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GAGLIARDO�NIRENBERG INEQUALITIESIN LOGARITHMIC SPACESBYAGNIESZKA KA�AMAJSKA and KATARZYNA PIETRUSKA-PA�UBA (Warszawa)Abstrat. We obtain interpolation inequalities for derivatives:\
Mq,α(|∇f(x)|) dx ≤ C

[\
Mp,β(Φ1(x, |f |, |∇(2)

f |)) dx +
\
Mr,γ(Φ2(x, |f |, |∇(2)

f |)) dx
]
,and their ounterparts expressed in Orliz norms:

‖∇f‖2
(q,α) ≤ C‖Φ1(x, |f |, |∇(2)

f |)‖(p,β) ‖Φ2(x, |f |, |∇(2)
f |)‖(r,γ),where ‖ · ‖(s,κ) is the Orliz norm relative to the funtion Ms,κ(t) = ts(ln(2 + t))κ. Theparameters p, q, r, α, β, γ and the Carathéodory funtions Φ1, Φ2 are supposed to satisfyertain onsisteny onditions. Some of the lassial Gagliardo�Nirenberg inequalities fol-low as a speial ase. Gagliardo�Nirenberg inequalities in logarithmi spaes with higherorder gradients are also onsidered.1. Introdution and statement of results. The purpose of this paperis to obtain variants of interpolation inequalities for derivatives:(1.1) ‖∇(k)f‖Lq ≤ C‖f‖1−k/m

Lp ‖∇(m)f‖k/m
Lr(where f ∈ Wm,1

loc (Rn), the symbol ∇(k)f stands for the k-th gradient of
f : R

n → R, i.e. the vetor (Dαf)|α|=k, p, q, r ∈ [1,∞], 1
q =

(
1− k

m

)
1
p + k

m
1
r ,

0 < k < m and k, m are positive integers), expressed in logarithmi-typeOrliz spaes instead of Lp, Lq and Lr.Inequalities of the form (1.1) have been extensively investigated and haveevolved in many diretions (see [5, 6, 8, 10, 11, 19, 21, 24, 27, 29, 30, 33, 36℄and their referenes), but their generalizations to Orliz spaes are nearlymissing in the literature. In 1996 Bang [1℄ (see also [2�4℄) proved variants of(1.1) for a one-variable funtion, within the same Orliz spae LM .
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The authors have reently obtained inequalities of the form\

M(|∇f |) dx ≤ C
(\

H(|f |) dx +
\
J(|∇(2)f |) dx

)
,(1.2)

‖∇f‖2
(M) ≤ C‖f‖(H)‖∇(2)f‖(J)(1.3)for funtions of n variables in Orliz spaes LM , LH and LJ de�ned bypossibly distint N-funtions M, H, J whih satisfy ertain ompatibilityonditions (see [26℄). In this work we adapt this abstrat approah to theN-funtions Ms,κ(t) = ts(ln(2 + t))κ, with related Orliz norms denoted by

‖ · ‖(s,κ).The parameters in Theorems 1.1�1.3 below will be subjet to the follow-ing two onsisteny onditions:(A) β, γ ∈ R, p, r > 1, (q > 2, α ∈ R or q = 2, α ≥ 0) and
2

q
=

1

p
+

1

r
,
2α

q
≤ β

p
+

γ

r
,(B) β, γ ∈ R, α < 0, 1 < p, r, q = 2,

1

p
+

1

r
= 1, β(r − 1) + γ ≥ 0.We are mostly onerned with logarithmi variants of inequality (1.1) inthe ase when k = 1, m = 2. One of our results is the following logarithmivariant of the Gagliardo�Nirenberg inequality.Theorem 1.1. Suppose that p, q, r, α, β, γ are real numbers suh thatCondition (A) or (B) is satis�ed. Then for any smooth funtion f : R

n → Rwith bounded support one has
(1.4)

