VOL. 106

2006

NO. 1

FINITE-DIMENSIONAL MAPS AND DENDRITES WITH DENSE SETS OF END POINTS

BҮ

HISAO KATO and EIICHI MATSUHASHI (Ibaraki)

Abstract. The first author has recently proved that if $f: X \to Y$ is a k-dimensional map between compacta and Y is p-dimensional $(0 \le k, p < \infty)$, then for each $0 \le i \le p + k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g: X \to Y \times I^{p+2k+1-i}$ is an (i+1)-to-1 map is a dense G_{δ} -subset of $C(X, I^{p+2k+1-i})$. In this paper, we prove that if $f: X \to Y$ is as above and D_j $(j = 1, \ldots, k)$ are superdendrites, then the set of maps h in $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ such that $f \times h: X \to Y \times (\prod_{j=1}^k D_j \times I^{p+1-i})$ is (i+1)-to-1 is a dense G_{δ} -subset of $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ for each $0 \le i \le p$.

1. Introduction. In this paper, all spaces are separable metric spaces and maps are continuous. We denote the unit interval by I. A compact metric space is called a *compactum*, and *continuum* means a connected compactum. Let X and Y be compacta. Then C(X, Y) denotes the set of all continuous maps from X to Y endowed with the sup metric. A map f: $X \to Y$ is called σ -closed if there exists a family $\{F_i\}_{i=1}^{\infty}$ of closed subsets in X such that $X = \bigcup_{i=1}^{\infty} F_i$ and $f|F_i: F_i \to f(F_i)$ is a closed map for each $i = 1, 2, \dots$ A map $f: X \to Y$ is called k-dimensional if dim $f^{-1}(y) \leq k$ for each $y \in Y$, and k-to-1 if $|f^{-1}(y)| \le k$ for each $y \in Y$. In [3] and [4], Pasynkov proved that if $f: X \to Y$ is a k-dimensional map from a compactum X to a finite-dimensional compactum Y, then there is a map $q: X \to I^k$ such that dim $(f \times q) = 0$. Also, he proved that if $f: X \to Y$ is a k-dimensional map of compacta and dim $Y = p < \infty$, then the set of maps g in the space $C(X, I^{p+2k+1})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1}$ is an embedding is a dense G_{δ} -subset of $C(X, I^{p+2k+1})$. Furthermore, in [2] the first author proved the following theorem.

THEOREM 1 ([2]). If $f: X \to Y$ is a k-dimensional map of compacta and dim $Y = p < \infty$, then for each $0 \le i \le p + k$, the set of maps gin the space $C(X, I^{p+2k+1-i})$ such that $f \times g: X \to Y \times I^{p+2k+1-i}$ is

²⁰⁰⁰ Mathematics Subject Classification: Primary 54F45, 54B20; Secondary 55M10, 54F15, 54C65.

Key words and phrases: dimension, finite-dimensional map, finite-to-one map, embedding, superdendrite, F_{σ} -set, dense G_{δ} -set, map parallel to a superdendrite.

(i+1)-to-1 is a dense G_{δ} -subset of $C(X, I^{p+2k+1-i})$. Hence the restriction $g|f^{-1}(y): f^{-1}(y) \to I^{p+2k+1-i}$ is (i+1)-to-1 for each $y \in Y$.

A locally connected continuum D is called a *dendrite* if it contains no circle. A dendrite D is called a *superdendrite* [5] if the set of all end points of D is dense in D. The main aim of this paper is to prove the following theorem.

THEOREM 2. Let $f: X \to Y$ be a k-dimensional map of compacta and dim $Y = p < \infty$, and let D_j (j = 1, ..., k) be superdendrites. Then the set of maps h in the space $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ such that $f \times h: X \to$ $Y \times (\prod_{j=1}^k D_j \times I^{p+1-i})$ is (i+1)-to-1 is a dense G_{δ} -subset of $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ $I^{p+1-i})$ for each $0 \le i \le p$. Hence $h|f^{-1}(y): f^{-1}(y) \to \prod_{j=1}^k D_j \times I^{p+1-i}$ is (i+1)-to-1 for each $y \in Y$.

