). Next, we give an application to the convergence in the mean
of the pth moments of certain random trigonometric polynomials built from
triangular arrays of independent random variables.

Before entering into the matter, we will discuss known facts related to
the convergence of moments in the CLT. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be
a triangular array of real centered independent, square integrable random
variables and set, for every n ≥ 1 and 1 ≤ j, k ≤ kn,

σ2
n,j = EX2

n,j , s2n,k =
k

∑

j=1

σ2
n,j , sn = sn,kn

,

Sn,k =

k
∑

j=1

Xn,j, Sn = Sn,kn
.

2000 Mathematics Subject Classification: Primary 60F05, 60G50, 42A05; Secondary
26D05, 28A60.

Key words and phrases: random polynomials, Lp-norms, Lindeberg condition, CLT,
triangular arrays, speed of convergence, independent random variables, weighted sums.

[147]



148 C. CUNY AND M. WEBER

Following Brown [5], we introduce the (generalized) Lindeberg condition of
order ν ≥ 2:

(Lν)
kn
∑

j=1

E {|Xn,j |ν1{|Xn,j |>εsn}} = o(sν
n), (∀ε > 0) n→ ∞.

This is also (see [2]) called Lyapunov’s condition. As already noticed by
Brown, this condition is equivalent, for ν > 2, to

(L′
ν)

kn
∑

j=1

E |Xn,j |ν = o(sν
n), n→ ∞.

It is a well known fact (Lindeberg theorem, see [3] or [11]) that under (L2),
{Sn/sn} converges in law to the standard normal law. Now, since E (S2

n/s
2
n)

= 1, we have

lim
n→∞

E (S2
n,k/s

2
n,k) = 1 = m2,

where m2 = EW 2 and W is a variable with standard normal law. More
generally, for ν > 0, write mν := E |W |ν . If 0 < ν ≤ 2, we have the following
proposition.

Proposition 1.1. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array

of real centered independent , square integrable random variables. Let 0 <
ν ≤ 2. Assume that (L2) holds. Then

lim
n→∞

E |Sn|ν
sν
n

= mν .

Now, consider the case ν > 2. We first give a general estimate for the νth
moment of the sum of n independent random variables. Then we extend the
above moment convergence result to the case ν > 2. Moreover, an estimate
of the rate of convergence is provided. In the case ν > 5, this estimate turns
out to be very simple.

Theorem 1.2. Let ν > 2. Let {Yk, 1 ≤ k ≤ n} be real centered indepen-

dent random variables with finite moment of order ν. Write Sn =
∑n

k=1 Yk

and sn = (
∑n

k=1 EY 2
n )1/2. Then there exists a universal constant C such

that
∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣
≤ C

∑n
k=1 E |Yk|ν
sν
n

for 2 < ν ≤ 3,

∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣

∣

≤ C

(∑n
k=1 E |Yk|ν
sν
n

+

∑n
k=1 E |Yk|3
s3n

)

for 3 < ν ≤ 5,

and , for ν > 5,
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∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣

∣

≤
(

C
ν

log ν

)ν{∑n
k=1 E |Yk|ν
sν
n

+

∑n
k=1 E |Yk|3
s3n

+

∑n
k=1 E |Yk|ν−3

sν−3
n

∑n
k=1 E |Yk|3
s3n

}

.

As a corollary we obtain

Theorem 1.3. Let ν > 2. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a trian-

gular array of real centered independent random variables having moments

of order ν. Assume that (L′
ν) holds. Then (E |Sn|ν)/sν

n converges to mν as

n→ ∞, with the speed given by Theorem 1.2 (see Lemma 2.1 below). Further

if ν ≥ 3, the estimate of the rate of convergence can be simplified :
∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣

∣

≤
(

C
ν

log ν

)ν

max
h∈{1,1/(ν−2)}

(∑kn

k=1 E |Xn,k|ν
sν
n

)h

,

where C is a universal constant.

For this result (without speed of convergence), one usually refers to [2], [6]
or [7]. See also [13] and the references therein (notably the works of Kruglov)
for an extension to non-homogeneous Markov chains. In [4], the proof relied
on a version of this result, i.e., on the study of an array of variables, while
the references cited there ([2] and [6]) deal only with a simple sequence of
independent variables. In a series of papers ([5]–[8]) Brown was interested
in related problems and stated a version of Theorem 1.2 in [7], but without
an explicit proof.

