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Abstract. The first author has recently proved that if f : X → Y is a k-dimensional
map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤

p + k, the set of maps g in the space C(X, Ip+2k+1−i) such that the diagonal product
f ×g : X → Y ×Ip+2k+1−i is an (i+1)-to-1 map is a dense Gδ-subset of C(X, Ip+2k+1−i).
In this paper, we prove that if f : X → Y is as above and Dj (j = 1, . . . , k) are super-
dendrites, then the set of maps h in C(X,

∏k

j=1
Dj × Ip+1−i) such that f × h : X →

Y × (
∏k

j=1
Dj × Ip+1−i) is (i + 1)-to-1 is a dense Gδ-subset of C(X,

∏k

j=1
Dj × Ip+1−i)

for each 0 ≤ i ≤ p.

1. Introduction. In this paper, all spaces are separable metric spaces
and maps are continuous. We denote the unit interval by I. A compact met-
ric space is called a compactum, and continuum means a connected com-
pactum. Let X and Y be compacta. Then C(X, Y ) denotes the set of all
continuous maps from X to Y endowed with the sup metric. A map f :
X → Y is called σ-closed if there exists a family {Fi}

∞

i=1 of closed subsets
in X such that X =

⋃
∞

i=1 Fi and f |Fi : Fi → f(Fi) is a closed map for each
i = 1, 2, . . . . A map f : X → Y is called k-dimensional if dim f−1(y) ≤ k for
each y ∈ Y , and k-to-1 if |f−1(y)| ≤ k for each y ∈ Y . In [3] and [4], Pasynkov
proved that if f : X → Y is a k-dimensional map from a compactum X to
a finite-dimensional compactum Y , then there is a map g : X → Ik such
that dim(f × g) = 0. Also, he proved that if f : X → Y is a k-dimensional
map of compacta and dimY = p < ∞, then the set of maps g in the space
C(X, Ip+2k+1) such that the diagonal product f × g : X → Y × Ip+2k+1

is an embedding is a dense Gδ-subset of C(X, Ip+2k+1). Furthermore, in [2]
the first author proved the following theorem.

Theorem 1 ([2]). If f : X → Y is a k-dimensional map of compacta

and dim Y = p < ∞, then for each 0 ≤ i ≤ p + k, the set of maps g
in the space C(X, Ip+2k+1−i) such that f × g : X → Y × Ip+2k+1−i is
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(i + 1)-to-1 is a dense Gδ-subset of C(X, Ip+2k+1−i). Hence the restriction

g|f−1(y) : f−1(y) → Ip+2k+1−i is (i + 1)-to-1 for each y ∈ Y .

A locally connected continuum D is called a dendrite if it contains no
circle. A dendrite D is called a superdendrite [5] if the set of all end points
of D is dense in D. The main aim of this paper is to prove the following
theorem.

Theorem 2. Let f : X → Y be a k-dimensional map of compacta and

dimY = p < ∞, and let Dj (j = 1, . . . , k) be superdendrites. Then the

set of maps h in the space C(X,
∏k

j=1 Dj × Ip+1−i) such that f × h : X →

Y ×(
∏k

j=1 Dj×Ip+1−i) is (i+1)-to-1 is a dense Gδ-subset of C(X,
∏k

j=1 Dj×

Ip+1−i) for each 0 ≤ i ≤ p. Hence h|f−1(y) : f−1(y) →
∏k

j=1 Dj × Ip+1−i is

(i + 1)-to-1 for each y ∈ Y .

This is a generalization of the following theorem of Bowers [1] (cf. [5]) : If
X is an n-dimensional compactum and D1, . . . , Dn are superdendrites, then
the set {h ∈ C(X,

∏n
j=1 Dj × I) | h is an embedding} is a dense Gδ-subset

in C(X,
∏n

j=1 Dj × I). As a corollary, we have a representation theorem for
finite-dimensional maps using superdendrites (see Theorem 15).

2. Main theorem. First we set up some notation and terminology (cf.
[5] and [6]). Let X, Y be compacta and let A ⊂ X be a closed subset. If f :
X → Y is a map, we set

Sf = {x ∈ X | f−1f(x) = {x}}, R(X,A,Y ) = {f ∈ C(X, Y ) | A ⊂ Sf}.

