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LIFTS FOR SEMIGROUPS OF ENDOMORPHISMSOF AN INDEPENDENCE ALGEBRABYJO�O ARAÚJO (Lisboa)Dedi
ated to the memory of Professor Kazimierz UrbanikAbstra
t. For a universal algebra A, let End(A) and Aut(A) denote, respe
tively,the endomorphism monoid and the automorphism group of A. Let S be a semigroupand let T be a 
hara
teristi
 subsemigroup of S. We say that φ ∈ Aut(S) is a lift for
ψ ∈ Aut(T ) if φ|T = ψ. For ψ ∈ Aut(T ) we denote by L(ψ) the set of lifts of ψ, that is,

L(ψ) = {φ ∈ Aut(S) | φ|T = ψ}.LetA be an independen
e algebra of in�nite rank and let S be a monoid of monomorphismssu
h that G = Aut(A) ≤ S ≤ End(A). It is obvious that G is 
hara
teristi
 in S.Fitzpatri
k and Symons proved that if A is a set (that is, an algebra without operations),then |L(φ)| = 1. The author proved in a previous paper that the analogue of this resultdoes not hold for all monoids of monomorphisms of an independen
e algebra. The aimof this paper is to prove that the analogue of the result above holds for semigroups S =
〈Aut(A) ∪ E ∪ R〉 ≤ End(A), where E is any set of idempotents and R is the empty setor a set 
ontaining a spe
ial monomorphism α and a spe
ial epimorphism α∗.1. Introdu
tion. We assume the reader to be familiar with both semi-group theory and universal algebra. We re
ommend as referen
es [22℄ and [29℄.Also we assume the reader to have a basi
 knowledge of the theory of in-dependen
e algebras. We re
ommend [5℄, [14℄, [15℄ and [19℄ as referen
es.Independen
e algebras were introdu
ed as v∗-algebras by Narkiewi
z [30℄(see also [31℄ and [32℄). For an ex
ellent survey paper on v∗-algebras seeUrbanik [41℄.These algebras appeared in Poland as a result of resear
h on di�erent no-tions of independen
e valid in any universal algebra. This resear
h, promptedby Mar
zewski [24℄, bene�ted from the 
ontributions of Mar
zewski himself(e.g., [25℄�[28℄), Narkiewi
z ([30℄�[32℄), Grätzer [20℄, Urbanik ([38℄�[41℄), et
.Su
h investigations led to many important results and to several questionsthat forty years later remain open. An ex
ellent a

ount and the main refer-en
e regarding all these investigations is Gªazek [16℄, a 
omprehensive survey2000 Mathemati
s Subje
t Classi�
ation: 08B20, 08A35, 20M10, 20M20.Key words and phrases: universal algebra, independen
e algebra.[39℄



40 J. ARAÚJO
paper (
ontaining the impressive number of more than eight hundred refer-en
es). But when speaking about v∗-algebras, the most notable a
hievementis due to Urbanik: a series of deep papers leading to the 
lassi�
ation of thesealgebras. For the full pi
ture see [41℄. (See also [9℄.)Semigroup theorists redis
overed v∗-algebras (giving them the name ofindependen
e algebras) as a tool to provide uni�ed proofs for results thatgraphi
ally hold for both sets and ve
tor spa
es, or more pre
isely, hold forthe endomorphism monoid of a set and for the endomorphism monoid of ave
tor spa
e. Sin
e the early 1990s, endomorphism monoids of independen
ealgebras, and related semigroups, have been extensively studied and thetopi
 