This is a generalization of the following theorem of Bowers [1] (cf. [5]) : If X is an *n*-dimensional compactum and D_1, \ldots, D_n are superdendrites, then the set $\{h \in C(X, \prod_{j=1}^n D_j \times I) \mid h \text{ is an embedding}\}$ is a dense G_{δ} -subset in $C(X, \prod_{j=1}^n D_j \times I)$. As a corollary, we have a representation theorem for finite-dimensional maps using superdendrites (see Theorem 15).

2. Main theorem. First we set up some notation and terminology (cf. [5] and [6]). Let X, Y be compacta and let $A \subset X$ be a closed subset. If $f : X \to Y$ is a map, we set

$$S_f = \{ x \in X \mid f^{-1}f(x) = \{x\} \}, \quad R_{(X,A,Y)} = \{ f \in C(X,Y) \mid A \subset S_f \}.$$

A set $S \subset X$ is said to be *residual* if S contains a dense G_{δ} -subset of X. A map $f: X \to Y$ is called a (k, ε) -map $(\varepsilon > 0)$ if for each $y \in Y$, there are subsets $A_1, \ldots A_k$ of $f^{-1}(y)$ such that $f^{-1}(y) = \bigcup_{i=1}^k A_i$ and diam $A_i < \varepsilon$. The main aim of this section is to prove Theorem 2. To do this we need the following results.

THEOREM 3 ([6]). Let X, Y be spaces with dimY $< \infty$ and let $f : X \to Y$ be a σ -closed k-dimensional map. Then there exists a 0-dimensional F_{σ} -subset $A \subset X$ such that $f|(X \setminus A)$ is (k-1)-dimensional.

THEOREM 4 ([5]). Let X be a compactum and let $A \subset X$ be a 0dimensional F_{σ} -subset. Then for each superdendrite D, $R_{(X,A,D)} = \{f \in C(X,D) \mid A \subset S_f\}$ is residual in C(X,D).

PROPOSITION 5. Let X, Y and Z be compact and let $f : X \to Y$ be a map. Then $\{g \in C(X,Z) \mid f \mid (X \setminus S_g) \text{ is } k \text{-dimensional}\}$ is a G_{δ} -subset in C(X,Z).

Proof. For a, b > 0 and $g \in C(X, Z)$, let $F(g, a) = \{x \in X \mid \operatorname{diam}(g^{-1}g(x)) \ge a\},$ $U(a, b) = \{g \in C(X, Z) \mid d_{k+1}(F(g, a) \cap f^{-1}(y)) < b \text{ for each } y \in Y\},$ where $d_{n+1}(F) < b$ if there exists an open cover of F with mesh < b and

order $\leq n$.

CLAIM. U(a,b) is an open subset in C(X,Y).

Proof of claim. Assume that U(a, b) is not open in C(X, Y). Then there exist $g \in U(a, b)$ and $\{g_i\}_{i=1}^{\infty} \subset C(X, Y) \setminus U(a, b)$ such that $g_i \to g$. For each $i = 1, 2, \ldots$, there exists $y_i \in Y$ such that $d_{k+1}(f^{-1}(y_i) \cap F(g_i, a)) \geq b$. We may assume $y = \lim_{i\to\infty} y_i$. Since $g \in U(a, b)$, there exists a family \mathcal{U} of open subsets in X such that $\operatorname{ord} \mathcal{U} \leq k$, $\operatorname{mesh} \mathcal{U} < b$ and $f^{-1}(y) \cap$ $F(g, a) \subset \bigcup \mathcal{U}$. Since $d_{k+1}(f^{-1}(y_i) \cap F(g_i, a)) \geq b$, there exist $x_i \in X$ such that $\operatorname{diam}(g_i^{-1}g_i(x_i)) \geq a$ and $f^{-1}(y_i) \cap g_i^{-1}g_i(x_i) \notin \bigcup \mathcal{U}$ for each $i = 1, 2, \ldots$. In fact, we may choose $x_i \in (f^{-1}(y_i) \cap g_i^{-1}g_i(x_i)) \setminus \bigcup \mathcal{U}$. We may assume $x = \lim_{i\to\infty} x_i$. Since $\operatorname{diam} g^{-1}g(x) \geq a$, we have $f^{-1}(y) \cap g^{-1}g(x) \subset \bigcup \mathcal{U}$. So $f^{-1}(y_i) \cap g_i^{-1}g_i(x_i) \subset \bigcup \mathcal{U}$ for infinitely many i. This is a contradiction. This completes the proof of the claim.

