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Abstract. For a universal algebra A, let End(.A) and Aut(A) denote, respectively,
the endomorphism monoid and the automorphism group of A. Let S be a semigroup
and let T be a characteristic subsemigroup of S. We say that ¢ € Aut(S) is a lift for
P € Aut(T) if ¢|T = . For ¢ € Aut(T) we denote by L(v) the set of lifts of ), that is,

L(¥) = {¢ € Aut(5) | ¢ = ¢}

Let A be an independence algebra of infinite rank and let S be a monoid of monomorphisms
such that G = Aut(A) < S < End(A). It is obvious that G is characteristic in S.
Fitzpatrick and Symons proved that if A is a set (that is, an algebra without operations),
then |L(¢)| = 1. The author proved in a previous paper that the analogue of this result
does not hold for all monoids of monomorphisms of an independence algebra. The aim
of this paper is to prove that the analogue of the result above holds for semigroups S =
(Aut(A) U EUR) < End(A), where E is any set of idempotents and R is the empty set
or a set containing a special monomorphism « and a special epimorphism «*.

1. Introduction. We assume the reader to be familiar with both semi-
group theory and universal algebra. We recommend as references [22] and [29].
Also we assume the reader to have a basic knowledge of the theory of in-
dependence algebras. We recommend [5], [14], [15] and [19] as references.
Independence algebras were introduced as v*-algebras by Narkiewicz [30]
(see also [31] and [32]). For an excellent survey paper on v*-algebras see
Urbanik [41].

These algebras appeared in Poland as a result of research on different no-
tions of independence valid in any universal algebra. This research, prompted
by Marczewski [24], benefited from the contributions of Marczewski himself
(e.g., [25]-[28]), Narkiewicz ([30]-[32]), Grétzer [20], Urbanik ([38]-[41]), etc.
Such investigations led to many important results and to several questions
that forty years later remain open. An excellent account and the main refer-
ence regarding all these investigations is Glazek [16], a comprehensive survey
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paper (containing the impressive number of more than eight hundred refer-
ences). But when speaking about v*-algebras, the most notable achievement
is due to Urbanik: a series of deep papers leading to the classification of these
algebras. For the full picture see [41]. (See also [9].)

Semigroup theorists rediscovered v*-algebras (giving them the name of
independence algebras) as a tool to provide unified proofs for results that
graphically hold for both sets and vector spaces, or more precisely, hold for
the endomorphism monoid of a set and for the endomorphism monoid of a
vector space. Since the early 1990s, endomorphism monoids of independence
algebras, and related semigroups, have been extensively studied and the
topic continues to receive a great deal of attention. From the point of view
of semigroups the pre-history of independence algebras might be in 1966,
when Howie described the subsemigroup Ex of T(X) generated by all the
non-identity idempotents [21]. The corresponding result for End(V'), where
V' is a finite-dimensional vector space, was proved by Erdos the following
year [11], but it was not until nearly twenty years later that Reynolds and
Sullivan [33] found the appropriate analogue in the infinite-dimensional case.
Their work also uncovered a significant difference between the semigroups
Ex and Ey where X is an infinite set, V' is an infinite-dimensional vector
space, and where for any algebra A we denote by E4 the subsemigroup
of End(A) generated by the non-identity idempotents. Sullivan surveyed
the parallels and distinctions between T'(X) and End(V) in an influential
conference talk in 1990 which was published in [37].

Fountain and Lewin, having seen a preliminary version of Gould’s pa-
per [19], realized that independence algebras provided a suitable conceptual
framework for unifying those results on products of idempotents which hold
for both 7'(X) and End(V'). They described E 4 for an independence algebra
of finite rank in [14]. (For a direct proof see [4].) After that, independence
algebras have been very useful to

(1) export results from semigroup theory to linear algebra (the other way,
unfortunately, proved to be less fruitful);

(2) give unified proofs for results that hold for both sets and vector
spaces;

(3) provide explanations for why sometimes vector spaces and sets behave
differently.

Among others, the papers [7] and [8] are examples of (1); the papers [3]
and [13] are examples of (3); the current paper is an example of (1) and (2).
The first step in the definition of independence algebras is the introduc-
tion of a notion of independence valid for universal algebras. Let A be an
algebra with universe A and let X be a set contained in A. Then we de-
note by (X) the algebra generated by X. Now, a subset X of an algebra is
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said to be independent if X = () or if, for every element x € X, we have
x & (X \ {z}); a set is dependent if it is not independent.