ontinues to re
eive a great deal of attention. From the point of viewof semigroups the pre-history of independen
e algebras might be in 1966,when Howie des
ribed the subsemigroup EX of T (X) generated by all thenon-identity idempotents [21℄. The 
orresponding result for End(V ), where
V is a �nite-dimensional ve
tor spa
e, was proved by Erdos the followingyear [11℄, but it was not until nearly twenty years later that Reynolds andSullivan [33℄ found the appropriate analogue in the in�nite-dimensional 
ase.Their work also un
overed a signi�
ant di�eren
e between the semigroups
EX and EV where X is an in�nite set, V is an in�nite-dimensional ve
torspa
e, and where for any algebra A we denote by EA the subsemigroupof End(A) generated by the non-identity idempotents. Sullivan surveyedthe parallels and distin
tions between T (X) and End(V ) in an in�uential
onferen
e talk in 1990 whi
h was published in [37℄.Fountain and Lewin, having seen a preliminary version of Gould's pa-per [19℄, realized that independen
e algebras provided a suitable 
on
eptualframework for unifying those results on produ
ts of idempotents whi
h holdfor both T (X) and End(V ). They des
ribed EA for an independen
e algebraof �nite rank in [14℄. (For a dire
t proof see [4℄.) After that, independen
ealgebras have been very useful to(1) export results from semigroup theory to linear algebra (the other way,unfortunately, proved to be less fruitful);(2) give uni�ed proofs for results that hold for both sets and ve
torspa
es;(3) provide explanations for why sometimes ve
tor spa
es and sets behavedi�erently.Among others, the papers [7℄ and [8℄ are examples of (1); the papers [3℄and [13℄ are examples of (3); the 
urrent paper is an example of (1) and (2).The �rst step in the de�nition of independen
e algebras is the introdu
-tion of a notion of independen
e valid for universal algebras. Let A be analgebra with universe A and let X be a set 
ontained in A. Then we de-note by 〈X〉 the algebra generated by X. Now, a subset X of an algebra is
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said to be independent if X = ∅ or if, for every element x ∈ X, we have
x 6∈ 〈X \ {x}〉; a set is dependent if it is not independent.Lemma 1.1. For an algebra A, the following 
onditions are equivalent :(1) for every subset X of A and all elements u, v of A, if u ∈ 〈X ∪ {v}〉and u 6∈ 〈X〉, then v ∈ 〈X ∪ {u}〉;(2) for every subset X of A and every element u ∈ A, if X is independentand u 6∈ 〈X〉, then X ∪ {u} is independent ;(3) for every subset X of A, if Y is a maximal independent subset of X,then 〈X〉 = 〈Y 〉;(4) for subsets X,Y of A with Y ⊆ X, if Y is independent , then there isan independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.Proof. See [29, p. 50, Exer
ise 6℄.An algebra A is said to have the ex
hange property, or to satisfy [EP℄, ifit satis�es the equivalent 
onditions of Lemma 1.1. A basis for A is a subsetof A whi
h generates A and is independent. It is 
lear from Lemma 1.1 thatany algebra with [EP℄ has a basis. Furthermore, for su
h an algebra, basesmay be 
hara
terized as minimal generating sets or maximal independentsets, and all bases for A have the same 
ardinality [19, Proposition 3.3℄.This 
ardinal is 
alled the rank of A and is written rank(A).We say that A is an independen
e algebra if A satis�es [EP℄ and thefollowing property:[F℄ for every basis X of A and mapping f : X → A, there exists amorphism F : 〈X〉 → A extending f .Suppose a is a partial endomorphism of A. We denote the domain of aby ∆a and the image of a by ∇a. Observe that both ∆a and ∇a are subalge-bras of A. If a ∈ End(A), we denote by rank(a) the rank of the algebra ∇a.Re
all that given a subalgebra B ≤ A, and a basis B for B, if B ∪ X and
B ∪ Y are bases of A, then |X| = |Y |. This 
ardinal is 
alled the 
orank of
B and is denoted by corank(B). This notation will be extended to endomor-phisms as above: for a ∈ End(A), we write corank(a) to denote the 
orankof ∇a.Let A be an independen
e algebra and let X,Y be two disjoint andindependent subsets of A. Then A is said to be strong if 〈X〉 ∩ 〈Y 〉 = Conimplies that X∪Y is an independent set (where Con denotes the 
onstants ofthe algebra A). Clearly, any subalgebra of a strong independen
e algebra isalso a strong independen
e algebra. Parti
ular 
ases of strong independen
ealgebras are sets and ve
tor spa
es.Let f be an endomorphism of an independen
e algebra A. Then B is apreimage basis for f if Bf is a basis for the image of f and f |B is inje
tive.(We observe that mappings a
t on the right; we write xf rather than f(x).)
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If A is a universal algebra, denote by End(A) and Aut(A), respe
tively,the endomorphism monoid and the automorphism group of A. By PEnd(A)we denote the monoid of partial endomorphisms of A.When A = X, where X is a set (that is, when the algebra has no op-erations), then End(A) = T (X) and Aut(A) = Sym(X), respe
tively, themonoid of all transformations on X and the symmetri
 group on X.Let S be a semigroup and let T be a subsemigroup of S. We say that Tis 
hara
teristi
 in S if, for every φ ∈ Aut(S), we have φ|T ∈ Aut(T ), thatis, if the restri
tion to T of every automorphism of S is an automorphismof T . Now suppose that T is a 
hara
teristi
 subsemigroup of S. We saythat an automorphism φ ∈ Aut(S) is a lift for ψ ∈ Aut(T ) if φ|T = ψ. For

φ ∈ Aut(T ) we denote by L(φ) the set of lifts of φ, that is,
L(φ) = {ψ ∈ Aut(S) | ψ|T = φ}.It is well known that lifts play a 
ru
ial role in the des
ription of theautomorphism group of a semigroup. The general s
heme goes as follows: ifwe want to des
ribe the automorphism group of S, a good idea is to try to�nd a subsemigroup T ≤ S su
h that:(1) T is 
hara
teristi
 in S;(2) we have (or 
an �nd) a des
ription of Aut(T ), the automorphismgroup of T ;(3) for every g ∈ Aut(T ) we 
an des
ribe L(g).Sin
e (1) implies that Aut(S) =

⋃

g∈Aut(T ) L(g), from (3) we get a de-s
ription of Aut(S). (Usually it is ne
essary to have (2) in order to �nd (3).)For example, in [23℄ Mal'tsev des
ribed Aut(T (X)). He 
onsidered thesemigroup
T1(X) = {f ∈ T (X) | |(X)f | = 1},proved that T1(X) is 
hara
teristi
 in T (X), des
ribed the automorphismsof T1(X) (whi
h are the mappings τ g : a 7→ g−1ag, where g ∈ Sym(X)and a ∈ T1(X)) and proved that |L(τ g)| = 1 for all g ∈ Aut(T1(X)). Thus