It is easy to see that $\{g \in C(X, Z) \mid f \mid (X \setminus S_g) \text{ is } k\text{-dimensional}\} = \bigcap_{m,n \in \mathbb{N}} U(1/m, 1/n)$. This completes the proof.

The next result is due to Pasynkov. For completeness, we will give the proof.

PROPOSITION 6 ([3]). Let X, Y and Z be compacta and let $f : X \to Y$ be a map. Then $\{g \in C(X, Z) \mid f \times g \text{ is } k\text{-dimensional}\}$ is a G_{δ} -subset in C(X, Z).

Proof. It suffices to observe that

 $\{g \in C(X,Z) \mid d_{k+1}((f \times g)^{-1}(y,z)) < b \text{ for each } y \in Y \text{ and } z \in Z\}$

is an open subset of C(X, Z). The argument is similar to that in the proof of the preceding proposition. This completes the proof.

THEOREM 7. Let $f: X \to Y$ be a k-dimensional map of compacta with dim $Y = p < \infty$, and let D_j (j = 1, ..., k) be superdendrites. Then the set of maps g in the space $C(X, \prod_{j=1}^k D_j)$ such that $f|(X \setminus S_g)$ is 0-dimensional is a dense G_{δ} -subset of $C(X, \prod_{j=1}^k D_j)$. In particular, the set of maps g in the space $C(X, \prod_{j=1}^k D_j)$ such that the diagonal product $f \times g : X \to$ $Y \times \prod_{j=1}^k D_j$ is 0-dimensional is a dense G_{δ} -subset of $C(X, \prod_{j=1}^k D_j)$.

Proof. Let $\mathcal{G}(X, \prod_{j=1}^k D_j) = \{g \in C(X, \prod_{j=1}^k D_j) \mid f \mid (X \setminus S_g) \text{ is 0-dimensional}\}$. By Propositions 5 and 6, it is sufficient to show that

 $\mathcal{G}(X,\prod_{j=1}^{k}D_{j})$ is a dense subset of $C(X,\prod_{j=1}^{k}D_{j})$. Let $r = r_{1} \times \ldots \times r_{k} \in C(X,\prod_{j=1}^{k}D_{j})$. We will find a map $g = g_{1} \times \cdots \times g_{k} \in \mathcal{G}(X,\prod_{j=1}^{k}D_{j})$ arbitrarily close to r. By Theorem 3, there exists a 0-dimensional F_{σ} -set $A_{1} \subset X$ such that $f|(X \setminus A_{1}) : X \setminus A_{1} \to Y$ is (k-1)-dimensional. By Theorem 4, $R_{(X,A_{1},D_{1})}$ is residual in $C(X,D_{1})$. So we can take a map $g_{1} \in R_{(X,A_{1},D_{1})}$ arbitrarily close to r_{1} . Note that $A_{1} \subset S_{g_{1}}$. Let $B_{1} = X \setminus S_{g_{1}}$. Then B_{1} is an F_{σ} -subset in X because $S_{g_{1}}$ is a G_{δ} -subset in X. Since $f|B_{1}: B_{1} \to Y$ is a σ -closed (k-1)-dimensional map, by Theorem 3 there exists a 0-dimensional F_{σ} -subset $A_{2} \subset B_{1}$ such that $f|(B_{1} \setminus A_{2}) : B_{1} \setminus A_{2} \to Y$ is (k-2)-dimensional. By Theorem 4, we can take a map $g_{2} \in R_{(X,A_{2},D_{2})}$ arbitrarily close to r_{2} . Note that $A_{2} \subset S_{g_{2}}$. Let $B_{2} = B_{1} \setminus S_{g_{2}}$. Note that $B_{2} = X \setminus (S_{g_{1}} \cup S_{g_{2}})$. By induction, for each $i = 1, \ldots, k$, we can find a map $g_{i} : X \to D_{i}$, an F_{σ} -subset $B_{i} \subset X$ and a 0-dimensional F_{σ} -subset $A_{i} \subset B_{i-1}$ such that