LEMMA 1.1. For an algebra A, the following conditions are equivalent:

(1) for every subset X of A and all elements u,v of A, if u € (X U {v})
and u & (X), then v € (X U{u});

(2) for every subset X of A and every element u € A, if X is independent
and u & (X), then X U {u} is independent;

(3) for every subset X of A, if Y is a mazximal independent subset of X,
then (X) = (Y);

(4) for subsets X,Y of A withY C X, if Y is independent, then there is
an independent set Z with Y C Z C X and (Z) = (X).

Proof. See [29, p. 50, Exercise 6]. m

An algebra A is said to have the exchange property, or to satisfy [EP], if
it satisfies the equivalent conditions of Lemma 1.1. A basis for A is a subset
of A which generates A and is independent. It is clear from Lemma 1.1 that
any algebra with [EP] has a basis. Furthermore, for such an algebra, bases
may be characterized as minimal generating sets or maximal independent
sets, and all bases for A have the same cardinality [19, Proposition 3.3].
This cardinal is called the rank of A and is written rank(.A).

We say that A is an independence algebra if A satisfies [EP] and the
following property:

[F] for every basis X of A and mapping f : X — A, there exists a
morphism F : (X) — A extending f.

Suppose «a is a partial endomorphism of A. We denote the domain of a
by Aa and the image of a by Va. Observe that both Aa and Va are subalge-
bras of A. If a € End(A), we denote by rank(a) the rank of the algebra Va.
Recall that given a subalgebra B < A, and a basis B for B, if BU X and
B UY are bases of A, then | X| = |Y|. This cardinal is called the corank of
B and is denoted by corank(B). This notation will be extended to endomor-
phisms as above: for a € End(.A), we write corank(a) to denote the corank
of Va.

Let A be an independence algebra and let X,Y be two disjoint and
independent subsets of A. Then A is said to be strong if (X) N (Y) = Con
implies that X UY is an independent set (where Con denotes the constants of
the algebra A). Clearly, any subalgebra of a strong independence algebra is
also a strong independence algebra. Particular cases of strong independence
algebras are sets and vector spaces.

Let f be an endomorphism of an independence algebra A. Then B is a
preimage basis for f if Bf is a basis for the image of f and f|p is injective.
(We observe that mappings act on the right; we write = f rather than f(z).)
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If A is a universal algebra, denote by End(.A4) and Aut(.A), respectively,
the endomorphism monoid and the automorphism group of .A. By PEnd(.A)
we denote the monoid of partial endomorphisms of A.

When A = X, where X is a set (that is, when the algebra has no op-
erations), then End(A) = T(X) and Aut(A) = Sym(X), respectively, the
monoid of all transformations on X and the symmetric group on X.

Let S be a semigroup and let T' be a subsemigroup of S. We say that T’
is characteristic in S if, for every ¢ € Aut(S), we have ¢|r € Aut(T), that
is, if the restriction to T of every automorphism of S is an automorphism
of T. Now suppose that T is a characteristic subsemigroup of S. We say
that an automorphism ¢ € Aut(S) is a lift for ¢ € Aut(T) if ¢|7 = . For
¢ € Aut(T) we denote by L(¢) the set of lifts of ¢, that is,

L(¢) = {¢ € Aut(S) | ¢|7 = ¢}

It is well known that lifts play a crucial role in the description of the
automorphism group of a semigroup. The general scheme goes as follows: if
we want to describe the automorphism group of S, a good idea is to try to
find a subsemigroup 7' < S such that:

(1) T is characteristic in S;

(2) we have (or can find) a description of Aut(7), the automorphism
group of T’

(3) for every g € Aut(T") we can describe L(g).

Since (1) implies that Aut(S) = Ugeaue(r) L(9), from (3) we get a de-
scription of Aut(S). (Usually it is necessary to have (2) in order to find (3).)

For example, in [23] Mal’tsev described Aut(7T'(X)). He considered the
semigroup

T(X) ={f e T(X) | [(X)f[ =1},

proved that T3 (X) is characteristic in T'(X), described the automorphisms
of T1(X) (which are the mappings 79 : a — g 'ag, where g € Sym(X)
and a € T1(X)) and proved that |L(79)| = 1 for all g € Aut(71(X)). Thus
Aut(T(X)) = Inn(T(X)), the inner automorphisms, that is, the automor-
phisms induced under conjugation by the elements g € Sym(X).