Aut(T (X)) = Inn(T (X)), the inner automorphisms, that is, the automor-phisms indu
ed under 
onjugation by the elements g ∈ Sym(X).Another example: in [12℄ Fitzpatri
k and Symons 
onsidered semigroups
S of inje
tive mappings su
h that Sym(X) ≤ S ≤ T (X) (where X is anin�nite set; see also [10℄). In the most deli
ate part of their proof they showedthat, given an h ∈ Aut(Sym(X)), we have |L(h)| = 1. Thus, sin
e Sym(X)is 
hara
teristi
 in S (and all automorphisms of Sym(X) are inner), we have
Aut(S) =

⋃

τg∈Aut(Sym(X)) L(τ g) and hen
e for every semigroup S of inje
tivemappings su
h that Sym(X) ≤ S ≤ T (X) we have
Aut(S) = {τ g : s 7→ g−1sg | g ∈ Sym(X)}.
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In [17℄ Gluskin used the same general s
heme to des
ribe the automor-phism group of End(V ), where V is a ve
tor spa
e, thus proving the ve
torspa
e analogue of the result proved by Mal'tsev for sets, as referred to above.The linear analogue of the result of Fitzpatri
k and Symons quoted abovewould read as follows: given a ve
tor spa
e V of in�nite dimension and asemigroup S of inje
tive linear transformations su
h that Aut(V ) ≤ S ≤
End(V ), prove that for all h ∈ Aut(Aut(V )) we have

|L(h)| = |{g ∈ Aut(S) | g|Aut(Aut(V )) = h}| = 1.In [3℄ the author proved that this is not true and then 
hara
terized theindependen
e algebras in whi
h the analogue of this result holds. This was anegative result and the best that 
ould be done was to des
ribe the boundsof that negative answer.The aim of this paper is to provide positive answers for many 
lassesof semigroups, thus providing the des
ription of the automorphisms of thosesemigroups, modulo a des
ription of Aut(Aut(A)), an open problem in grouptheory. More pre
isely, we want to identify large 
lasses of semigroups S, with
Aut(V ) ≤ S ≤ End(V ), in whi
h an analogue of the result of Fitzpatri
k andSymons referred to above holds. The 
ornerstone of the results in this paperare the so-
alled fundamental representations of endomorphisms (introdu
edin [1℄ and [6℄) and two endomorphisms α and α∗ introdu
ed in [2℄. These twoendomorphisms have the property that 〈Aut(A) ∪ E(End(A)) ∪ {α, α∗}〉 =
End(A) (the symbol E(End(A)) denotes the set of idempotents of End(A)).In Se
tion 2 we introdu
e some notation and basi
 results. The followingtwo se
tions 
ontain te
hni
al results. In Se
tion 5 we state and prove ourmain result. The paper ends with a se
tion of proposed problems.2. Preliminaries. We start by introdu
ing some notation, de�nitionsand 
onventions. Let A be an algebra. To simplify the notation let G =
Aut(A) and denote by Con the 
onstants of A. In this paper we assume that
Con ⊆ {0}, that is, Con is empty or has at most one element, denoted by 0.Let B be a basis for an independen
e algebra A and let α : B → Abe a mapping. Sin
e there exists one and only one morphism α : A → Aextending α (that is, su
h that α|B = α) we will use the same letter α todenote the mapping and the endomorphism.For a semigroup S we denote by E(S) the set of idempotents of S, thatis, the set of elements s ∈ S su
h that s2 = s.We introdu
e some auxiliary results about strong independen
e algebras.Lemma 2.1. Let A be a strong independen
e algebra. Let B and C be sub-algebras of A. If B is a basis for B ∩ C, B ∪C is a basis for B and B ∪D isa basis for C, then B∪C ∪D is a basis for the algebra generated by B and C.Proof. See [15, Lemma 1.6℄.
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Definition 2.2. Let I be a set and, for a symbol 0 6∈ I, let I0 = I ∪ {0}.Moreover, let A be a strong independen
e algebra and let (Ai)i∈I be a par-tition of a basis of A. Consider the endomorphism α ∈ End(A) de�ned by

Aiα = {ai} for i ∈ I, where {ai : i ∈ I} is an independent set (and hen
e abasis for ∇(α)), and let A0α = {0}. An endomorphism α ∈ End(A) underthese 
onditions is represented by the matrix
[

A0 Ai

0 ai

]

i∈I

.This matrix is said to be a fundamental representation of α. The set A0 inthe fundamental representation is said to be the 
onstant 
omponent.If the algebra has no 
onstants, then the 
onstant 
omponent is the emptyset and then the endomorphism 
an be de�ned by
[

Ai

ai

]

i∈I

.The importan
e of this 
on
ept lies in the following fa
t:Theorem 2.3. Every endomorphism of a strong independen
e algebraadmits a fundamental representation.Proof. This follows from [15, Lemma 2.8℄ and the observations followingCorollary 2.10 of [15℄. See also [1℄ and [6℄.We observe that if e ∈ E(End(A)), then e has a fundamental represen-tation
[

A0 Ai

0 ai

]

i∈I

,where ai ∈ Ai for all i ∈ I. Moreover, if C is a basis for ∇e and C0 = C∪{0},then there is a basis of A, say B =
⋃

c∈C0
Ac, su
h that Ace = c for all c ∈ C0.Thus, e 
an be represented as (and is de�ned by)

[

Ac

c

]

c∈C0

.Let X 6= ∅ be a subset of A × A. Then the 
ongruen
e generated by Xwill be denoted by Θ(X).Lemma 2.4. Let e be an idempotent endomorphism with the fundamentalrepresentation
[