\
|∇f |q(ln(2 + |∇f |))α dx

≤ C
[\
|f |p(ln(2 + |f |))β dx +

\
|∇(2)f |r(ln(2 + |∇(2)f |))γ dx

]
,and also(1.5) ‖∇f‖2

(q,α) ≤ C‖f‖(p,β)‖ ‖∇(2)f‖(r,γ),with a onstant C independent of f .In the partiular ase α = β = γ = 0, we obtain the lassial Gagliardo�Nirenberg inequality (1.1) restrited here to q ≥ 2, while for p = q = r ≥ 2,
α = β = γ (negative values of α permitted only for q > 2) and a salarfuntion f, we retrieve Bang's result from [1℄. Observe that q is in this asethe harmoni mean of p and r, and if p = q = r and (A) holds then α doesnot exeed the arithmeti mean of β and γ.The speial ases of (1.4) when α, β or γ is zero follow from our previ-ous work [25℄, where we dealt with variants of (1.4) in logarithmi spaes
Ls(ln(µ+La))α with µ ∈ {1, 2}, under the restrition that one of the spaesonsidered: for f , |∇f | or |∇(2)f |, was the homogeneous spae Ls (see Re-mark 4.3).
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We will prove the following more general variant of Theorem 1.1:Theorem 1.2. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B) and let Φ1, Φ2 : R
n×R

2 → R be Carathéodory funtions (i.e. mea-surable with respet to x ∈ R
n and ontinuous with respet to (λ1, λ2) ∈ R

2)suh that Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 a.e. Take any smooth funtion
f : R

n → R with bounded support. Then, setting
w1(x) = Φ1(x, |f |, |∇(2)f |), w2(x) = Φ2(x, |f |, |∇(2)f |),we have(1.6) \
Mq,α(|∇f(x)|) dx ≤ C

[\
Mp,β(w1(x)) dx +

\
Mr,γ(w2(x)) dx

]
,and also(1.7) ‖∇f‖2

(q,α) ≤ C‖w1‖(p,β) ‖w2‖(r,γ),both inequalities holding with a onstant C independent of f .For Φ1(x, λ1, λ2) = ω(x)λθ1
1 λθ2

2 , Φ2(x, λ1, λ2) = 1
ω(x)λ

1−θ1
1 λ1−θ2

2 , where
ω : R

n → (0,∞) is a measurable, a.e. positive funtion, we obtain thefollowing theorem.Theorem 1.3. Suppose that p, q, r, α, β, γ are given real numbers suhthat Condition (A) or (B) is satis�ed , let (θ1, θ2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}and let ω be an arbitrary a.e. positive measurable funtion. Then for anysmooth funtion f : R
n → R with bounded support one has

(1.8)
\
Mq,α(|∇f |) dx

≤ C
[\

Mp,β(|f |θ1|∇(2)f |θ2ω) dx +
\
Mr,γ(|f |1−θ1|∇(2)f |1−θ2ω−1) dx

]
,and also(1.9) ‖∇f‖2

(q,α) ≤ C‖ |f |θ1|∇(2)f |θ2ω‖(p,β)‖ ‖ |f |1−θ1|∇(2)f |1−θ2ω−1‖(r,γ),both inequalities holding with a onstant C independent of f , (θ1, θ2) and ω.Observe that Theorem 1.1 is a partiular ase of Theorem 1.3 (it orre-sponds to θ1 = 1, θ2 = 0 and ω ≡ 1), but Theorem 1.3 (and so also Theorem1.2) is more general.Yet another hoie of parameters: θ1 = θ2 = 1/2, p = q = r, α = β = γand ω ≡ 1 in Theorem 1.3 yields the following result.Theorem 1.4. Suppose that either q > 2, α ∈ R or q = 2, α ≥ 0. Thenfor every smooth funtion f : R
n → R with bounded support we have(1.10) \

Mq,α(|∇f |) dx ≤ C
\
Mq,α(

√
|f | |∇(2)f |) dx,and also(1.11) ‖∇f‖(q,α) ≤ C‖

√
|f | |∇(2)f | ‖(q,α),both inequalities holding with a onstant C independent of f .
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For ompleteness we write down the statement of Theorem 1.3 in homo-geneous spaes (α = β = γ = 0).Corollary 1.1. If p, q, r are real numbers suh that q ≥ 2, p, r > 1 and