There are, however, also convergence results with speed of convergence,
and we shall now compare them with Theorems 1.2 and 1.3. In an ear-
lier paper by von Bahr [1] concerning sequences of independent random
variables, the rate of convergence is specified (see Theorem 4, p. 816), but
instead of |E (|Sn|/sn)ν −mν |, a more complicated difference is estimated:
|E (|Sn|/sn)ν −P −mν |, where P is an expression built up from the Fourier
inversion formula allowing one to express E (|Sn|/sn)ν by means of the first
ν terms of the Fourier expansion of the characteristic function of |Sn|/sn,
with a suitable control of the error. In [10], an estimate in terms of trun-
cated moments is given in the iid case when ν < 4, ν 6= 2. Generalizations
of this result to higher moments, using Chebyshev–Cramér expansion, are
also given. In [9], the case of independent random variables is considered
and results similar to ours are obtained when 2 < ν < 4.

Before passing to applications to random polynomials, we should also
mention that we could not find in the existing literature a complete detailed
proof of the convergence of moments in the CLT for triangular arrays of
independent random variables.
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Recall now a convergence result recently obtained by Borwein and Lock-
hart [4], on the Lp-norms of some random polynomials built from sequences
of iid random variables. Given a sequence {X,Xn, n ≥ 1} of iid centered
real random variables, with unit variance, if E |X|ν < ∞ for some ν > 2,
then

lim
n→∞

1

2πnν/2

2π\
0

E |qn(θ)|ν dθ = Γ (1 + ν/2),

where qn(θ) =
∑n

k=1Xke
ikθ and Γ (s) =

T∞
0 us−1e−u du is the usual Gamma

function.

Using Theorem 1.3, we will also prove the following extension of this
result to triangular arrays of independent random variables.

Theorem 1.4. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of

real centered independent random variables with EX2
n,k = 1, satisfying the

Lindeberg condition (Lν) of order ν ≥ 2. Then

lim
n→∞

1

2πk
ν/2
n

2π\
0

E |qn(θ)|ν dθ = Γ (1 + ν/2),

where qn(θ) =
∑kn

k=1Xn,ke
ikθ.

2. Proofs of Proposition 1.1 and Theorem 1.2. Throughout the
rest of the paper, C denotes a universal constant, which may vary at each
occurrence. Before going into the proof itself we will discuss the relations
between conditions (Lν) and (L′

ν) and give certain useful (although simple)
estimates.

Lemma 2.1. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of real

random variables. Then:

(i) For any 0 < µ ≤ ν, condition (Lν) implies (Lµ).
(ii) For any µ > 2, conditions (Lµ) and (L′

µ) are equivalent.

(iii) For any 2 < µ < ν, we have
∑kn

k=1 E |Xn,k|µ
sµ
n

≤ 2

(∑kn

k=1 E |Xn,k|ν
sν
n

)(µ−2)/(ν−2)

.

Proof. (i) Let ε > 0. As
∑kn

k=1 E {|Xn,k|µ1{|Xn,k|>εsn}}
sµ
n

≤ εµ−ν

∑kn

k=1 E {|Xn,k|ν1{|Xn,k|>εsn}}
sν
n

,

the claimed implication is immediate.

(ii) We only need to prove one implication, since the other is trivial. Let
ε > 0 and assume that (Lµ) holds for some µ > 2. We have
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kn
∑

k=1

E |Xn,k|µ ≤ (εsn)µ−2
kn
∑

k=1

E {|Xn,k|21{|Xn,k|≤εsn
}(2.1)

+
kn
∑

k=1

E {|Xn,k|µ1{|Xn,k|>εsn}}

≤ (εsn)µ−2
kn
∑

k=1

E |Xn,k|2 +

kn
∑

k=1

E {|Xn,k|µ1{|Xn,k|>εsn}}

≤ εµ−2sµ
n +

kn
∑

k=1

E {|Xn,k|µ1{|Xn,k|>εsn}},

which proves (L′
µ).

(iii) Let 2 < µ < ν. By (2.1), for any ε > 0 we have

kn
∑

k=1

E |Xn,k|µ ≤ εµ−2sµ
n +

kn
∑

k=1

E {|Xn,k|µ1{|Xn,k|>εsn}}

≤ εµ−2sµ
n + (εsn)µ−ν

kn
∑

k=1

E |Xn,k|ν .