Another example: in [12] Fitzpatrick and Symons considered semigroups
S of injective mappings such that Sym(X) < S < T(X) (where X is an
infinite set; see also [10]). In the most delicate part of their proof they showed
that, given an h € Aut(Sym(X)), we have |[L(h)| = 1. Thus, since Sym(X)
is characteristic in S (and all automorphisms of Sym(X) are inner), we have
Aut(S) = U seaut(sym(x)) L(79) and hence for every semigroup S of injective
mappings such that Sym(X) < .S <T(X) we have

Aut(S) = {79 :5+— g lsg| g € Sym(X)}.
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In [17] Gluskin used the same general scheme to describe the automor-
phism group of End(V'), where V is a vector space, thus proving the vector
space analogue of the result proved by Mal’tsev for sets, as referred to above.

The linear analogue of the result of Fitzpatrick and Symons quoted above
would read as follows: given a vector space V of infinite dimension and a
semigroup S of injective linear transformations such that Aut(V) < § <
End(V), prove that for all h € Aut(Aut(V)) we have

IL(h)| = [{g € Aut(S) | glaut(auvy) = b} = 1.
In [3] the author proved that this is not true and then characterized the
independence algebras in which the analogue of this result holds. This was a
negative result and the best that could be done was to describe the bounds
of that negative answer.

The aim of this paper is to provide positive answers for many classes
of semigroups, thus providing the description of the automorphisms of those
semigroups, modulo a description of Aut(Aut(.A)), an open problem in group
theory. More precisely, we want to identify large classes of semigroups .5, with
Aut(V) < S < End(V), in which an analogue of the result of Fitzpatrick and
Symons referred to above holds. The cornerstone of the results in this paper
are the so-called fundamental representations of endomorphisms (introduced
in [1] and [6]) and two endomorphisms « and o introduced in [2]. These two
endomorphisms have the property that (Aut(A4) U E(End(A)) U{a,a*}) =
End(A) (the symbol E(End(.A)) denotes the set of idempotents of End(.A)).

In Section 2 we introduce some notation and basic results. The following
two sections contain technical results. In Section 5 we state and prove our
main result. The paper ends with a section of proposed problems.

2. Preliminaries. We start by introducing some notation, definitions
and conventions. Let A be an algebra. To simplify the notation let G =
Aut(A) and denote by Con the constants of A. In this paper we assume that
Con C {0}, that is, Con is empty or has at most one element, denoted by 0.

Let B be a basis for an independence algebra A and let a : B — A
be a mapping. Since there exists one and only one morphism @ : A — A
extending « (that is, such that @|p = «) we will use the same letter o to
denote the mapping and the endomorphism.

For a semigroup S we denote by E(S) the set of idempotents of S, that
is, the set of elements s € S such that s? = s.

We introduce some auxiliary results about strong independence algebras.

LEMMA 2.1. Let A be a strong independence algebra. Let B and C be sub-
algebras of A. If B is a basis for BNC, BUC is a basis for B and BU D is
a basis for C, then BUC'UD is a basis for the algebra generated by B and C.

Proof. See [15, Lemma 1.6]. =
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DEFINITION 2.2. Let I be a set and, for a symbol 0 & I, let I = I U {0}.
Moreover, let A be a strong independence algebra and let (A;);c; be a par-
tition of a basis of \A. Consider the endomorphism a € End(A) defined by
Aja = {a;} for i € I, where {a; : i € I} is an independent set (and hence a
basis for V(«)), and let Agpae = {0}. An endomorphism « € End(.A) under
these conditions is represented by the matrix

]
0 a;i Jier

This matrix is said to be a fundamental representation of . The set Ag in
the fundamental representation is said to be the constant component.

If the algebra has no constants, then the constant component is the empty
set and then the endomorphism can be defined by

]
a; iel.

The importance of this concept lies in the following fact:

THEOREM 2.3. FEvery endomorphism of a strong independence algebra
admits a fundamental representation.

Proof. This follows from [15, Lemma 2.8] and the observations following
Corollary 2.10 of [15]. See also [1] and [6]. =

We observe that if e € F(End(A)), then e has a fundamental represen-

AO A’L

where a; € A; for all i € I. Moreover, if C'is a basis for Ve and Cy = CU{0},
then there is a basis of A, say B = (J ¢, 4, such that Ace = cforall ¢ € Co.
Thus, e can be represented as (and is defined by)

]
c CECO.
Let X # () be a subset of A x A. Then the congruence generated by X

will be denoted by O(X).