2/q = 1/p + 1/r, then for any (θ1, θ2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}, f ∈ C∞
0 (Rn)and any a.e. positive measurable funtion ω we have

(1.12)
(\

|∇f |q dx
)2/q

≤ C
(\

(|f |θ1|∇(2)f |θ2ω)p dx
)1/p(\

(|f |1−θ1|∇(2)f |1−θ2ω−1)r dx
)1/r

,with a onstant C independent of f , (θ1, θ2) and ω.We also point out two speial ases of Corollary 1.1.Corollary 1.2 (θ1 = θ2 = 1/2, ω ≡ 1, p = q = r). If q ≥ 2 and
f ∈ C∞

0 (Rn), then \
|∇f |q dx ≤ C

\
(|f | |∇(2)f |)q/2 dx,with a onstant C independent of f .Corollary 1.3 (θ2 = 0). If p, q, r are real numbers suh that q ≥ 2,

p, r > 1 and 2/q = 1/p + 1/r, then for any θ ∈ [0, 1], f ∈ C∞
0 (Rn) and anarbitrary measure µ(dx) = ω(x) dx with a positive weight ω, we have

(1.13)
(\

|∇f |q dx
)2/q

≤ C
(\

|f |θp dµ
)1/p(\

(|f |1−θ|∇(2)f |)rω−r/p dx
)1/r

,with a onstant C independent of f , θ and ω.Note that on the right hand side of (1.13) we an have the terms T|f |s dµwith s = θp smaller than 1 and an arbitrary weighted measure µ(dx) =
ω(x)dx, with a positive weight ω. In that ase ‖f‖Ls

µ
= (
T
|f |s dµ)1/s is nolonger a norm.In this paper we deal mostly with derivatives of order 0, 1 and 2, but somegeneralizations to higher order derivatives are also possible. In Theorem 4.3we generalize some ases of Theorem 1.1 to higher order derivatives. We alsoobtain stronger variants of inequalities (1.4), (1.6) and (1.8) (Theorem 4.1).Moreover, we get nonlinear variants of inequalities (1.6), namely inequalitiesbetween Young funtionals I1 =

T
Mq,α(|∇f |) dx, I0 =

T
Mp,β(w1) dx and

I2 =
T
Mr,γ(w2) dx, with w1 and w2 introdued in Theorem 1.2, where I1is estimated from above by a nonlinear expression involving I0 and I2. Thepreise statement is given in Theorem 4.2.In the proof of Theorem 1.3 we adapt abstrat tehniques desribed in[26℄. These tehniques speialized to logarithmi Orliz spaes require anadditional and independent analysis (see also Remark 4.3). The results ob-tained (Theorems 1.1�1.4) are in general new, while the results in homo-geneous spaes (Corollaries 1.1�1.3) are overed by the abstrat approah
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of [26℄. On the other hand, the additional results in Setion 4 (Theorems4.1�4.3) are based on the speial struture of logarithmi Orliz spaes andhave no abstrat ounterparts in [26℄. In our opinion, the importane of log-arithmi Orliz spaes in various disiplines of analysis and PDE's (e.g. [7℄,[9℄, [12, Setion 4.3℄, [13℄�[18℄, [20℄, [22℄, [23℄, [31℄, [37, Theorems 11.7 andCorollary 15.4℄, and referenes therein) justi�es separate investigation of thelogarithmi-type Gagliardo�Nirenberg inequalities.Notation. If A is a vetor or a matrix, we denote by |A| its Eulideannorm indued by the standard salar produt 〈·, ·〉, while At stands for itstransposition.By q∗ we will denote the Hölder onjugate of 1 < q < ∞, and by C ageneral onstant whose value an hange even within the same line. Whenthe domain of integration is not spei�ed, it is meant to be the whole of R
n.If F is an N-funtion, we denote by F ∗ its Legendre transform, de�ned by