Ac

c

]

c∈C0

,where c ∈ Ac for all c ∈ C. Moreover , let X =
⋃

c∈C0
(Ac ×Ac). Then Θ(X)is equal to Ker(e).
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Proof. Clearly, (x, xe) belongs to X for all x ∈ B. Thus for every term tand x1, . . . , xn ∈ B, we have (x1, x1e) ∈ X, . . . , (xn, xne) ∈ X and hen
e
(t(x1, . . . , xn), t(x1e, . . . , xne)) ∈ Θ(X).Therefore, for all elements u = t(x1, . . . , xn) ∈ A, we have (u, ue) ∈ Θ(X).Now, let (u, v) ∈ Ker(e). On the one hand, (u, ue) and (ve, v) both belongto Θ(X). On the other hand, (u, v) ∈ Ker(e) implies that ue = ve. Bytransitivity, (u, v) belongs to Θ(X). This proves that Ker(e) is 
ontained in

Θ(X). As the 
onverse is obvious, the lemma follows.Throughout this paper, A always denotes a strong independen
e algebraof in�nite rank with universe A (re
all that Con ⊆ {0}), and S denotesa semigroup of endomorphisms of A su
h that G = Aut(A) ≤ S ≤ End(A).In the next two se
tions we prove auxiliary te
hni
al results.3. eτ = e. The aim of this se
tion is the proof of the following theorem.Theorem 3.1. Let A be a strong independen
e algebra with at most one
onstant , let G ≤ S ≤ End(A) and let τ ∈ Aut(S) be su
h that τ |G = idG.Then eτ = e for all e ∈ E(S).This result will be proved in a series of lemmas. We start by introdu
ingsome notation. Let X be a basis for A and let x, y ∈ X. Then we denote by
(xy)X the automorphism ofA that is indu
ed by the transposition (xy)X , thepermutation of X that maps x to y, maps y to x and �xes all the remainingelements of X. We �rst prove the following lemma.Lemma 3.2. Let A be a strong independen
e algebra, S be a semigroupsu
h that G ≤ S ≤ End(A) and let e ∈ E(S). Moreover , let τ ∈ Aut(S) besu
h that τ |G = idG. Then Ker(eτ) = Ker(e).Proof. Let

[

Ac

c

]

c∈C0be a fundamental representation for e and let B =
⋃

c∈C0
Ac. Let c ∈ C0and suppose that |Ac| > 1. Then for all x, y ∈ Ac, we have (xy)Be = e andhen
e (xy)B(eτ) = eτ . Thus x(eτ) = y(eτ) and so (x, y) ∈ Ker(eτ). We haveproved that Ac × Ac ⊆ Ker(eτ). If, for some c ∈ C0, we have |Ac| = 1, say

Ac = {x}, then Ac ×Ac = {(x, x)} ⊆ Ker(eτ). Thus for all c ∈ C0 we have
Ac ×Ac ⊆ Ker(eτ).Let X =

⋃

c∈C0
(Ac ×Ac). As X ⊆ Ker(eτ) it follows that Θ(X) ⊆ Ker(eτ).Then, by Lemma 2.4, Ker(e) = Θ(X) ⊆ Ker(eτ). By symmetry, Ker(eτ) ⊆

Ker(e) and the lemma follows.
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The following lemmas show that ∇(e) = ∇(eτ). Observe that this issu�
ient for proving the main theorem of this se
tion. In fa
t, if ∇(e) =