LEMMA 2.4. Let e be an idempotent endomorphism with the fundamental
representation
c ceCo

where ¢ € A. for all c € C. Moreover, let X = cc,(Ac X Ac). Then O(X)
is equal to Ker(e).
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Proof. Clearly, (z,xe) belongs to X for all x € B. Thus for every term ¢

and x1,...,x, € B, we have (z1,x1€) € X,..., (zp,2xne) € X and hence
(t(x1,...,2n), t(x1€,...,28€)) € O(X).
Therefore, for all elements v = t(z1,...,2,) € A, we have (u,ue) € O(X).

Now, let (u,v) € Ker(e). On the one hand, (u,ue) and (ve,v) both belong
to ©(X). On the other hand, (u,v) € Ker(e) implies that ue = ve. By
transitivity, (u,v) belongs to @(X). This proves that Ker(e) is contained in
O(X). As the converse is obvious, the lemma follows. m

Throughout this paper, A always denotes a strong independence algebra
of infinite rank with universe A (recall that Con C {0}), and S denotes
a semigroup of endomorphisms of A such that G = Aut(A) < S < End(A).

In the next two sections we prove auxiliary technical results.

3. e = e. The aim of this section is the proof of the following theorem.

THEOREM 3.1. Let A be a strong independence algebra with at most one
constant, let G < S < End(A) and let 7 € Aut(S) be such that 7|¢ = idg.
Then eT = e for all e € E(S).

This result will be proved in a series of lemmas. We start by introducing
some notation. Let X be a basis for A and let z,y € X. Then we denote by
(zy)x the automorphism of A that is induced by the transposition (xy) x, the
permutation of X that maps x to y, maps y to x and fixes all the remaining
elements of X. We first prove the following lemma.

LEMMA 3.2. Let A be a strong independence algebra, S be a semigroup
such that G < S < End(A) and let e € E(S). Moreover, let T € Aut(S) be
such that 7| = idg. Then Ker(er) = Ker(e).

P7 00’ . Let
AC
c CGC()

be a fundamental representation for e and let B = J.c¢, Ac. Let ¢ € Cy
and suppose that |A.| > 1. Then for all z,y € A., we have (zy)pe = e and
hence (zy)p(er) = er. Thus z(eT) = y(er) and so (z,y) € Ker(er). We have
proved that A. x A. C Ker(er). If, for some ¢ € Cy, we have |A;| = 1, say
A. = {z}, then A, x A, = {(z,z)} C Ker(er). Thus for all ¢ € Cy we have

Ae x A. C Ker(er).

Let X = J.cq,(Ac x Ac). As X C Ker(er) it follows that ©(X) C Ker(er).
Then, by Lemma 2.4, Ker(e) = ©(X) C Ker(er). By symmetry, Ker(er) C
Ker(e) and the lemma follows. m
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The following lemmas show that V(e) = V(er). Observe that this is
sufficient for proving the main theorem of this section. In fact, if V(e) =

V(et) then, as Ker(e) = Ker(er), the idempotent endomorphisms e and er
are HP"(A)_related and hence e = er (see [22, Theorem 2.2.5]).

LEMMA 3.3. Let S be a semigroup such that G < S < End(A) and let
e € E(S). Moreover, let T € Aut(S) be such that 7|q = idg. Then V(e)
cannot be strictly contained in V(eT).

Proof. Suppose that V(er) = A. Then et is a surjective idempotent en-
domorphism and hence et = id 4. This comes from the fact that er is idem-
potent and hence all the elements in V(er) are fixed points. As V(er) = A
it follows that a(er) = a for all a € A. However, if er = idy = ida 7, it
follows that e = id4 and hence V(e) = V(er).

Suppose now that V(e) C V(er) and V(er) is strictly contained in A.
Moreover, let B be a basis for V(e), let C be such that B U C is a basis
for V(er), and let D be such that BUC U D is a basis for A. If |C] > 1
then there exists g € G such that g|p = idp and g|cup has no fixed points.
(This is possible because |C' U D| > 1, as both C' and D are non-empty.)
Then eg = e and hence (e1)g = er. However, for ¢ € C, we have c(eT) = ¢,
as ¢ € V(er), but cg # c. Thus, c¢(eT)g # c(er). This contradiction follows
from the supposition that |C| > 1. The lemma is proved. =

COROLLARY 3.4. Let S be a semigroup such that G < S < End(A) and
let e € E(S). Moreover, let T € Aut(S) be such that 7|¢ = idg. Then V(er)
cannot be strictly contained in V(e).