A set S ⊂ X is said to be residual if S contains a dense Gδ-subset of X.
A map f : X → Y is called a (k, ε)-map (ε > 0) if for each y ∈ Y , there are

subsets A1, . . . Ak of f−1(y) such that f−1(y) =
⋃k

i=1 Ai and diamAi < ε.
The main aim of this section is to prove Theorem 2. To do this we need the
following results.

Theorem 3 ([6]). Let X, Y be spaces with dimY < ∞ and let f :
X → Y be a σ-closed k-dimensional map. Then there exists a 0-dimensional

Fσ-subset A ⊂ X such that f |(X \ A) is (k − 1)-dimensional.

Theorem 4 ([5]). Let X be a compactum and let A ⊂ X be a 0-
dimensional Fσ-subset. Then for each superdendrite D, R(X,A,D) = {f ∈
C(X, D) | A ⊂ Sf} is residual in C(X, D).

Proposition 5. Let X, Y and Z be compacta and let f : X → Y be a

map. Then {g ∈ C(X, Z) | f |(X \ Sg) is k-dimensional} is a Gδ-subset in

C(X, Z).
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Proof. For a, b > 0 and g ∈ C(X, Z), let

F (g, a) = {x ∈ X | diam(g−1g(x)) ≥ a},

U(a, b) = {g ∈ C(X, Z) | dk+1(F (g, a) ∩ f−1(y)) < b for each y ∈ Y },

where dn+1(F ) < b if there exists an open cover of F with mesh < b and
order ≤ n.

Claim. U(a, b) is an open subset in C(X, Y ).

Proof of claim. Assume that U(a, b) is not open in C(X, Y ). Then there
exist g ∈ U(a, b) and {gi}

∞

i=1 ⊂ C(X, Y ) \ U(a, b) such that gi → g. For
each i = 1, 2, . . . , there exists yi ∈ Y such that dk+1(f

−1(yi)∩F (gi, a)) ≥ b.
We may assume y = limi→∞ yi. Since g ∈ U(a, b), there exists a family
U of open subsets in X such that ordU ≤ k, meshU < b and f−1(y) ∩
F (g, a) ⊂

⋃
U . Since dk+1(f

−1(yi) ∩ F (gi, a)) ≥ b, there exist xi ∈ X such
that diam(g−1

i gi(xi)) ≥ a and f−1(yi)∩g−1
i gi(xi) 6∈

⋃
U for each i = 1, 2, . . . .

In fact, we may choose xi ∈ (f−1(yi) ∩ g−1
i gi(xi)) \

⋃
U . We may assume

x = limi→∞ xi. Since diam g−1g(x) ≥ a, we have f−1(y) ∩ g−1g(x) ⊂
⋃
U .

So f−1(yi) ∩ g−1
i gi(xi) ⊂

⋃
U for infinitely many i. This is a contradiction.

This completes the proof of the claim.

It is easy to see that {g ∈ C(X, Z) | f |(X \ Sg) is k-dimensional} =⋂
m,n∈N

U(1/m, 1/n). This completes the proof.

The next result is due to Pasynkov. For completeness, we will give the
proof.

Proposition 6 ([3]). Let X, Y and Z be compacta and let f : X → Y
be a map. Then {g ∈ C(X, Z) | f × g is k-dimensional} is a Gδ-subset in

C(X, Z).

Proof. It suffices to observe that

{g ∈ C(X, Z) | dk+1((f × g)−1(y, z)) < b for each y ∈ Y and z ∈ Z}

is an open subset of C(X, Z). The argument is similar to that in the proof
of the preceding proposition. This completes the proof.

Theorem 7. Let f : X → Y be a k-dimensional map of compacta with

dimY = p < ∞, and let Dj (j = 1, . . . , k) be superdendrites. Then the set

of maps g in the space C(X,
∏k

j=1 Dj) such that f |(X \Sg) is 0-dimensional

is a dense Gδ-subset of C(X,
∏k

j=1 Dj). In particular , the set of maps g

in the space C(X,
∏k

j=1 Dj) such that the diagonal product f × g : X →

Y ×
∏k

j=1 Dj is 0-dimensional is a dense Gδ-subset of C(X,
∏k

j=1 Dj).