F ∗(t) = sups≥0[st − F (s)].Let M, N : [0,∞) → [0,∞) be two given funtions. If N(λ) ≤ CM(kλ)for λ ≥ λ0 (resp. for 0 ≤ λ ≤ λ0; for λ ≥ 0) with onstants C, k independentof x, then we say that M dominates N at in�nity (resp. near zero; globally).This relation is denoted by M ≻ N. We say that M is equivalent to N(written M ∼ N) when M ≻ N and N ≻ M. It is not hard to hek (see e.g.Theorems 2.1 and 3.1 of [28℄) that this domination is reversed by taking theLegendre transform of N-funtions: M ≻ N (at in�nity, near zero, globally)implies N∗ ≻ M∗ (at in�nity, near zero, globally). Note that if M satis�esthe ∆2-ondition then M ≻ N if and only if N(λ) ≤ CM(λ) with someonstant C independent of λ.2. Preliminaries. We will be dealing with the funtions(2.1) Mq,α(t) := tq(ln(2 + t))α where q > 1, α ∈ R.Within this range of parameters q, α they are all N-funtions (i.e. onvex,
Mq,α(0) = 0, limt→0+ Mq,α(t)/t = 0, limt→∞ Mq,α(t)/t = ∞). Therefore theset

L(q,α) =
{
f : R

n → R measurable:for some K > 0,
\
Mq,α(|f(x)|/K) dx < ∞

}

beomes a Banah spae when equipped with the Luxemburg norm
‖f‖(q,α) := inf

{
K > 0 :

\
Mq,α(|f(x)|/K) dx ≤ 1

}
.This is an Orliz spae de�ned by Mq,α. Note that for α = 0 it oinideswith the usual Lq spae. The funtions Mq,α satisfy the ∆2-ondition, i.e.

Mq,α(2t) ≤ CMq,α(t) with a onstant C = C(q, α) independent of t ≥ 0. It
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is known that(2.2) \

Mq,α

( |f(x)|
‖f‖(q,α)

)
dx = 1, ‖f‖(q,α) ≤

\
Mq,α(|f(x)|) dx + 1.For details we refer the reader to [28, Chapter 1℄.For later use observe that(2.3) Mq,α ◦ Mµ,κ ∼ Mqµ,qκ+α.Finally, let us prove a lemma.Lemma 2.1. Suppose that µ > 1, κ ∈ R and κ̃ ≥ κ1 = −κ(µ∗ − 1). Thenthere exists a onstant C > 0 suh that for all u, v ≥ 0,(2.4) uv ≤ Mµ,κ(u) + CMµ∗,κ̃(v).Proof. This is immediate: as Mµ,κ(u) ∼ uµ(lnu)κ for u large, we have

M∗
µ,κ(v) ∼ Mµ∗,κ1(v) for v large (see [28, Theorem 7.1℄). On the other hand,for u small we have Mµ,κ(u) ∼ uµ, thus M∗

µ,κ(v) ∼ vµ∗ ∼ Mµ∗,κ1 for v small.Therefore M∗
µ,κ ∼ Mµ∗,κ1 globally.If κ̃ ≥ κ1, then Mµ∗,κ̃ dominates Mµ∗,κ1 globally, and so, for u, v ≥ 0,

uv ≤ Mµ,κ(u) + M∗
µ,κ(v) ≤ Mµ,κ(u) + CMµ∗,κ1(v) ≤ Mµ,κ(u) + CMµ∗,κ̃(v)with a onstant C > 0.3. Proofs of Theorems 1.1�1.4. As indiated in Setion 1, we onlyneed to show Theorem 1.2. The remaining results: Theorems 1.1, 1.3, 1.4(together with Corollaries 1.1�1.3) follow as onsequenes.Proof of Theorem 1.2. The proof is arried out in several steps.