- (1) r_i and g_i are arbitrarily close to each other,
- (2) $g_i \in R_{(X,A_i,D_i)},$
- (3) $f|(B_{i-1} \setminus A_i) : B_{i-1} \setminus A_i \to Y$ is (k-i)-dimensional,
- $(4) B_i = B_{i-1} \setminus S_{g_i}.$

Note that $B_k = X \setminus \bigcup_{i=1}^k S_{g_i}$. Then r and $g = g_1 \times \cdots \times g_k$ are arbitrarily close to each other and $f | B_k : B_k \to Y$ is 0-dimensional. Note that $\bigcup_{i=1}^k S_{g_i} \subset S_g$. So g is the required map. This completes the proof.

Perhaps the next proposition is known. For completeness, we will give the proof.

PROPOSITION 8. Let X, Y and Z be compacta and let $f : X \to Y$ be a map. Then for each k = 1, 2, ..., the set $H = \{h \in C(X, Z) \mid f \times h \text{ is } k\text{-to-1}\}$ is a G_{δ} -subset in C(X, Y).

Proof. For each n = 1, 2, ..., let $H_n = \{h \in C(X, Z) \mid f \times h$ is a (k, 1/n)-map $\}$. It is easy to see that H_n is an open subset in C(X, Z) and $H = \bigcap_{n=1}^{\infty} H_n$. This completes the proof.

Now we prove Theorem 2.

Proof of Theorem 2. Let $i = 0, 1, \ldots, p$ and

$$v = (r_1 \times \cdots \times r_k) \times (u_1 \times \cdots \times u_{p+1-i}) \in C\left(X, \prod_{j=1}^k D_j \times I^{p+1-i}\right).$$

Let $r = r_1 \times \cdots \times r_k$. By Proposition 8, it is sufficient to show that there exists a map $h: X \to \prod_{j=1}^k D_j \times I^{p+1-i}$ arbitrarily close to v and such that $f \times h: X \to Y \times (\prod_{j=1}^k D_j \times I^{p+1-i})$ is (i+1)-to-1. By Theorem 7, there exists $g: X \to \prod_{j=1}^k D_j$ arbitrarily close to r and such that $f|(X \setminus S_g)$ is 0-dimensional. Let $X \setminus S_g = \bigcup_{l=1}^\infty F_l$, where F_l is closed in X and $F_l \subset F_{l+1}$

for
$$l = 1, 2, ...$$
 For $l = 1, 2, ...$, let
 $S_l(X, I^{p+1-i})$
 $= \{s \in C(X, I^{p+1-i}) \mid (f \times s) | F_l : F_l \to Y \times I^{p+1-i} \text{ is } (i+1) \text{-to-1} \}.$