So

(2.3)

∑kn

k=1 E |Xn,k|µ
sµ
n

≤ εµ−2 + εµ−ν

∑kn

k=1 E |Xn,k|ν
sν
n

.

Taking now ε = (
∑kn

k=1 E |Xn,k|ν/sν
n)1/(ν−2) leads to the conclusion.

Remark. One can prove (iii) without the coefficient 2, using Hölder’s
inequality in some appropriate spaces.

Proof of Proposition 1.1. Assume first that 0 < ν ≤ 2. So (L2) is satisfied
by assumption and (Sn/sn) converges in law to W (Lindeberg’s theorem).
Now write, for C > 0,

E
|Sn|ν
sν
n

= E

[ |Sn|ν
sν
n

1{|Sn|≤Csn}

]

+ E

[ |Sn|ν
sν
n

1{|Sn|<Csn}

]

.

The second term is less than 1/C2−ν , and for fixed C, the first term tends
to E [|W |ν1{|W |≤C}] by Lindeberg’s theorem, which proves the result.

Proof of Theorem 1.2. Let ν > 2 and n ≥ 1. We proceed by combining
Billingsley’s approach in [3] with the Taylor formula. Let {ηk, 1 ≤ k ≤ n}
be independent centered normal variables with E η2

k = σ2
k = EY 2

k that we
take independent of {Yk}1≤k≤n. For 1 ≤ k ≤ n and t real, put

ξk =
∑

1≤j<k

Yj +
∑

k<j≤n

ηn,j , un,k(t) = |ξn,k+tYk|ν , vn,k(t) = |ξn,k+tηk|ν .
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Let ψν(x) := sgn(x)|x|ν, and write the Taylor formula of order 2 for un,k

and vn,k:

(2.4)

un,k(1) = un,k(0) + νYkψν−1(ξn,k)

+ ν(ν − 1)

1\
0

(1 − s)Y 2
k un,k(s)

(ν−2)/νds,

vn,k(1) = vn,k(0) + νηkψν−1(ξn,k)

+ ν(ν − 1)

1\
0

(1 − s)η2
kvn,k(s)

(ν−2)/νds.

Notice that un,k(0) = vn,k(0) and un,k−1(1) = vn,k(1). Hence, by summing
the differences of the previous equalities over k, next taking expectations
and using independence, we obtain

(2.5) E |Sn|ν − E |Wn|ν

=
n

∑

k=1

{

ν(ν − 1)

1\
0

(1 − s)E [Y 2
k (un,k(s)

(ν−2)/ν − un,k(0)(ν−2)/ν)] ds

+ ν(ν − 1)

1\
0

(1 − s)E [η2
k(vn,k(0)(ν−2)/ν − vn,k(s)

(ν−2)/ν)] ds

}

,

where Wn is a normal variable with variance s2n.
Now we estimate

|un,k(s)
(ν−2)/ν − un,k(0)(ν−2)/ν| = | |ξn,k + sYk|ν−2 − |ξn,k|ν−2|,

|vn,k(s)
(ν−2)/ν − vn,k(0)(ν−2)/ν| = | |ξn,k + sηk|ν−2 − |ξn,k|ν−2|.

We will use the following well-known estimates:

∀x, y ≥ 0, ∀α ∈ (0, 1], |xα − yα| ≤ |x− y|α,
∀x, y ≥ 0, ∀α > 0, (x+ y)α ≤ 2(α−1)+(xα + yα) ≤ 2α(xα + yα),

where (α− 1)+ = max(0, α− 1).

Case 1. Assume first that 0 < ν − 2 < 1. Let 0 < s ≤ 1. We have

|un,k(s)
(ν−2)/ν − un,k(0)(ν−2)/ν| ≤ |sYk|ν−2,

|vn,k(s)
(ν−2)/ν − vn,k(0)(ν−2)/ν| ≤ |sηk|ν−2.

Consequently,

(2.7) |E |Sn|ν − E |Wn|ν | ≤ ν
n

∑

k=1

(E |Yk|ν + E |ηk|ν).