Proof. Let G(X,
∏k

j=1 Dj) = {g ∈ C(X,
∏k

j=1 Dj) | f |(X \ Sg) is 0-
dimensional}. By Propositions 5 and 6, it is sufficient to show that
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G(X,
∏k

j=1 Dj) is a dense subset of C(X,
∏k

j=1 Dj). Let r = r1 × . . . × rk ∈

C(X,
∏k

j=1 Dj). We will find a map g = g1 × · · ·× gk ∈ G(X,
∏k

j=1 Dj) arbi-
trarily close to r. By Theorem 3, there exists a 0-dimensional Fσ-set A1 ⊂ X
such that f |(X \ A1) : X \ A1 → Y is (k − 1)-dimensional. By Theorem 4,
R(X,A1,D1) is residual in C(X, D1). So we can take a map g1 ∈ R(X,A1,D1)

arbitrarily close to r1. Note that A1 ⊂ Sg1
. Let B1 = X \Sg1

. Then B1 is an
Fσ-subset in X because Sg1

is a Gδ-subset in X. Since f |B1 : B1 → Y is a
σ-closed (k−1)-dimensional map, by Theorem 3 there exists a 0-dimensional
Fσ-subset A2 ⊂ B1 such that f |(B1\A2) : B1\A2 → Y is (k−2)-dimensional.
By Theorem 4, we can take a map g2 ∈ R(X,A2,D2) arbitrarily close to r2.
Note that A2 ⊂ Sg2

. Let B2 = B1 \ Sg2
. Note that B2 = X \ (Sg1

∪ Sg2
).

By induction, for each i = 1, . . . , k, we can find a map gi : X → Di, an
Fσ-subset Bi ⊂ X and a 0-dimensional Fσ-subset Ai ⊂ Bi−1 such that

(1) ri and gi are arbitrarily close to each other,
(2) gi ∈ R(X,Ai,Di),
(3) f |(Bi−1 \ Ai) : Bi−1 \ Ai → Y is (k − i)-dimensional,
(4) Bi = Bi−1 \ Sgi

.

Note that Bk = X\
⋃k

i=1 Sgi
. Then r and g = g1×· · ·×gk are arbitrarily close

to each other and f |Bk : Bk → Y is 0-dimensional. Note that
⋃k

i=1 Sgi
⊂ Sg.

So g is the required map. This completes the proof.

Perhaps the next proposition is known. For completeness, we will give
the proof.

Proposition 8. Let X, Y and Z be compacta and let f : X → Y be

a map. Then for each k = 1, 2, . . ., the set H = {h ∈ C(X, Z) | f × h is

k-to-1} is a Gδ-subset in C(X, Y ).

Proof. For each n = 1, 2, . . . , let Hn = {h ∈ C(X, Z) | f × h is a
(k, 1/n)-map}. It is easy to see that Hn is an open subset in C(X, Z) and
H =

⋂
∞

n=1 Hn. This completes the proof.

Now we prove Theorem 2.

Proof of Theorem 2. Let i = 0, 1, . . . , p and

v = (r1 × · · · × rk) × (u1 × · · · × up+1−i) ∈ C
(
X,

k∏

j=1

Dj × Ip+1−i
)
.

Let r = r1 × · · · × rk. By Proposition 8, it is sufficient to show that there

exists a map h : X →
∏k

j=1 Dj × Ip+1−i arbitrarily close to v and such that

f × h : X → Y × (
∏k

j=1 Dj × Ip+1−i) is (i + 1)-to-1. By Theorem 7, there

exists g : X →
∏k

j=1 Dj arbitrarily close to r and such that f |(X \ Sg) is

0-dimensional. Let X \Sg =
⋃

∞

l=1 Fl, where Fl is closed in X and Fl ⊂ Fl+1
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for l = 1, 2, . . . . For l = 1, 2, . . . , let

Sl(X, Ip+1−i)

= {s ∈ C(X, Ip+1−i) | (f × s)|Fl : Fl → Y × Ip+1−i is (i + 1)-to-1}.