As $f|F_l: F_l \to Y$ is 0-dimensional, by Theorem 1 the set $\{s \in C(F_l, I^{p+1-i}) \mid f|F_l \times s: F_l \to Y \times I^{p+1-i} \text{ is } (i+1)\text{-to-1}\}$ is a dense G_{δ} -subset in $C(F_l, I^{p+1-i})$ for $l = 1, 2, \ldots$. So it is easy to see that $S_l(X, I^{p+1-i})$ is a dense G_{δ} -subset in $C(X, I^{p+1-i})$ for $l = 1, 2, \ldots$. By Baire's theorem $\bigcap_{l=1}^{\infty} S_l(X, I^{p+1-i})$ is a dense G_{δ} -subset in $C(X, I^{p+1-i})$. So we can select $s \in \bigcap_{l=1}^{\infty} S_l(X, I^{p+1-i})$ arbitrarily close to $u = u_1 \times \cdots \times u_{p+1-i}$. Let $h = g \times s: X \to \prod_{j=1}^k D_j \times I^{p+1-i}$. Then h is as required. This completes the proof.

3. Finite-dimensional maps and compositions of maps parallel to the unit interval and superdendrites. Now we consider an application of Theorem 2. A map $f: X \to Y$ is said to be *embedded in a map* $f_0: X_0 \to Y_0$ (see [3], [4]) if there exist embeddings $g: X \to X_0$ and $h: Y \to Y_0$ such that $h \circ f = f_0 \circ g$. A map $f: X \to Y$ is parallel to the space Z (see [3], [4]) if f can be embedded in the natural projection $p: Y \times Z \to Y$. In [3], [4], Pasynkov proved the following theorem: If $f: X \to Y$ has dim f = k and dim $Y < \infty$, then f can be represented as the composition $f = h_k \circ \cdots \circ h_1 \circ g$ of a zero-dimensional map g and maps h_i (i = 1, ..., k) parallel to the unit interval *I*. Furthermore the first author proved the following [2]: A map $f: X \to Y$ of compacta with $\dim Y = p < \infty$ is k-dimensional if and only if f can be represented as the composition $f = g_{p+2k+1} \circ \cdots \circ g_{p+k+1} \circ g_{p+k} \circ \cdots \circ g_1$ of maps parallel to the unit interval I such that g_i is (i + 1)-to-1 for each $i = 1, \ldots, p + k$ and g_{p+k+1} is zero-dimensional. In this section we prove another representation theorem for finite-dimensional maps using superdendrites.

LEMMA 9 ([6]). Let $\varepsilon > 0$. Suppose that $f : X \to Y$ is a map of compacta with dim f = 0 and dim $Y = p < \infty$. For each $i = 1, \ldots, l$, let K_i and L_i be closed disjoint subsets of X. Then there are open subsets E_i of X separating X between K_i and L_i such that $f|(\operatorname{Cl}(E_1) \cup \cdots \cup \operatorname{Cl}(E_l))$ is a (p, ε) -map.

The next three results are essentially contained in [2]. For completeness, we give their proofs.

PROPOSITION 10 ([2]). Let X, Y and Z be compacta and $0 \le k < \infty$. Let T be the set of maps $g = u \times v : X \to Y \times Z$ in $C(X, Y \times Z)$ such that $\dim v(u^{-1}(y)) \le k$ for each $y \in Y$. Then T is a G_{δ} -subset of $C(X, Y \times Z)$.

Proof. Let $\varepsilon > 0$ and let T_{ε} be the set of maps $g = u \times v : X \to Y \times Z$ in $C(X, Y \times Z)$ such that for each $y \in Y$, $v(u^{-1}(y))$ is covered by a family \mathcal{U} of open sets of Z such that mesh $\mathcal{U} < \varepsilon$ and ord $\mathcal{U} \le k$. Then T_{ε} is open in $C(X, Y \times Z)$. Note that $T = \bigcap_{n=1}^{\infty} T_{1/n}$.