Proof. Certainly er € E(S) and 77! € Aut(9) is such that 77!|5 = idg.
Hence V(e7) cannot be strictly contained in V((e7)7~1), that is, cannot be
strictly contained in V(e). m

LEMMA 3.5. Let S be a semigroup such that G < S < End(A) and let
e € E(S). Moreover, let T € Aut(S) be such that 7| =idg. If corank(e) > 1,
then V(e) = V(er).

Proof. Consider the following sets:

1. B, a basis for V(e) N V(eT);
2. BUC, a basis for V(e);

3. BU D, a basis for V(er);

4. BUCUDUW, a basis for A.

Suppose that D # ), say y € D. Now let g € G be such that g|puc =
idpuc and (DU W)g = D UW, with yg = z # y. This is possible because
corank(e) > 1 implies |D U W| > 1. We have eg = e and hence (eT)g = er.
But for w € A such that w(er) = y, we have w(er)g = yg = z # vy,
a contradiction. Thus D must be empty. It follows that C' = () as well. In fact,
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if C' # (), then V(er) = (B) is strictly contained in V(e) = (B U C), which
is impossible by Corollary 3.4. Hence, D = () = C' and V(e) = (B) = V(er)
and the lemma follows. =

As noted before Lemma 3.3 we have the following corollary.

COROLLARY 3.6. Let S be a semigroup such that G < S < End(A)
and let e € E(S). Moreover, let T € Aut(S) be such that 7|q = idg. If
corank(e) > 1, then e = er.

COROLLARY 3.7. Let S be a semigroup such that G < S < End(A)
and let e € E(S). Moreover, let 7 € Aut(S) be such that 7|¢ = idg. If
V(e) > Con, then V(er) NV(e) # Con.

Proof. By the previous result, if corank(e) > 1 then e = er and hence
V(e) = V(er).

Suppose now that corank(e) = 1 and V(e)NV(er) = Con. As A is strong,
if B is a basis for V(e) and C is a basis for V(er), then BUC is independent,
and hence there is a set W such that BU C U W is a basis for A. However,
corank(e) = 1 and hence |C U W| = 1. As we suppose C' # (), we have
W =0 and so BU C is a basis for A. This implies corank(er) = |B| > 1,
as |B| = rank(A), which is supposed to be infinite. This contradicts the

previous corollary as corank(er) > 1 implies e7 = (eT)7 ! =¢. u

Now let e € E(S) be such that corank(e) = 1 and b; € V(e) N V(er).
Moreover, let BU{x} be a basis for V(e) such that b; € B. As corank(e) = 1
there is an element y € A such that BU {z} U {y} is a basis for .A. Under
these conditions we have the following three lemmas.

LEMMA 3.8. Suppose that e is defined by

|: {:L:’Ty} {Z} :|b€B.

Then V(e) = V(eT).

Proof. For an element b; € B, consider an automorphism g € GG induced
by the permutation (zyb1)y € Sym(Y), where Y = B U {x,y}. Clearly, ege
is defined by

|: {$7y’ bl} {b} :|

T b lpeB\{b1}
As ege is idempotent and corank(ege) = 2, Corollary 3.6 implies (ege)T =
ege. Thus V(ege) = V((ege)T) =V ((eT)g(eT)) C V(er). However, (B\ {b1})
U {z} = V(ege) and so by € V(er), so that BU {z} C V(er), and hence
V(e) C V(er). Hence, by Lemma 3.3, we have V(e) = V(e7). =
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LEMMA 3.9. Suppose that e is defined by

(@} D (o) |
x by b lpep\ (o}
Then V(e) = V(eT).
Proof. Let h € G be the automorphism induced by (xb;)y, where Y =
B U {z,y}. Then (x)heh = z, (y)heh = x, (by)heh = by and (b)heh = b
for the remaining elements of B. Let ¢ € G be the automorphism induced
by (yb1)y € Sym(Y) and let heh = e”. Then (z)etg = =z, (y)eg = z,
(b1)e"g =y and (b)eg = b for the remaining b € B. Thus e"g is defined by
[{ﬂﬁ,y} {b1} {b} ]
T Y b lveB\{nr}
and so e*gege is defined by
|: {$7y’ bl} {b} :|
x b lveB\{b:}
As corank(e gel'ge) = 2 and el gege is idempotent, it follows that (e"gege)r
= elgelge. Hence