Now E |ηk|ν = σν
kE |W |ν and σν

k = (EY 2
k )ν/2 ≤ E |Yk|ν . Hence the theorem

is proved in this case.
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Case 2. Assume that ν ≥ 3. Let 0 < s ≤ 1. We have

(2.8) |un,k(s)
(ν−2)/ν − un,k(0)(ν−2)/ν|

=

max{|ξn,k|,|ξn,k+sYk|}\
min{|ξn,k|,|ξn,k+sYk|}

(ν − 2)xν−3 dx

≤ s(ν − 2)|Yk|(|ξn,k| + s|Yk|)ν−3

≤ (ν − 2)2ν−3|Yk|(|ξn,k|ν−3 + s|Yk|ν−3).

A similar computation can be made for vn,k. Hence, by using the indepen-
dence of Yk and ξn,k, we get

|E |Sn|ν − E |Wn|ν | ≤ ν(ν − 1)(ν − 2)2ν−3
{

n
∑

k=1

(E |Yk|ν + E |ηk|ν)(2.9)

+
n

∑

k=1

E |ξn,k|ν−3(E |Yk|3 + E |ηn,k|3)
}

.

First we examine the term E |ξn,k|ν−3.
If 0 ≤ ν − 3 ≤ 2, then E |ξn,k|ν−3 ≤ sν−3

n .
If ν > 5, using the Jensen inequality and the fact that the variables {Yk,

1 ≤ k ≤ n} are centered, we have

E |ξn,k|ν−3 ≤ 2ν−3
(

E

(∣

∣

∣

∑

1≤j<k

Yk

∣

∣

∣

ν−3)

+ E

(∣

∣

∣

∑

k<j≤kn

ηk

∣

∣

∣

ν−3))

(2.10)

≤ 2ν−2(E |Sn|ν−3 + sν−3
n E |W |ν−3).

By using Rosenthal’s inequality (for the best constant, see [12]), we have

(2.11) E |Sn|ν−3 ≤
(

C
ν

log ν

)ν−3
(

sν−3
n +

n
∑

k=1

E |Yk|ν−3
)

.

Further, as E |W |m ≤ C(m/logm)m, m = 2, 3, . . . , for every ν ≥ 3 we arrive
at

(2.12) E |ξn,k|ν−3 ≤
(

C
ν

log ν

)ν−3
(

sν−3
n +

n
∑

k=1

E |Yk|ν−3
)

.

Now, by incorporating (2.12) into (2.9) and in view of the assumption that

ηk
D
= N (0, σk), we obtain

|E |Sn|ν − E |Wn|ν | ≤
(

C
ν

log ν

)ν
{

n
∑

k=1

(E |Yk|ν + σν
k)(2.13)

+
(

sν−3
n +

n
∑

k=1

E |Yk|ν−3
)

n
∑

k=1

(E |Yk|3 + σ3
k)

}

.
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But σν
k = (E |Yk|2)ν/2 ≤ E |Yk|ν , and also σ3

k = (E |Yk|2)3/2 ≤ E |Yk|3, so that

|E |Sn|ν − E |Wn|ν |

≤
(

C
ν

log ν

)ν
{

n
∑

k=1

E |Yk|ν +
(

sν−3
n +

n
∑

k=1

E |Yk|ν−3
)

n
∑

k=1

E |Yk|3
}

.

Dividing both sides of (2.13) by sν
n, and developing the right hand side, leads

to
∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣

∣

≤
(

C
ν

log ν

)ν{∑n
k=1 E |Yk|ν
sν
n

+

∑n
k=1 E |Yk|3
s3n

(2.14)

+

∑n
k=1 E |Yk|ν−3

sν−3
n

·
∑n

k=1 E |Yk|3
s3n

}

.

Theorem 1.2 now follows from estimates (2.7) and (2.14).

Now, we turn to the proof of Theorem 1.3. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1}
be a triangular array of independent variables. For every n ≥ 1, apply
Theorem 1.2 to the kn variables {Xn,k, 1 ≤ k ≤ kn}. The first statement
of the theorem follows from assumption (L′

ν) and the first two assertions of
Lemma 2.1.