∇(eτ) then, as Ker(e) = Ker(eτ), the idempotent endomorphisms e and eτare HEnd(A)-related and hen
e e = eτ (see [22, Theorem 2.2.5℄).Lemma 3.3. Let S be a semigroup su
h that G ≤ S ≤ End(A) and let
e ∈ E(S). Moreover , let τ ∈ Aut(S) be su
h that τ |G = idG. Then ∇(e)
annot be stri
tly 
ontained in ∇(eτ).Proof. Suppose that ∇(eτ) = A. Then eτ is a surje
tive idempotent en-domorphism and hen
e eτ = idA. This 
omes from the fa
t that eτ is idem-potent and hen
e all the elements in ∇(eτ) are �xed points. As ∇(eτ) = Ait follows that a(eτ) = a for all a ∈ A. However, if eτ = idA = idA τ , itfollows that e = idA and hen
e ∇(e) = ∇(eτ).Suppose now that ∇(e) ⊆ ∇(eτ) and ∇(eτ) is stri
tly 
ontained in A.Moreover, let B be a basis for ∇(e), let C be su
h that B ∪ C is a basisfor ∇(eτ), and let D be su
h that B ∪ C ∪ D is a basis for A. If |C| ≥ 1then there exists g ∈ G su
h that g|B = idB and g|C∪D has no �xed points.(This is possible be
ause |C ∪ D| > 1, as both C and D are non-empty.)Then eg = e and hen
e (eτ)g = eτ . However, for c ∈ C, we have c(eτ) = c,as c ∈ ∇(eτ), but cg 6= c. Thus, c(eτ)g 6= c(eτ). This 
ontradi
tion followsfrom the supposition that |C| ≥ 1. The lemma is proved.Corollary 3.4. Let S be a semigroup su
h that G ≤ S ≤ End(A) andlet e ∈ E(S). Moreover , let τ ∈ Aut(S) be su
h that τ |G = idG. Then ∇(eτ)
annot be stri
tly 
ontained in ∇(e).Proof. Certainly eτ ∈ E(S) and τ−1 ∈ Aut(S) is su
h that τ−1|G = idG.Hen
e ∇(eτ) 
annot be stri
tly 
ontained in ∇((eτ)τ−1), that is, 
annot bestri
tly 
ontained in ∇(e).Lemma 3.5. Let S be a semigroup su
h that G ≤ S ≤ End(A) and let
e ∈ E(S). Moreover , let τ ∈Aut(S) be su
h that τ |G = idG. If corank(e)> 1,then ∇(e) = ∇(eτ).Proof. Consider the following sets:1. B, a basis for ∇(e) ∩∇(eτ);2. B ∪ C, a basis for ∇(e);3. B ∪D, a basis for ∇(eτ);4. B ∪ C ∪D ∪W , a basis for A.Suppose that D 6= ∅, say y ∈ D. Now let g ∈ G be su
h that g|B∪C =
idB∪C and (D ∪W )g = D ∪W , with yg = z 6= y. This is possible be
ause
corank(e) > 1 implies |D ∪W | > 1. We have eg = e and hen
e (eτ)g = eτ .But for w ∈ A su
h that w(eτ) = y, we have w(eτ)g = yg = z 6= y,a 
ontradi
tion. Thus D must be empty. It follows that C = ∅ as well. In fa
t,
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if C 6= ∅, then ∇(eτ) = 〈B〉 is stri
tly 
ontained in ∇(e) = 〈B ∪ C〉, whi
his impossible by Corollary 3.4. Hen
e, D = ∅ = C and ∇(e) = 〈B〉 = ∇(eτ)and the lemma follows.As noted before Lemma 3.3 we have the following 
orollary.Corollary 3.6. Let S be a semigroup su
h that G ≤ S ≤ End(A)and let e ∈ E(S). Moreover , let τ ∈ Aut(S) be su
h that τ |G = idG. If
corank(e) > 1, then e = eτ .Corollary 3.7. Let S be a semigroup su
h that G ≤ S ≤ End(A)and let e ∈ E(S). Moreover , let τ ∈ Aut(S) be su
h that τ |G = idG. If
∇(e) > Con, then ∇(eτ) ∩∇(e) 6= Con.Proof. By the previous result, if corank(e) > 1 then e = eτ and hen
e
∇(e) = ∇(eτ).Suppose now that corank(e) = 1 and∇(e)∩∇(eτ) = Con. As A is strong,if B is a basis for ∇(e) and C is a basis for ∇(eτ), then B∪C is independent,and hen
e there is a set W su
h that B ∪ C ∪W is a basis for A. However,
corank(e) = 1 and hen
e |C ∪ W | = 1. As we suppose C 6= ∅, we have
W = ∅ and so B ∪ C is a basis for A. This implies corank(eτ) = |B| > 1,as |B| = rank(A), whi
h is supposed to be in�nite. This 
ontradi
ts theprevious 
orollary as corank(eτ) > 1 implies eτ = (eτ)τ−1 = e.Now let e ∈ E(S) be su
h that corank(e) = 1 and b1 ∈ ∇(e) ∩ ∇(eτ).Moreover, let B∪{x} be a basis for ∇(e) su
h that b1 ∈ B. As corank(e) = 1there is an element y ∈ A su
h that B ∪ {x} ∪ {y} is a basis for A. Underthese 
onditions we have the following three lemmas.Lemma 3.8. Suppose that e is de�ned by

[

{x, y} {b}

x b

]

b∈B

.Then ∇(e) = ∇(eτ).Proof. For an element b1 ∈ B, 
onsider an automorphism g ∈ G indu
edby the permutation (xyb1)Y ∈ Sym(Y ), where Y = B ∪ {x, y}. Clearly, egeis de�ned by
[

{x, y, b1} {b}

x b

]

b∈B\{b1}

.As ege is idempotent and corank(ege) = 2, Corollary 3.6 implies (ege)τ =
ege. Thus ∇(ege) =∇((ege)τ) =∇((eτ)g(eτ))⊆∇(eτ). However, (B \ {b1})
∪ {x} = ∇(ege) and so b1 ∈ ∇(eτ), so that B ∪ {x} ⊆ ∇(eτ), and hen
e
∇(e) ⊆ ∇(eτ). Hen
e, by Lemma 3.3, we have ∇(e) = ∇(eτ).
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Lemma 3.9. Suppose that e is de�ned by

[

{x} {b1, y} {b}

x b1 b

]

b∈B\{b1}

.Then ∇(e) = ∇(eτ).Proof. Let h ∈ G be the automorphism indu
ed by (xb1)Y , where Y =
B ∪ {x, y}. Then (x)heh = x, (y)heh = x, (b1)heh = b1 and (b)heh = bfor the remaining elements of B. Let g ∈ G be the automorphism indu
edby (yb1)Y ∈ Sym(Y ) and let heh = eh. Then (x)ehg = x, (y)ehg = x,
(b1)e

hg = y and (b)ehg = b for the remaining b ∈ B. Thus ehg is de�ned by
[

{x, y} {b1} {b}

x y b

]

b∈B\{b1}and so ehgehge is de�ned by
[

{x, y, b1} {b}

x b

]

b∈B\{b1}

.As corank(ehgehge) = 2 and ehgehge is idempotent, it follows that (ehgehge)τ
= ehgehge. Hen
e