Step 1. We show that(3.1) I :=
\
Mq,α(|∇f |) dx ≤ C

\
Mq−2,α(|∇f |)|f | |∇(2)f | dxwith a onstant C not depending on f (with a slight abuse of notation: thenumber q − 2 an be smaller than 1 here, but the formula (2.1) de�ning

Mq−2,α remains valid).The proof of this inequality is basially taken from [25℄; we sketh it hereto make the paper self-ontained.As Mq,α(|λ|) = Mq−2,α(λ)〈λ, λ〉, where λ = (λ1, . . . , λn), after integratingby parts we obtain(3.2) I = −
\
div(S(∇f(x)))f(x) dx,where S = (S1, . . . , Sn) and Si(λ) = Mq−2,α(|λ|)λi (sine q ≥ 2 this inte-gration by parts is allowed aording to the Nikodym ACL CharaterizationTheorem, see [32, Th. 2, Se. 1.1.3℄).
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In partiular Si(∇f) = Mq−2,α(|∇f |) ∂f
∂xi

, and sodivS(∇f) =
M ′

q−2,α(|∇f |)
|∇f | [∇f ]t [∇(2)f ][∇f ] + Mq−2,α(|∇f |)∆f.Elementarily we hek that M ′

q−2,α(t)∼Mq−2,α(t)t−1 on the positive half-line.Moreover |vtAv| ≤ |A| |v|2 and |trA| ≤ √
n |A| (so that |∆f | ≤ √

n |∇(2)f |).This gives
|divS(∇f)| ≤ CMq−2,α(|∇f |)|∇(2)f |,and together with (3.2) ompletes the proof of (3.1).

Step 2. Now assume that (A) holds. We show that in this ase, for all
u, v, w ≥ 0,(3.3) Mq−2,α(u)vw ≤ Mq,α(u) + C [Mp,β(v) + Mr,γ(w)] .To see this, �rst observe that(3.4) Mq−2,α(s)t2 ≤ Mq,α(s) + Mq,α(t).This is immediate: if t ≤ s, then Mq−2,α(s)t2 = Mq,α(s)(t/s)2 ≤ Mq,α(s).Sine Mq−2,α is inreasing, for s ≤ t one has Mq−2,α(s)t2 ≤ Mq−2,α(t)t2 =
Mq,α(t).Next, take µ = 2p/q, κ = (β − α)/q, κ̃ = (γ − α)/q. Under urrent re-strition on the parameters, it is not hard to hek that κ̃≥κ1 =−κ(µ∗− 1).Therefore the assumptions of Lemma 2.1 are satis�ed and (2.4) an be ap-plied, resulting in the following series of inequalities:

Mq−2,α(u)vw ≤ Mq,α(u) + CMq,α(
√

vw)

≤ Mq,α(u) + CMq,α

(
Mµ,κ(

√
v) + Mµ∗,κ̃(

√
w)

)

≤ Mq,α(u) + C[Mq,α ◦ Mµ,κ(
√

v) + Mq,α ◦ Mµ∗,κ̃(
√

w)](the last inequality follows from the fat that for every nondereasing fun-tion F satisfying the ∆2-ondition one has F (a + b) ≤ F (2max(a, b)) ≤
F (2a)+F (2b) ≤ C(F (a)+F (b))). Using now the property (2.3) we see that
Mq,α ◦Mµ,κ(

√
v) ∼ Mp,β(v) and Mq,α ◦Mµ∗,κ̃(

√
w) ∼ Mr,γ(w), so that (3.3)follows.