Let us prove the second statement. We only prove the case ν > 5, the
case 3 ≤ ν ≤ 5 follows similarly. By applying Lemma 2.1(iii) successively
with µ = 3 and µ = ν − 3, we have

(2.15)

∑kn

k=1 E [|Xn,k|3]
s3n

≤ 2

(∑kn

k=1 E [|Xn,k|ν ]
sν
n

)1/(ν−2)

,

∑kn

k=1 E |Xn,k|ν−3

sν−3
n

≤ 2

(∑kn

k=1 E |Xn,k|ν
sν
n

)(ν−5)/(ν−2)

.

Thus

(2.16)

∑kn

k=1 E |Xn,k|ν−3

sν−3
n

·
∑kn

k=1 E |Xn,k|3
s3n

≤ 4

(∑kn

k=1 E |Xn,k|ν
sν
n

)(ν−4)/(ν−2)

.

By inserting estimates (2.15), (2.16) into (2.14) we get

(2.17)

∣

∣

∣

∣

E

( |Sn|
sn

)ν

−mν

∣

∣

∣

∣

≤
(

C
ν

log ν

)ν{∑kn

k=1 E |Xn,k|ν
sν
n

+

(∑kn

k=1 E |Xn,k|ν
sν
n

)1/(ν−2)

+

(∑kn

k=1 E |Xn,k|ν
sν
n

)(ν−4)/(ν−2)}

≤
(

C
ν

log ν

)ν

max
h∈{1,(ν−4)/(ν−2),1/(ν−2)}

(∑kn

k=1 E |Xn,k|ν
sν
n

)h

.



CONVERGENCE OF MOMENTS 155

The second statement of Theorem 1.3 follows from the fact that for ν > 5,
1/(ν − 2) ≤ (ν − 4)/(ν − 2) ≤ 1. The proof is now complete.

The following result concerning triangular arrays of weighted indepen-
dent random variables is now a rather straightforward consequence of The-
orem 1.3.

Theorem 2.2. Let {ξn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array

of real centered independent random variables such that E ξ2n,k = 1 and

let {an,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of real numbers with
∑kn

k=1 a
2
n,k = 1. Assume that for some ν > 2,

sup
n≥1

sup
1≤k≤kn

E |ξn,k|ν <∞,

kn
∑

k=1

|an,k|ν = o(1).

Put Sn =
∑kn

k=1 an,kξn,k. Then

lim
n→∞

E |Sn|ν = mν .

Furthermore, if ν ≥ 3, then
∑kn

k=1 |an,k|3 = o(1) and the estimate of the

speed of convergence in the above limit takes the form

|E |Sn|ν −mν | ≤
(

C
ν

log ν

)ν kn
∑

k=1

|an,k|3.

Proof. The convergence results from Theorem 1.3. The fact that
∑kn

k=1 |an,k|3 =o(1) follows easily from our assumptions on {an,k, 1≤k≤kn,
n ≥ 1} (or may be deduced from Lemma 2.1). To obtain the speed, we ap-

ply Theorem 1.2, noticing that (since
∑kn

k=1 |an,k|2 = 1) we have, for ν ≥ 3,
∑kn

k=1 |an,k|ν ≤ ∑kn

k=1 |an,k|3, and for ν ≥ 5,
∑kn

k=1 |an,k|ν−3 ≤ 1.

3. Lp-norms of random trigonometric polynomials. The following
theorem extends Borwein–Lockhart’s result of [4] to triangular arrays of
independent random variables.

Theorem 3.1. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of

real centered independent random variables with EX2
n,k = 1, satisfying the

Lindeberg condition (Lν) of order ν ≥ 2. Then

lim
n→∞

1

2πk
ν/2
n

2π\
0

E |qn(θ)|ν dθ = Γ (1 + ν/2),

where qn(θ) =
∑kn

k=1Xn,ke
ikθ.

It will follow from the proof that the result remains true under the
slightly weaker assumption that there exists 0 < m < M such that m ≤
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EX2
n,k ≤ M for any n ≥ 1 and any 1 ≤ k ≤ kn. For any positive integer n

and θ ∈ R − πZ, put

(3.1)

Cn(θ) =

kn
∑

k=1

Xk cos(kθ)
(

kn
∑

k=1

cos2(kθ)
)−1/2

,

Sn(θ) =

kn
∑

k=1

Xk sin(kθ)
(

kn
∑

k=1

sin2(kθ)
)−1/2

.

The proof of Theorem 3.1 makes use of the following lemma.