∇(ehgehge) = ∇((ehgehge)τ) = ∇((ehτ)gehg(eτ)) ⊆ ∇(eτ).Also b1 ∈ ∇(eτ) and so B ∪ {x} ⊆ ∇(eτ). Thus ∇(e) ⊆ ∇(eτ). It followsfrom Lemma 3.3 that ∇(e) = ∇(eτ).Lemma 3.10. Suppose that e is de�ned by
[

{y} {x} {b1} {b}

0 x b1 b

]

b∈B\{b1}

.Then ∇(e) = ∇(eτ).Proof. Let Y = B ∪ {x, y} and, for z ∈ (B ∪ {x}) \ {b1}, let gz ∈ G bethe automorphism indu
ed by (b1z)Y . Then gzegz = e sin
e
ygzegz = yegz = 0gz = 0 = ye,

b1gzegz = zegz = zgz = b1 = b1e,

zgzegz = b1egz = b1gz = z = ze,

bgzegz = b = be for the remaining b ∈ B.Now, gzegz = e implies gz(eτ)gz = eτ and so
z(eτ) = (zgz)(eτ)gz = b1(eτ)gz

= b1gz (as b1 ∈ ∇(eτ))
= z.
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Thus z ∈ ∇(eτ) for all z ∈ (B ∪ {x}) \ {b1} and, as b1 ∈ ∇(eτ), we have
B ∪ {x} ⊆ ∇(eτ). Hen
e ∇(e) ⊆ ∇(eτ) and it follows from Lemma 3.3 that
∇(e) = ∇(eτ).We now 
on
lude the proof of Theorem 3.1. Let S be a semigroup su
hthat G ≤ S ≤ End(A) and e ∈ E(S) be an idempotent endomorphism su
hthat corank(e) = 1. Moreover, let τ ∈ Aut(S) be su
h that τ |G = idG.If corank(eτ) > 1, then it follows from Corollary 3.6 that eτ = (eτ)τ−1

= e. Thus, we 
an assume that corank(e) = 1 and that corank(eτ) = 1.Re
all the following sets de�ned in Lemma 3.5.1. B is a basis for ∇(e) ∩∇(eτ);2. B ∪ C is a basis for ∇(e);3. B ∪D is a basis for ∇(eτ);4. B ∪ C ∪D ∪W is a basis for A.If D = ∅, then ∇(ατ) = 〈B〉 ⊆ ∇(e). If C = ∅ then ∇(e) ⊆ ∇(eτ). Ineither 
ase, ∇(e) = ∇(eτ) by Lemma 3.3. Thus W = ∅ and |D| = |C| = 1sin
e corank(e) = corank(eτ) = 1.Suppose now that W is empty. Then, as |D ∪W | = 1, it follows that
|D| = 1. By symmetry, we have |C| = 1, say C = {x}. Thus, B ∪ {x} is abasis for ∇(e). Let λ = rank(A) and B = {bi | i ∈ I}.First suppose that 0e−1 = ∅ and let the following matrix be a fundamen-tal representation for e:

[

Ax Ab

x b

]

b∈B

.If |Ax| = 1 = |Ab| for all b ∈ B, it follows that e is one-one and hen
e, as eis idempotent, e = idA. Thus |Ax| > 1 or |Ab| > 1 for some b ∈ B.On the other hand, corank(e) = |D| = 1 and if B ∪ T is a basis for A,then |T | = 2. The set Ax ∪
⋃

b∈B Ab is a basis for A. Hen
e |Ax| ≤ 2 or
|Ab| ≤ 2 for some b ∈ B.Suppose �rst that |Ax| = 2. Then the fundamental representation of ehas the form

e↔

[

{x, y} {b}

x b

]

b∈Band so, by Lemma 3.8, ∇(e) = ∇(eτ).Suppose now that there is a b ∈ B su
h that |Ab| = 2, say |Ab1 | = 2.Then e has the fundamental representation
e↔

[

{x} {b1, y} {b}

x b1 b

]

b∈B\{b1}and so, by Lemma 3.9, ∇(e) = ∇(eτ).
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Finally, suppose that 0e−1 6= {0}. Then e has a fundamental representa-tion of the form

e↔

[

A0 Ax Ab

0 x b

]

b∈B

.

Now Y = A0 ∪Ax ∪
⋃

b∈B Ab is a basis for A whi
h 
ontains B ∪{x}. As
corank 〈B ∪ {x}〉) = 1 it follows that |A0| = 1.Thus 1 = |A0| = |Ax| = |Ab| for all b ∈ B, and hen
e, by Lemma 3.10,
∇(e) = ∇(eτ).This �nishes the proof of Theorem 3.1.4. τ |R = idR. We start with a de�nition. Let S0 = 〈E0 ∪ G〉, where
E0 ⊆ E(End(A)). We say that R = {α, α∗} ⊆ End(A) is a regular set in S0if it has the following two properties:(1) for some ω ∈ S0 we have αωα∗ = idA;(2) for some h ∈ G we have α∗αωα = α∗αωh.Now we 
an state the main theorem in this se
tion.Theorem 4.1. Let R = {α, α∗} be a regular set in S0 = 〈E0 ∪ G〉,where E0 ⊆ E(End(A)). Let S = 〈S0 ∪ R〉 and let τ ∈ Aut(S) be su
h that
τ |G = idG. Then τ = idS.Proof. Sin
e R is regular, there exists an element ω ∈ S0 su
h that
αωα∗ = idA. The main tool in this proof will be the element α∗αωα ∈ S.Let ε = α∗αω. Then