LEMMA 11 ([2], cf. [7], [9]). Let $f: X \to Y$ be a 0-dimensional map from a compactum X to a p-dimensional compactum $Y(p < \infty)$. Let T be the set of all maps $u: X \to I$ such that $\dim u(f^{-1}(y)) = 0$ for each $y \in Y$. Then T is a dense G_{δ} -subset of C(X, I).

Proof. Let W_h be the set of maps $u : X \to I$ such that for each $y \in Y$, $u(f^{-1}(y))$ is covered by disjoint open sets of diameters less than b. By an argument similar to that in the proof of Proposition 5, W_b is an open subset of C(X,I). Since $T = \bigcap_{n=1}^{\infty} W_{1/n}$, it suffices to prove that W_b is dense in C(X,I). Let $h \in C(X,I)$ and $\varepsilon > 0$. Choose $\delta > 0$ such that if $A \subset X$ and diam $A < \delta$, then diam $h(A) < \min\{2\varepsilon, b/(2p)\} = \varepsilon'$. Choose a finite family $\{(U_n, V_n) \mid n = 1, \dots, m\}$, where U_n and V_n are open subsets of X such that $\{U_n \mid n = 1, ..., m\}$ is a cover of X with $\operatorname{Cl}(U_n) \subset V_n$ and diam $V_n < \delta$ for all $n = 1, \ldots, m$. By Lemma 9, there are open subsets E_n separating X between $\operatorname{Cl}(U_n)$ and $X \setminus V_n$ such that $f|(\operatorname{Cl}(E_1)\cup\cdots\cup\operatorname{Cl}(E_m))$ is a (p,δ) -map. Note that $X\setminus (E_1\cup\cdots\cup E_m)=$ $\bigcup_{n=1}^{m} D_n$, where D_n (n = 1, ..., m) are disjoint closed subsets of X such that diam $D_n < \delta$. There are points $x_n \in I$ such that $h(D_n) \subset (x_n - \delta)$ $\varepsilon'/2, x_n + \varepsilon'/2$). The function that maps each D_n to x_n has a continuous extension $u: X \to I$ whose supremum distance to h is less than $\varepsilon'/2 \leq \varepsilon$. Let $y \in Y$. Since $f|(\operatorname{Cl}(E_1) \cup \cdots \cup \operatorname{Cl}(E_m))$ is a (p, δ) -map, there are closed subsets A_1, \ldots, A_p of $f^{-1}(y)$ such that $f^{-1}(y) \cap (\operatorname{Cl}(E_1) \cup$ $\cdots \cup \operatorname{Cl}(E_m) = \bigcup_{i=1}^p A_i$ and diam $A_i < \delta$ for $i = 1, \ldots, p$. Note that diam $u(A_i) < 2\varepsilon'$ for each i, and $u(D_n) = \{x_n\}$ for each n. We can see that for each component C of $\bigcup_{i=1}^{p} u(A_i)$, we have diam $C < 2p\varepsilon' \leq b$ and

$$u(f^{-1}(y)) \subset \{x_1, \dots, x_m\} \cup \bigcup_{i=1}^p u(A_i).$$

Hence, each component of $u(f^{-1}(y))$ has a neighbourhood that is closed and open in $u(f^{-1}(y))$ and has diameter less than b. It follows that $u \in W_b$, which completes the proof.

LEMMA 12 ([2]). Let $f: X \to Y$, $g: X \to Z$ and $u: X \to I$ be maps of compacta such that $\dim Z = k$ and $\dim u((f \times g)^{-1}(y, z)) = 0$ for each $y \in Y$ and $z \in Z$. Then $\dim(g \times u)(f^{-1}(y)) \leq k$ for each $y \in Y$.