Lemma 3.2. Under the assumption of the previous theorem, for any se-

quence {θn} of real numbers which are not multiples of π we have

lim
n→∞

E |Cn(θn)|ν = E |W |ν , lim
n→∞

E |Sn(θn)|ν = E |W |ν .

Remark. The result is in fact true without any restriction on {θn}. This
is clear for Cn. The only problem is that Sn is not well defined, but |Sn|
may be extended by continuity to multiples of π.

Proof of Lemma 3.2. We first recall a result of [4]: there exists a constant
C > 0, independent of m, such that for every 1 ≤ k ≤ m,

(3.2) inf
θ

m
∑

l=1

cos2(lθ)

cos2(kθ)
≥ Cm, inf

θ

m
∑

l=1

sin2(lθ)

sin2(kθ)
≥ Cm.

Notice that the sine sum is well defined, by continuity, for multiples of π.
Consider the array {Yn,k, 1 ≤ k ≤ kn, n ≥ 1} of random variables defined
for n, k ≥ 1 by

Yn,k = Xn,k cos(kθn)
[

kn
∑

l=1

cos2(lθn)
]−1/2

.

To prove the lemma it suffices to show that this array satisfies condition (Lν).
Observe that sn = 1 in this case. Fix ε > 0. Then

kn
∑

k=1

E [|Yn,k|ν1{|Yn,k|>ε}] ≤
kn
∑

k=1

(

1

Ckn

)ν/2

E [|Xn,k|ν1{|Xn,k|>ε
√

Ckn}] = o(1),

since {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} satisfies (Lν). We conclude thanks to
Theorem 1.2. The case of Sn follows from the same arguments using the
second part of the lemma.

The proof of Theorem 1.4 can now be finished as in [4]. We include it for
the sake of completeness. We first prove that, for any θ not a multiple of π,
the sequence of pairs {(Cn(θ), Sn(θ)), n ≥ 1} converges in law to (W1,W2),
where W1, W2 are independent with standard normal law.
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We show first that for any α, β ∈ R, {αCn(θ)+βSn(θ)} converges in law

to
√

α2 + β2W1.

Let α, β ∈ R. Let {Yn,k, 1 ≤ k ≤ kn, n ≥ 1} be defined by Yn,k :=
Xn,k(α cos(kθ) + β sin(kθ)). We want to apply the Lindeberg theorem, so
we need to check whether condition (L2) is satisfied. In this case, sn =

(
∑kn

k=1(α cos(kθ) + β sin(kθ))2)1/2.

Now, for any θ /∈ πZ, both sequences
{

1

kn

kn
∑

k=1

cos2(kθ), n ≥ 1

}

and

{

1

kn

kn
∑

k=1

sin2(kθ), n ≥ 1

}

converge to 1/2, and the sequence

{

1

kn

kn
∑

k=1

cos(kθ) sin(kθ), n ≥ 1

}

converges to 0. Hence, {sn/
√
kn} converges to

√

α2 + β2, and for n large
enough, we have, for any ε > 0,

(3.3)
1

s2n

kn
∑

k=1

E [|Yn,k|21{|Yn,k|>εsn}]

≤
(

2
√

kn(α2 + β2)

)2 kn
∑

k=1

E |Xn,k|21{|Xn,k|> ε
2

√
kn(α2+β2)} = o(1),

since {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} satisfies (L′
ν), so (L2). Hence, by the

Lindeberg theorem, {αCn(θ) + βSn(θ)} converges in law to
√

α2 + β2W1.

Since this is true for any α, β ∈ R, we deduce that the sequence of pairs
{(Cn(θ), Sn(θ)), n ≥ 1} converges in law to (W1,W2), where (W1,W2) is a
Gaussian vector. Moreover we already saw that the covariances

E [Cn(θ)Sn(θ)] =

∑kn

k=1 cos(kθ) sin(kθ)

(
∑kn

k=1 cos2(kθ))1/2(
∑kn

k=1 sin2(kθ))1/2

tend to 0 as n→ ∞.

So W1 and W2 are uncorrelated, hence independent. We deduce that

{k−1/2
n |qn(θ)|, n ≥ 1} converges in law to ((W 2

1 + W 2
2 )/2)1/2 for any θ ∈

R − πZ. Observe now that

(3.4)
|qn(θ)|ν

k
ν/2
n

≤ (C2
n(θ) + S2

n(θ))ν/2 ≤ 2ν/2−1(|Cn(θ)|ν + |Sn(θ)|ν).