As f |Fl : Fl→Y is 0-dimensional, by Theorem 1 the set {s ∈ C(Fl, I
p+1−i) |

f |Fl×s : Fl → Y ×Ip+1−i is (i+1)-to-1} is a dense Gδ-subset in C(Fl, I
p+1−i)

for l = 1, 2, . . . . So it is easy to see that Sl(X, Ip+1−i) is a dense Gδ-subset
in C(X, Ip+1−i) for l = 1, 2, . . . . By Baire’s theorem

⋂
∞

l=1 Sl(X, Ip+1−i) is a
dense Gδ-subset in C(X, Ip+1−i). So we can select s ∈

⋂
∞

l=1 Sl(X, Ip+1−i) ar-

bitrarily close to u = u1×· · ·×up+1−i. Let h = g×s : X →
∏k

j=1 Dj×Ip+1−i.
Then h is as required. This completes the proof.

3. Finite-dimensional maps and compositions of maps parallel

to the unit interval and superdendrites. Now we consider an appli-
cation of Theorem 2. A map f : X → Y is said to be embedded in a map

f0 : X0 → Y0 (see [3], [4]) if there exist embeddings g : X → X0 and
h : Y → Y0 such that h ◦ f = f0 ◦ g. A map f : X → Y is parallel

to the space Z (see [3], [4]) if f can be embedded in the natural projec-
tion p : Y × Z → Y . In [3], [4], Pasynkov proved the following theorem:
If f : X → Y has dim f = k and dimY < ∞, then f can be repre-
sented as the composition f = hk ◦ · · · ◦ h1 ◦ g of a zero-dimensional map g
and maps hi (i = 1, . . . , k) parallel to the unit interval I. Furthermore the
first author proved the following [2]: A map f : X → Y of compacta with
dimY = p < ∞ is k-dimensional if and only if f can be represented as the
composition f = gp+2k+1 ◦ · · · ◦ gp+k+1 ◦ gp+k ◦ · · · ◦ g1 of maps parallel to
the unit interval I such that gi is (i + 1)-to-1 for each i = 1, . . . , p + k and
gp+k+1 is zero-dimensional. In this section we prove another representation
theorem for finite-dimensional maps using superdendrites.

Lemma 9 ([6]). Let ε > 0. Suppose that f : X → Y is a map of compacta

with dim f = 0 and dimY = p < ∞. For each i = 1, . . . , l, let Ki and Li be

closed disjoint subsets of X. Then there are open subsets Ei of X separating

X between Ki and Li such that f |(Cl(E1) ∪ · · · ∪ Cl(El)) is a (p, ε)-map.

The next three results are essentially contained in [2]. For completeness,
we give their proofs.

Proposition 10 ([2]). Let X, Y and Z be compacta and 0 ≤ k < ∞.

Let T be the set of maps g = u × v : X → Y × Z in C(X, Y × Z) such that

dim v(u−1(y)) ≤ k for each y ∈ Y . Then T is a Gδ-subset of C(X, Y ×Z).

Proof. Let ε > 0 and let Tε be the set of maps g = u × v : X → Y × Z
in C(X, Y × Z) such that for each y ∈ Y , v(u−1(y)) is covered by a family
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U of open sets of Z such that mesh U < ε and ord U ≤ k. Then Tε is open
in C(X, Y × Z). Note that T =

⋂
∞

n=1 T1/n.

Lemma 11 ([2], cf. [7], [9]). Let f : X → Y be a 0-dimensional map from

a compactum X to a p-dimensional compactum Y (p < ∞). Let T be the set

of all maps u : X → I such that dimu(f−1(y)) = 0 for each y ∈ Y . Then T

is a dense Gδ-subset of C(X, I).