ε2 = α∗αωα∗αω = α∗(αωα∗)αω = α∗(idA)αω = α∗αω = ε.This proves that ε is idempotent.Observe that α must be a monomorphism sin
e Ker(α) ⊆ Ker(αωα∗) =
Ker(idA). Sin
e Ker(idA) is the identity relation so is Ker(α).Now, for some h ∈ G, we have εα = εh (sin
e R is regular) so that
(εα)τ = (εh)τ . As ε is idempotent, by the main theorem of the previousse
tion, ετ = ε; and by hypothesis hτ = h. Therefore

(εα)τ = (εh)τ ⇒ ε(ατ) = εh = εα.Let y ∈ ∇(ε). Sin
e ε is idempotent, yε = y. Thus
y(ατ) = yε(ατ) = yεα = yα.Hen
e, as α is inje
tive, we 
an apply Lemma 3.4 of [3℄ to 
on
lude that

ατ = α.
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To prove that α∗τ = α∗ we have the following 
hain of equalities:
α∗ = α∗ idA

= α∗αωα∗ (as αωα∗ = idA)

= (α∗αω)τα∗ (as α∗αω = ε and ετ = ε)

= (α∗τ)(ατ)(ωτ)α∗

= (α∗τ)αωα∗ (as ατ = α and ωτ = ω)

= (α∗τ) idA (as αωα∗ = idA)

= α∗τ.The theorem is proved.5. The main result. The results of the previous two se
tions providethe ne
essary ba
kground to prove the main result of this paper:Theorem 5.1. Let A be a strong independen
e algebra of in�nite rankwith at most one 
onstant. Let S0 = 〈G ∪E0〉, where E0 ⊆ E(End(A)), andlet S = 〈S0∪R0〉 with R0 ∈ {∅, {α, α∗}} where {α, α∗} is a regular set in S0.Then every ψ ∈ Aut(G) admits at most one lift , that is,
|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Proof. Let ψ ∈ Aut(G) and suppose that φ1, φ2 ∈ L(ψ). Therefore

φ1|G = ψ = φ2|G so that τ |G = (φ1φ
−1
2 )|G = idG and τ |G ∈ Aut(S).The main theorem in Se
tion 3 implies that eτ = e for all e ∈ E0 (and all

τ ∈ Aut(S) su
h that τ |G = idG), so that eφ1 = eφ2. In the same way themain theorem in Se
tion 4 implies that aτ = a for all a ∈ R0, and hen
e
aφ1 = aφ2. We have proved that φ1 and φ2 
oin
ide on a generating set of Sand hen
e φ1 = φ2.In [3℄ it was proved that there are some semigroups S su
h that G ≤
S ≤ End(A) and |L(ψ)| ≥ 1 for some ψ ∈ Aut(G). But nothing was saidabout End(A) itself. Theorem 5.1 together with the main result of [2℄ givesthe following 
orollary.Corollary 5.2. Let A be a strong independen
e algebra of in�nite rankwith at most one 
onstant. Let S = End(A). Then every ψ ∈ Aut(G) admitsat most one lift , that is,

|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Proof. We start by introdu
ing two spe
ial endomorphisms. Let B be abasis of A and let α ∈ End(A) be su
h that α : B → Y is a one-one mappingand |B| = |Y | = corank(α). Hen
e rank(α) = corank(α) = rank(A). Let
Y ∪W be a basis of A.
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De�ne α−1 : Y → B su
h that for all xα ∈ Y we have (xα)α−1 = x.Moreover, let

α∗ : Y ∪W → B, y ∈ Y 7→ yα−1, x ∈W 7→ bx ∈ B.Thus α∗|Y = α−1 and α∗ is onto.As said before, we will use the same letter α to represent the mapping
α : B → Y and the unique morphism α : 〈B〉 → 〈Y 〉 that extends themapping α. A similar 
onvention will be adopted for α−1 and α∗. Moreover,the letters B and Y are reserved for the independent sets related to α. Theletter W will represent a �xed set su
h that Y ∪W is a basis of A.The main result in [2℄ states that

End(A) = 〈G ∪ E(End(A)) ∪R〉,where R = {α, α∗}. Therefore, to prove the theorem, it remains to prove that
R = {α, α∗} is a regular set in End(A)0 = 〈G∪E(End(A))〉. It is obvious that
αα∗ = idA. Sin
e idA ∈ G, it follows that there exists ω = idA ∈ End(A)0su
h that αωα∗ = idA. Finally, we have to prove that α∗αα = α∗αh for some
h ∈ G. Let α∗α = ε and re
all that |Y α| = |Y | = |B| and |Wα| = |W | = |B|.Let Z be a set su
h that Y α∪Wα∪Z is a basis for A. The mapping α∗ααis determined by the following 
omposition of mappings:

Y ∪W → B → Y ∪W → Y α ∪Wα ∪ Z.As |Wα ∪ Z| = |B| = |W | and |Y α| = |Y |, there is a bije
tion g : Y α ∪Wα