By Lemma 3.2, the sequences {E |Cn(θ)|ν , n ≥ 1} and {E |Sn(θ)|ν , n ≥ 1}
are uniformly bounded in θ ∈ R − πZ (actually, uniformly on R by the
remark made after that lemma). Hence, in order to prove the theorem, it
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suffices to prove that {(E |qn(θ)|ν)/kν/2
n , n ≥ 1} converges for almost all

θ to Γ (1 + ν/2). Let K > 0. Put Zn(θ) = 2ν/2−1(|Cn(θ)|ν + |Sn(θ)|ν),
T = 2ν/2−1(|W1|ν + |W2|ν) and U = ((W 2

1 +W 2
2 )/2)1/2. We may write

E |qn(θ)|ν

k
ν/2
n

=
E [|qn(θ)|ν1{|qn(θ)|≤K

√
kn}]

k
ν/2
n

+
E [|qn(θ)|ν1{|qn(θ)|>K

√
kn}]

k
ν/2
n

.

But

(3.5)
E [|qn(θ)|ν1{|qn(θ)|>K

√
kn}]

k
ν/2
n

≤ E [Zn(θ)1{Zn(θ)>K}] ≤ EZn(θ) − E [Zn(θ)1{Zn(θ)≤K}]

≤ (EZn(θ) − ET ) + E [T1{T>K}]

+ (E [T1{T≤K}] − E [Zn(θ)1{Zn(θ)≤K}]).

Since {|qn(θ)|/
√
kn, n ≥ 1} converges in law to U , it follows that {Zn(θ),

n ≥ 1} converges in law to T . Further, by using Lemma 3.2 we see that
EZn(θ) → ET as n→ ∞. We therefore obtain

(3.6) lim sup
n→∞

∣

∣

∣

∣

E |qn(θ)|ν

k
ν/2
n

− E [Uν1{U≤K}]

∣

∣

∣

∣

≤ E [T1{T>K}].

Letting K go to infinity yields the claimed result.

Remark. In the last step of the proof, we proved that

(3.7) lim
n→∞

E |qn(θ)|ν

k
ν/2
n

= Γ (1 + ν/2)

for any θ ∈ R − πZ. This has, in view of an inequality due to Petrov,
consequences on the probability that θ is not a root of qn, for n large.
Indeed, we have the following corollary.

Corollary 3.3. Let ν2 > ν1 ≥ 2. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1}
be a triangular array of real centered independent random variables with

EX2
n,k = 1, satisfying the Lindeberg condition (Lν2

). For any θ ∈ R − πZ,
we have

lim inf
n→∞

P{qn(θ) 6= 0} ≥
(

Γ (1 + ν1/2)
ν2

Γ (1 + ν2/2)ν1

)1/(ν2−ν1)

,

where qn(θ) =
∑kn

k=1Xn,ke
ikθ.

Proof. From Petrov’s inequality [14, inequality (2), p. 392], if X is any
random variable and s > r > 0, then X ∈ Ls(P) implies

P{X 6= 0}1/r−1/s ≥ ‖X‖r

‖X‖s
.
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Applying now this inequality for X = |qn(θ)|/k1/2
n , and using the above

remark, we can easily conclude the proof.

We also have the following result.

Theorem 3.4. Let {Xn,k, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of

real centered independent random variables satisfying the Lindeberg condi-

tion (Lν) of order ν ≥ 2. Let {Yn,k, 1 ≤ k ≤ kn, n ≥ 1} be an indepen-

dent copy of {Xn,k, 1 ≤ k ≤ kn, n ≥ 1}. Then for any increasing sequence

{pn, n ≥ 1} of integers, the sequence of random trigonometric polynomials

Zn(θ) =

kn
∑

k=1

(Xn,k cos(pkθ) + Yn,k sin(pkθ))

satisfies

lim
n→∞

1

2πs
ν/2
n

2π\
0

E |Zn(θ)|ν dθ = mν .

Proof. Apply Theorem 1.2 to the array {Xn,k cos(pkθ) + Yn,k sin(pkθ),
1 ≤ k ≤ kn, n ≥ 1}.
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