Proof. Let Wb be the set of maps u : X → I such that for each
y ∈ Y , u(f−1(y)) is covered by disjoint open sets of diameters less than b.
By an argument similar to that in the proof of Proposition 5, Wb is an
open subset of C(X, I). Since T =

⋂
∞

n=1 W1/n, it suffices to prove that
Wb is dense in C(X, I). Let h ∈ C(X, I) and ε > 0. Choose δ > 0 such
that if A ⊂ X and diamA < δ, then diamh(A) < min{2ε, b/(2p)}=ε′.
Choose a finite family {(Un, Vn) | n = 1, . . . , m}, where Un and Vn are
open subsets of X such that {Un | n = 1, . . . , m} is a cover of X with
Cl(Un) ⊂ Vn and diamVn < δ for all n = 1, . . . , m. By Lemma 9, there
are open subsets En separating X between Cl(Un) and X \ Vn such that
f |(Cl(E1) ∪ · · · ∪ Cl(Em)) is a (p, δ)-map. Note that X \ (E1 ∪ · · · ∪ Em) =⋃m

n=1 Dn, where Dn (n = 1, . . . , m) are disjoint closed subsets of X such
that diamDn < δ. There are points xn ∈ I such that h(Dn) ⊂ (xn −
ε′/2, xn + ε′/2). The function that maps each Dn to xn has a continu-
ous extension u : X → I whose supremum distance to h is less than
ε′/2 ≤ ε. Let y ∈ Y . Since f |(Cl(E1) ∪ · · · ∪ Cl(Em)) is a (p, δ)-map,
there are closed subsets A1, . . . , Ap of f−1(y) such that f−1(y) ∩ (Cl(E1) ∪
· · · ∪ Cl(Em)) =

⋃p
i=1 Ai and diamAi < δ for i = 1, . . . , p. Note that

diamu(Ai) < 2ε′ for each i, and u(Dn) = {xn} for each n. We can see
that for each component C of

⋃p
i=1 u(Ai), we have diam C < 2pε′ ≤ b

and

u(f−1(y)) ⊂ {x1, . . . , xm} ∪

p⋃

i=1

u(Ai).

Hence, each component of u(f−1(y)) has a neighbourhood that is closed
and open in u(f−1(y)) and has diameter less than b. It follows that u ∈ Wb,
which completes the proof.

Lemma 12 ([2]). Let f : X → Y , g : X → Z and u : X → I be maps

of compacta such that dimZ = k and dim u((f × g)−1(y, z)) = 0 for each

y ∈ Y and z ∈ Z. Then dim(g × u)(f−1(y)) ≤ k for each y ∈ Y .

Proof. Let y ∈ Y . Consider the natural projection p : Y ×Z×I → Y ×Z.
Then p|(f × g × u)(X) : (f × g × u)(X) → (f × g)(X) is a 0-dimensional
map, because for (y, z) ∈ (f × g)(X) ⊂ Y × Z,

p−1(y, z) ∩ (f × g × u)(X) = {(y, z)} × u((f × g)−1(y, z)).
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Also, note that (f × g × u)(f−1(y)) = {y}× (g × u)(f−1(y)), and hence the
set

p({y} × (g × u)(f−1(y)) = (f × g)(f−1(y)) = {y} × g(f−1(y)) ⊂ {y} × Z

is at most k-dimensional. Since

p|{y} × (g × u)(f−1(y)) : {y} × (g × u)(f−1(y)) → {y} × g(f−1(y))

is a zero-dimensional map, by a theorem of Hurewicz we conclude that
dim(g × u)(f−1(y)) ≤ k.

By Theorem 7, Propositions 6 and 10, and Lemmas 11 and 12, we obtain
the next result.

Proposition 13 ([2], cf. [7], [9]). Let f : X → Y be a k-dimensional

map of compacta and dimY = p < ∞. Let T be the set of all maps h =
g×u : X →

∏k
j=1 Dj×I in C(X,

∏k
j=1 Dj×I) such that dimh(f−1(y)) ≤ k,

dimu((f×g)−1(y, t)) = 0 for all y ∈ Y and t ∈
∏k

j=1 Dj , and dim(f×g) = 0.

Then T is a dense Gδ-subset of C(X,
∏k

j=1 Dj × I).