Proof. Let $y \in Y$. Consider the natural projection $p: Y \times Z \times I \to Y \times Z$. Then $p|(f \times g \times u)(X) : (f \times g \times u)(X) \to (f \times g)(X)$ is a 0-dimensional map, because for $(y, z) \in (f \times g)(X) \subset Y \times Z$,

$$p^{-1}(y,z) \cap (f \times g \times u)(X) = \{(y,z)\} \times u((f \times g)^{-1}(y,z)).$$

Also, note that $(f \times g \times u)(f^{-1}(y)) = \{y\} \times (g \times u)(f^{-1}(y))$, and hence the set

 $p(\{y\} \times (g \times u)(f^{-1}(y)) = (f \times g)(f^{-1}(y)) = \{y\} \times g(f^{-1}(y)) \subset \{y\} \times Z$

is at most k-dimensional. Since

$$p|\{y\} \times (g \times u)(f^{-1}(y)) : \{y\} \times (g \times u)(f^{-1}(y)) \to \{y\} \times g(f^{-1}(y))$$

is a zero-dimensional map, by a theorem of Hurewicz we conclude that $\dim(g \times u)(f^{-1}(y)) \leq k$.

By Theorem 7, Propositions 6 and 10, and Lemmas 11 and 12, we obtain the next result.

PROPOSITION 13 ([2], cf. [7], [9]). Let $f : X \to Y$ be a k-dimensional map of compacta and dim $Y = p < \infty$. Let T be the set of all maps $h = g \times u : X \to \prod_{j=1}^{k} D_j \times I$ in $C(X, \prod_{j=1}^{k} D_j \times I)$ such that dim $h(f^{-1}(y)) \leq k$, dim $u((f \times g)^{-1}(y, t)) = 0$ for all $y \in Y$ and $t \in \prod_{j=1}^{k} D_j$, and dim $(f \times g) = 0$. Then T is a dense G_{δ} -subset of $C(X, \prod_{j=1}^{k} D_j \times I)$.

PROPOSITION 14. Let $f: X \to Y$ be a k-dimensional map of compacta and dim $Y = p < \infty$. For i = 0, 1, ..., p + 1, let $p_i: \prod_{j=1}^k D_j \times I^{p+1} \to \prod_{j=1}^k D_j \times I^{p+1-i}$ be the natural projection, where $p_0: \prod_{j=1}^k D_j \times I^{p+1} \to \prod_{j=1}^k D_j \times I^{p+1}$ is the identity. Let $\widetilde{E}(X, \prod_{j=1}^k D_j \times I^{p+1})$ be the set of maps g in $C(X, \prod_{j=1}^k D_j \times I^{p+1})$ such that

- (1) for each $0 \le i \le p$, $f \times (p_i \circ g) : X \to Y \times \prod_{j=1}^k D_j \times I^{p+1-i}$ is an (i+1)-to-1 map,
- (2) the map $h = p_p \circ g = g' \times u : X \to \prod_{j=1}^k D_j \times I$ satisfies $\dim h(f^{-1}(y)) \leq k$, $\dim u((f \times g')^{-1}(y,t)) = 0$ for all $y \in Y$ and $t \in \prod_{j=1}^k D_j$, and $\dim(f \times g') = 0$.

Then $\widetilde{E}(X, \prod_{j=1}^k D_j \times I^{p+1})$ is a dense G_{δ} -subset of $C(X, \prod_{j=1}^k D_j \times I^{p+1})$.

Proof. Note that if $q: A \to B$ is an open map and C is a dense subset of B, then $q^{-1}(C)$ is dense in A. The natural projection $p_i: \prod_{j=1}^k D_j \times I^{p+1} \to \prod_{j=1}^k D_j \times I^{p+1-i}$ induces the open map $P_i: C(X, \prod_{j=1}^k D_j \times I^{p+1}) \to C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ defined by $P_i(h) = p_i \circ h$ for $h \in C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ such that $f \times g: X \to Y \times \prod_{j=1}^k D_j \times I^{p+1-i}$ is (i+1)-to-1. Also, let T be the subset of $C(X, \prod_{j=1}^k D_j \times I)$ as in Proposition 13. By Theorem 2 and Proposition 13,

$$\widetilde{E}\left(X,\prod_{j=1}^{k}D_{j}\times I^{p+1}\right)=\bigcap_{i=0}^{p}P_{i}^{-1}(E_{i})\cap P_{p}^{-1}(T)$$

is a dense G_{δ} -subset of $C(X, \prod_{j=1}^{k} D_j \times I^{p+1})$. This completes the proof.