V(e"ge"ge) = V((e"ge"ge)r) = V((e")ge"g(er)) C V(er).
Also by € V(er) and so BU {z} C V(er). Thus V(e) C V(er). It follows
from Lemma 3.3 that V(e) = V(er). m

LEMMA 3.10. Suppose that e is defined by

W e () D) |
0 =z b b lbeB\{b1}
Then V(e) = V(erT).
Proof. Let Y = BU{x,y} and, for z € (BU{z}) \ {b1}, let g, € G be
the automorphism induced by (b12)y. Then g,eg, = e since
yg-eg. = yeg. = 0g, = 0 = ye,
bigzeg. = zeg, = zg. = by = bie,
zg.eg. = bieg: = big. = z = ze,
bg.eg, = b=be for the remaining b € B.
Now, g.eg. = e implies g.(eT)g, = er and so
z(eT) = (2gz)(eT)g> = bi(eT)g:
=b1g. (as by € V(er))

= Z.
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Thus z € V(er) for all z € (BU {z}) \ {b1} and, as by € V(er), we have
BU{x} C V(er). Hence V(e) C V(er) and it follows from Lemma 3.3 that
V(e)=V(er). m

We now conclude the proof of Theorem 3.1. Let S be a semigroup such
that G < S < End(A) and e € F(S) be an idempotent endomorphism such
that corank(e) = 1. Moreover, let 7 € Aut(S) be such that 7| = idg.

If corank(er) > 1, then it follows from Corollary 3.6 that er = (e7)7~
= e. Thus, we can assume that corank(e) = 1 and that corank(er) = 1.

Recall the following sets defined in Lemma 3.5.

1. B is a basis for V(e) N V(er);

2. BUC is a basis for V(e);

3. BUD is a basis for V(er);

4. BUCUDUW is a basis for A.

If D = (), then V(at) = (B) C V(e). If C = () then V(e) C V
either case, V(e) = V(er) by Lemma 3.3. Thus W = () and |D| =
since corank(e) = corank(er) = 1.

Suppose now that W is empty. Then, as |[D U W| = 1, it follows that
|D| = 1. By symmetry, we have |C| = 1, say C' = {z}. Thus, BU {z} is a
basis for V(e). Let A = rank(A) and B = {b; | i € I}.

First suppose that 0e ' = () and let the following matrix be a fundamen-
tal representation for e:

{ A Ay }
z b lpep

If |Az| =1 = |Ap] for all b € B, it follows that e is one-one and hence, as e
is idempotent, e = id4. Thus |A;| > 1 or |A| > 1 for some b € B.

On the other hand, corank(e) = |D| = 1 and if BUT is a basis for A,
then |T| = 2. The set A, U|Jycp Ap is a basis for A. Hence |A;[ < 2 or
|Ap| < 2 for some b € B.

Suppose first that |A;| = 2. Then the fundamental representation of e

has the form
[ {z,y} {b} }
€ —
x b lien

and so, by Lemma 3.8, V(e) = V(er).
Suppose now that there is a b € B such that |4, = 2, say |4, | = 2.
Then e has the fundamental representation

. {{f} {b1,y} {b}}
x by b lveB\{o1}
and so, by Lemma 3.9, V(e) = V(er).

1

(er). In
ICl =1
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Finally, suppose that Oe~! # {0}. Then e has a fundamental representa-

tion of the form
|: AO Ax Ab :|
e .
0 = b Jpen

Now Y = AgU A, UJpep Ap is a basis for A which contains BU{x}. As
corank (B U {z})) = 1 it follows that |Ap| = 1.

Thus 1 = |Ag| = |Az| = |4p| for all b € B, and hence, by Lemma 3.10,
V(e) = V(er).

This finishes the proof of Theorem 3.1.

4. 7|p = idg. We start with a definition. Let Sy = (Ep U G), where
Ey C E(End(A)). We say that R = {«o,a*} C End(A) is a regular set in S
if it has the following two properties:

(1) for some w € Sy we have awa™® = id 4;
(2) for some h € G we have a*fawa = a*awh.

Now we can state the main theorem in this section.

THEOREM 4.1. Let R = {a,a*} be a regular set in Sy = (Eo U G),
where Ey C E(End(A)). Let S = (So U R) and let T € Aut(S) be such that
7|G =idg. Then T =idg.

Proof. Since R is regular, there exists an element w € Sy such that
awa™® = id. The main tool in this proof will be the element a*awa € S.
Let ¢ = a®aw. Then

e? = a*awa*aw = a*(awa™)aw = o (idg)aw = a*aw = ¢.