Proposition 14. Let f : X → Y be a k-dimensional map of compacta

and dimY = p < ∞. For i = 0, 1, . . . , p + 1, let pi :
∏k

j=1 Dj × Ip+1 →
∏k

j=1 Dj × Ip+1−i be the natural projection, where p0 :
∏k

j=1 Dj × Ip+1 →
∏k

j=1 Dj ×Ip+1 is the identity. Let Ẽ(X,
∏k

j=1 Dj ×Ip+1) be the set of maps

g in C(X,
∏k

j=1 Dj × Ip+1) such that

(1) for each 0 ≤ i ≤ p, f × (pi ◦ g) : X → Y ×
∏k

j=1 Dj × Ip+1−i is an

(i + 1)-to-1 map,

(2) the map h = pp◦g = g′×u : X →
∏k

j=1 Dj×I satisfies dimh(f−1(y))

≤ k, dimu((f × g′)−1(y, t)) = 0 for all y ∈ Y and t ∈
∏k

j=1 Dj, and

dim(f × g′) = 0.

Then Ẽ(X,
∏k

j=1 Dj × Ip+1) is a dense Gδ-subset of C(X,
∏k

j=1 Dj × Ip+1).

Proof. Note that if q : A → B is an open map and C is a dense subset of
B, then q−1(C) is dense in A. The natural projection pi :

∏k
j=1 Dj ×Ip+1 →

∏k
j=1 Dj × Ip+1−i induces the open map Pi : C(X,

∏k
j=1 Dj × Ip+1) →

C(X,
∏k

j=1 Dj × Ip+1−i) defined by Pi(h) = pi ◦ h for h ∈ C(X,
∏k

j=1 Dj

× Ip+1). For i = 0, 1, . . . , p, let Ei be the set of g ∈ C(X,
∏k

j=1 Dj × Ip+1−i)

such that f × g : X → Y ×
∏k

j=1 Dj × Ip+1−i is (i + 1)-to-1. Also, let T

be the subset of C(X,
∏k

j=1 Dj×I) as in Proposition 13. By Theorem 2 and
Proposition 13,
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Ẽ
(
X,

k∏

j=1

Dj × Ip+1
)

=

p⋂

i=0

P−1
i (Ei) ∩ P−1

p (T )

is a dense Gδ-subset of C(X,
∏k

j=1 Dj × Ip+1). This completes the proof.

Now, we have the following representation theorem for finite-dimensional
maps.

Theorem 15. Let f : X→Y be a map of compacta such that 0 ≤ k < ∞
and dimY = p < ∞. Then f is k-dimensional if and only if f can be

represented as the composition

f = gp+k+1 ◦ · · · ◦ gp+1 ◦ gp ◦ · · · ◦ g1

such that

(1) gi is an (i + 1)-to-1 map for each i = 1, . . . , p and gp+1 is a zero-

dimensional map,
(2) gi is parallel to I for i = 1, . . . , p + 1,
(3) gi is parallel to a superdendrite for i = p + 2, . . . , p + k + 1.

Proof. Let Ẽ(X,
∏k

j=1 Dj × Ip+1) be as in Proposition 14. Choose g ∈

Ẽ(X,
∏k

j=1 Dj × Ip+1). Let

Zi =

{ ∏k
j=1 Dj × Ip+1−i for i = 0, 1, . . . , p + 1,

∏p+k+1−i
j=1 Dj for i = p + 2, . . . , p + k.

For i = 0, 1, . . . , p + k, let pi : Z0 → Zi be the natural projection. For
i = 0, 1, . . . , p + k, put Xi = (f × (pi ◦ g))(X) and put Xp+k+1 = Y . Let
g1 = q1 ◦ (f × g) and for i = 2, . . . , p + k + 1, let gi = qi|Xi−1 : Xi−1 → Xi,
where qi : Y × Zi−1 → Y × Zi is the natural projection for i = 1, . . . , p + k
and qp+k+1 : Y × D1 → Y is the natural projection. By Propositon 14, we
see that gp+1 is a 0-dimensional map. Hence the maps gi are as desired. This
completes the proof.

Remark. After the paper [2] had been submitted for publication, the
paper of Tuncali and Valov [8] was published. They obtained a more general
result in the class of all metrizable spaces.
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