Now, we have the following representation theorem for finite-dimensional maps.

THEOREM 15. Let $f: X \to Y$ be a map of compact such that $0 \le k < \infty$ and dim $Y = p < \infty$. Then f is k-dimensional if and only if f can be represented as the composition

$$f = g_{p+k+1} \circ \cdots \circ g_{p+1} \circ g_p \circ \cdots \circ g_1$$

such that

- (1) g_i is an (i + 1)-to-1 map for each i = 1, ..., p and g_{p+1} is a zerodimensional map,
- (2) g_i is parallel to I for i = 1, ..., p + 1,
- (3) g_i is parallel to a superdendrite for i = p + 2, ..., p + k + 1.

Proof. Let $\widetilde{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})$ be as in Proposition 14. Choose $g \in \widetilde{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})$. Let

$$Z_{i} = \begin{cases} \prod_{j=1}^{k} D_{j} \times I^{p+1-i} & \text{for } i = 0, 1, \dots, p+1, \\ \prod_{j=1}^{p+k+1-i} D_{j} & \text{for } i = p+2, \dots, p+k. \end{cases}$$

For $i = 0, 1, \ldots, p + k$, let $p_i : Z_0 \to Z_i$ be the natural projection. For $i = 0, 1, \ldots, p + k$, put $X_i = (f \times (p_i \circ g))(X)$ and put $X_{p+k+1} = Y$. Let $g_1 = q_1 \circ (f \times g)$ and for $i = 2, \ldots, p + k + 1$, let $g_i = q_i | X_{i-1} : X_{i-1} \to X_i$, where $q_i : Y \times Z_{i-1} \to Y \times Z_i$ is the natural projection for $i = 1, \ldots, p + k$ and $q_{p+k+1} : Y \times D_1 \to Y$ is the natural projection. By Propositon 14, we see that g_{p+1} is a 0-dimensional map. Hence the maps g_i are as desired. This completes the proof.

REMARK. After the paper [2] had been submitted for publication, the paper of Tuncali and Valov [8] was published. They obtained a more general result in the class of all metrizable spaces.

Acknowledgements. The authors would like to thank the referee for a careful reading of the paper and helpful comments.

REFERENCES

- P. L. Bowers, General position properties satisfied by finite products of dendrites, Trans. Amer. Math. Soc. 228 (1985), 739–753.
- [2] H. Kato, Geometry of finite-dimensional maps and finite-to-one maps, preprint.

- B. A. Pasynkov, On dimension and geometry of mappings, Dokl. Akad. Nauk SSSR 221 (1975), 543–546 (in Russian).
- [4] —, On the geometry of continuous mappings of finite-dimensional metrizable compacta, Proc. Steklov Inst. Math. 212 (1996), 138–162.
- [5] Y. Sternfeld, Mapping in dendrites and dimension, Houston J. Math. 19 (1993), 483–497.
- [6] H. Toruńczyk, Finite-to-one restrictions of continuous functions, Fund. Math. 75 (1985), 237-249.
- [7] H. M. Tuncali and V. Valov, On finite-dimensional maps II, Topology Appl. 132 (2003), 81–87.
- [8] —, —, On regularly branched maps, ibid. 150 (2005), 213–221.
- [9] V. V. Uspenskij, A remark on a question of R. Pol concerning light maps, ibid. 103 (2000), 291–293.

Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan

E-mail: hisakato@sakura.cc.tsukuba.ac.jp aichi@math.tsukuba.ac.jp

> Received 6 June 2005; revised 26 December 2005

(4609)