This proves that ¢ is idempotent.

Observe that o must be a monomorphism since Ker(a) C Ker(awa™) =
Ker(id4). Since Ker(id4) is the identity relation so is Ker(«).

Now, for some h € G, we have ea = ch (since R is regular) so that
(ea)T = (eh)T. As ¢ is idempotent, by the main theorem of the previous
section, e7 = ¢; and by hypothesis hT = h. Therefore

(ea)T = (eh)T = e(ar) =ch =ca.
Let y € V(g). Since ¢ is idempotent, ye = y. Thus

y(at) = ye(ar) = yea = ya.

Hence, as « is injective, we can apply Lemma 3.4 of [3| to conclude that
ar = a.
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To prove that a*7 = o* we have the following chain of equalities:

of =a’idy

= ofawa”® (as awa™ =idy)

= (" aw)Ta” (as afaw = ¢ and eT = ¢)
= (a7)(aT1)(wr)a”

= (a"T)awa” (as aT = o and wT = W)
= (a*1)idg (as awa™ =idy)

= a1

The theorem is proved. m

5. The main result. The results of the previous two sections provide
the necessary background to prove the main result of this paper:

THEOREM 5.1. Let A be a strong independence algebra of infinite rank
with at most one constant. Let Sy = (G U Ey), where Ey C E(End(.A)), and
let S = (SoURy) with Ry € {0,{«, a*}} where {co,a*} is a regular set in Sy.
Then every ¢ € Aut(G) admits at most one lift, that is,

L) = [{¢ € Aut(S) [ ¢ls = ¢} < 1.

Proof. Let 1 € Aut(G) and suppose that ¢1,¢2 € L(1). Therefore
d1lc = ¥ = 2| so that T|g = (¢163")|c = idg and 7| € Aut(S).
The main theorem in Section 3 implies that er = e for all e € Ej (and all
7 € Aut(S) such that 7|¢ = idg), so that e¢; = eps. In the same way the
main theorem in Section 4 implies that ar = a for all a € Ry, and hence

a1 = agpy. We have proved that ¢ and ¢o coincide on a generating set of S
and hence ¢1 = ¢o. =

In [3] it was proved that there are some semigroups S such that G <
S < End(A) and |L(y))| > 1 for some 1 € Aut(G). But nothing was said
about End(.A) itself. Theorem 5.1 together with the main result of [2] gives
the following corollary.

COROLLARY 5.2. Let A be a strong independence algebra of infinite rank
with at most one constant. Let S = End(A). Then every ¢ € Aut(G) admits
at most one lift, that is,

L) = {¢ € Aut(S) | ¢[s = ¢} < 1.

Proof. We start by introducing two special endomorphisms. Let B be a
basis of A and let o € End(A) be such that a : B — Y is a one-one mapping
and |B| = |Y| = corank(«). Hence rank(a) = corank(a) = rank(A). Let
Y UW be a basis of A.
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Define ™! : Y — B such that for all za € Y we have (za)a™! = z.

Moreover, let
@ YUW B, yeYw—ya !, z€W—b,cB.

Thus a*|y = o~ ! and o* is onto.

As said before, we will use the same letter « to represent the mapping
a : B — Y and the unique morphism @ : (B) — (Y) that extends the
mapping a. A similar convention will be adopted for a~! and «o*. Moreover,
the letters B and Y are reserved for the independent sets related to «. The
letter W will represent a fixed set such that Y U W is a basis of A.

The main result in [2] states that

End(A) = (GU E(End(A)) U R),
where R = {«, a*}. Therefore, to prove the theorem, it remains to prove that
R = {o,a*} is aregular set in End(A)g = (GUE(End(A))). It is obvious that
aa® = id4. Since id4 € G, it follows that there exists w = id4 € End(A)g
such that awa™ = id 4. Finally, we have to prove that a*aa = a*ah for some
h € G. Let a*a = ¢ and recall that |[Ya| = |Y| = |B| and [Wa| = |W| = |B].
Let Z be a set such that YaUWa U Z is a basis for A. The mapping o*a«
is determined by the following composition of mappings:
YUW -B—-YUW —-YaUuWaUZ.

As [WaU Z| = |B| = |W| and |Ya| = |Y|, there is a bijection g : Yo U Wa
UZ — Y UW such that gly, = o ys and (WaUZ)g=W.