∪ Z → Y ∪W su
h that g|Y α = α−1|Y α and (Wα ∪ Z)g = W .We 
laim that εαg = ε. In fa
t, let a ∈ A. Then, sin
e ∇(ε) = 〈Y 〉, wehave aε = t(y1, . . . , yn) for some term t and y1, . . . , yn ∈ Y . Hen
e
(a)εαg = t(y1, . . . , yn)αg = t(y1α, . . . , ynα)g = t(y1αg, . . . , ynαg)

= t(y1, . . . , yn) (as g|Y α
= α−1|Y α)

= aε.This proves that εαg = ε and hen
e, for h = g−1 ∈ G, we have εα = εh asrequired. Therefore R is a regular set in End(A)0 and hen
e, by the previoustheorem,
|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Theorem 5.1 yields a des
ription of Aut(S), for every semigroup S underthe hypothesis of the theorem, provided we know a des
ription of Aut(G).Sin
e this is the 
ase when A is a set or a ve
tor spa
e, we �nish this paperwith two 
orollaries. We start by introdu
ing some notation. Let S ≤ T (X).Then the normalizer of S in Sym(X) is
NSym(X)(S) = {g ∈ Sym(X) | g−1Sg = S}.Let T be a semigroup, let S ≤ T be a subsemigroup and H ≤ T be agroup. For h ∈ H, let τh : S → T be the mapping de�ned by sτh = h−1shfor all s ∈ S. Now we 
an state the �rst 
orollary.
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Corollary 5.3. Let X be an in�nite set. Let S0 = 〈Sym(X) ∪ E0〉,where E0 ⊆ E(T (X)), and let S = 〈S0 ∪ R0〉 with R0 ∈ {∅, {α, α∗}} where
{α, α∗} is a regular set in S0. Then

Aut(S) = {τ g | g ∈ Sym(X)}.In parti
ular Aut(T (X)) = {τ g | g ∈ Sym(X)}.Proof. It is well known (see [35℄) that Aut(Sym(X)) is the group of allmappings indu
ed under 
onjugation by the permutations g ∈ Sym(X), thatis, if φ ∈ Aut(Sym(X)) then, for some g ∈ Sym(X), φ = τ g : Sym(X) →
Sym(X), where aτ g = g−1ag.By Theorem 5.1, |L(τ g)| ≤ 1 and it is obvious that |L(τ g)| = 1 if and onlyif g ∈ NSym(X)(S). Sin
e Sym(X) ≤ S, it follows thatNSym(X)(S) = Sym(X)and hen
e

Aut(S) = {τ g : S → S | g ∈ Sym(X)}.In parti
ular Aut(T (X)) = {τ g : T (X) → T (X) | g ∈ Sym(X)}.Before stating our �nal 
orollary, we introdu
e some notation and de�ni-tions about ve
tor spa
es. Let V be an in�nite ve
tor spa
e (over a �eld F ).A bije
tion γ of V is said to be semilinear if there is an automorphism α of
F su
h that for all a, b ∈ V and λ ∈ F we have

(a+ b)γ = (a)γ + (b)γ and (λa)γ = λα(aγ).The group of semilinear transformations is usually denoted by Γ (V ). It iswell known (see [34℄) that
Aut(Aut(V )) = {τ g : Aut(V ) → Aut(V ) | g ∈ Γ (V )}.Repeating the same arguments used in the proof of the previous 
orollarywe have the following.Corollary 5.4. Let V be a ve
tor spa
e of in�nite dimension over a�eld F . Let S0 = 〈Aut(V ) ∪ E0〉, where E0 ⊆ E(End(V )), and let S =

〈S0 ∪R0〉 with R0 ∈ {∅, {α, α∗}} where {α, α∗} is a regular set in S0. Then
Aut(S) = {τ g | g ∈ Γ (V ) and g−1Sg = S}.In parti
ular Aut(End(V )) = {τ g | g ∈ Γ (V )}.6. Problems. The previous se
tions suggest a number of problems thatwe now state.1. Given S0 = 〈G ∪ E0〉 
lassify all the regular sets in S0, where Ais an independen
e algebra of in�nite rank, G = Aut(A) and E0 ⊆

E(End(A)).2. Given a semigroup S su
h that S = 〈G ∪ E0 ∪ {α, α∗}〉, where α isinje
tive, α∗ is onto, but {α, α∗} is not regular, des
ribe the lifts ofevery ψ ∈ Aut(G).
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3. Given a semigroup of monomorphisms G < S ≤ End(A), des
ribe thelifts of every ψ ∈ Aut(G).4. Given a semigroup of epimorphisms G < S ≤ End(A), des
ribe thelifts of every ψ ∈ Aut(G).5. Chara
terize the semigroups S su
h that Aut(A) ≤ S ≤ PEnd(A)and S has the unique extension property.6. Let S be a semigroup su
h that Aut(A) ≤ S ≤ PEnd(A). Des
ribethe group Aut(S).The des
ription of Aut(Aut(A)) is an open problem. We 
onje
ture thatfor an independen
e algebra A of in�nite rank,

Aut(Aut(A)) = {τ g | g ∈ WAut(A)}where WAut(A) is the group of weak automorphisms of A (see [18℄ and [36℄).A
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