We claim that eag = ¢. In fact, let a € A. Then, since V(e) = (Y), we
have ae = t(y1,...,yn) for some term ¢ and y1,...,y, € Y. Hence

(a)eag =t(y1, ... yn)ag = t(y10, ..., yna)g = t(y109, . . ., ynrg)
=t(y1,. - un)  (as g, = 'lya)
= Qae€.

This proves that eag = ¢ and hence, for h = ¢~ € G, we have eav = ¢h as
required. Therefore R is a regular set in End(.A) and hence, by the previous

theorem,
L) = {¢ € Aut(5) [ ¢ls =v}[ < 1. =

Theorem 5.1 yields a description of Aut(S), for every semigroup S under
the hypothesis of the theorem, provided we know a description of Aut(G).
Since this is the case when A is a set or a vector space, we finish this paper
with two corollaries. We start by introducing some notation. Let S < T'(X).
Then the normalizer of S in Sym(X) is

Nym(x)(S) = {g € Sym(X) | g~'Sg = S}.
Let T be a semigroup, let S < T be a subsemigroup and H < T be a
group. For h € H, let 7" : § — T be the mapping defined by st = h~'sh
for all s € S. Now we can state the first corollary.



LIFTS FOR SEMIGROUPS OF ENDOMORPHISMS 53

COROLLARY 5.3. Let X be an infinite set. Let Sy = (Sym(X) U Ejp),
where Ey C E(T (X)), and let S = (Sop U Ry) with Ry € {0,{«,a*}} where
{a,a*} is a regular set in Sy. Then

Aut(S) = {r9] g € Sym(X)}.
In particular Aut(T(X)) = {79 | g € Sym(X)}.

Proof. 1t is well known (see [35]) that Aut(Sym(X)) is the group of all
mappings induced under conjugation by the permutations g € Sym(X), that
is, if ¢ € Aut(Sym(X)) then, for some g € Sym(X), ¢ = 79 : Sym(X) —
Sym(X), where a9 = g~ lag.

By Theorem 5.1, |L(79)| < 1 and it is obvious that |L(79)| = 1 if and only
if g € Nsym(x)(S)- Since Sym(X) < S, it follows that Ngy,(x)(S) = Sym(X)
and hence

Aut(S) ={r79:5 — S| g e Sym(X)}.
In particular Aut(7'(X)) = {79 : T(X) - T(X) | g € Sym(X)}. »

Before stating our final corollary, we introduce some notation and defini-
tions about vector spaces. Let V' be an infinite vector space (over a field F').

A bijection « of V is said to be semilinear if there is an automorphism « of
F such that for all a,b € V and A € F we have

(a+0b)y=(a)y+ (b)y and (Aa)y=A%(a).
The group of semilinear transformations is usually denoted by I'(V'). It is
well known (see [34]) that
Aut(Aut(V)) = {79 : Aut(V) — Aut(V) | g € I'(V) }.

Repeating the same arguments used in the proof of the previous corollary
we have the following.

COROLLARY 5.4. Let V be a vector space of infinite dimension over a
field F. Let Sy = (Aut(V) U Ey), where Ey C E(End(V)), and let S =
(So U Ry) with Ry € {0,{«,a*}} where {a,a*} is a regular set in Sy. Then

Aut(S) ={r9 | g€ (V) and g~ 'Sg = S}.
In particular Aut(End(V)) ={79 | g€ I'(V)}.

6. Problems. The previous sections suggest a number of problems that
we now state.

1. Given Sy = (G U Ep) classify all the regular sets in Sp, where A
is an independence algebra of infinite rank, G = Aut(A) and Ey C
E(End(A)).

2. Given a semigroup S such that S = (G U Ey U {a,a*}), where « is
injective, o* is onto, but {a, a*} is not regular, describe the lifts of
every 1 € Aut(G).
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. Given a semigroup of monomorphisms G < S < End(.A), describe the

lifts of every ¢ € Aut(G).

. Given a semigroup of epimorphisms G < S < End(A), describe the

lifts of every ¥ € Aut(G).

. Characterize the semigroups S such that Aut(A) < S < PEnd(A)

and S has the unique extension property.

. Let S be a semigroup such that Aut(A) < S < PEnd(.A). Describe

the group Aut(95).

The description of Aut(Aut(.A)) is an open problem. We conjecture that

for an independence algebra A of infinite rank,

Aut(Aut(A)) = {79 | g € WAut(A)}

where WAut(.A) is the group of weak automorphisms of A (see [18] and [36]).
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