Step 3: Conlusion under ondition (A). Applying (3.1) we get(3.5) I ≤ 1

2

\
Mq−2,α(|∇f |) · (2C|f | |∇(2)f |) dx.Sine, by de�nition of w1 and w2, |f(x)| |∇(2)f(x)| = w1(x)w2(x), applying(3.3) and using the ∆2-ondition we �nd that I is not greater than

1

2
I + C

\
Mp,β(w1(x)) dx + C

\
Mr,γ(w2(x)) dx,(with C possibly di�erent than in (3.5)), whih after rearranging yields (1.6).
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In order to prove (1.7), �x t1, t2 > 0 and write the inequality (3.5) for

f̃ = f/t1t2. We get
I ≤ 1

2

\
Mq−2,α(|∇f̃ |)(2Cw̃1w̃2) dx,where w̃i = wi/t2i (beause |f̃ | |∇(2)f̃ | = w̃1w̃2).Using (3.3) and repeating the subsequent steps with f, w1 and w2 replaedby f̃ , w̃1 and w̃2 we obtain\

Mq,α(|∇f̃ |) dx ≤ C
(\

Mp,β(w̃1) dx +
\
Mr,γ(w̃2) dx

)
,with a onstant C independent of f and t1, t2. Now hoose t21 = ‖w1‖(q,β),

t22 = ‖w2‖(r,γ). As ti = 0 implies w1w2 = 0, whih by (3.1) fores f ≡ 0(as f is ompatly supported and smooth), we an assume that t1, t2 > 0.Moreover, we have TMp,β(w̃1) dx =
T
Mp,β(w1/‖w1‖(p,β)) dx = 1, andsimilarly TMr,γ(w̃2) dx =

T
Mr,γ(w2/‖w1‖(r,γ)) dx = 1. We end up withT

Mq,α(|∇f̃ |) dx ≤ C. This together with (2.2) gives ‖∇f̃‖(q,α) ≤ C + 1,so that
‖∇f‖2

(q,α) ≤ (C + 1)‖w1‖(p,β) ‖w2‖(r,γ).

Step 4: Conlusion under ondition (B). First, apply (3.1), but insteadof using (3.3) observe that for q = 2 and α < 0 the funtion Mq−2,α isbounded. Therefore (using the same notation as above)
I ≤ C

\
|f | |∇(2)f | dx = C

\
w1w2 dx.The onditions imposed on the parameters β and γ imply that (see Lem-ma 2.1) w1w2 ≤ Mp,β(w1) + CMq,γ(w2), and onsequently

I ≤ C
(\

Mp,β(w1) dx +
\
Mr,γ(w2) dx

)
,whih proves (1.6) in this ase. The proof of (1.7) goes now along the samelines as in Step 3 and so we skip it.

4. Extensions and remarks. We start with the following result whihshows that inequality (1.6) in Theorem 1.2 and its speial variants: inequal-ities (1.4) and (1.8), an be transformed into a stronger form, where one ofthe summands an be made arbitrarily small. We obtain:Theorem 4.1. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B) and let Φ1, Φ2 : R
n×R

2 → R be Carathéodory funtions suh that
Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 a.e. Take any smooth funtion f : R

n → R
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with bounded support and de�ne
w1(x) = Φ1(x, |f |, |∇(2)f |), w2(x) = Φ2(x, |f |, |∇(2)f |),

hs,κ(δ) =

{
Ms,κ(δ) for κ ≥ 0,
δs ln(2 + 1/δ)−κ for κ < 0.

(4.1)Then there exists a onstant C = C(β, γ) suh that for any δ > 0,
(4.2)

\
Mq,α(|∇f(x)|) dx

≤ C
(
hp,β(δ)

\
Mp,β(w1(x)) dx + hr,γ(δ−1)

\
Mr,γ(w2(x)) dx

)
.In partiular , for every ε > 0 there exists a onstant Cε, depending on

ε, p, r, β and γ, suh that\
Mq,α(|∇f(x)|) dx ≤ ε

\
Mp,β(w1(x)) dx + Cε

\
Mr,γ(w2(x)) dx,(4.3) \

Mq,α(|∇f(x)|) dx ≤ Cε

\
Mp,β(w1(x)) dx + ε

\
Mr,γ(w2(x)) dx.(4.4)Proof. Take any δ > 0 and apply (1.6) with w̃1 = δw1 and w̃2 = w2/δreplaing w1 and w2. Then it su�es to prove that for s > 1 and κ ∈ R wehave(4.5) Ms,κ(δλ) ≤ Chs,κ(δ)Ms,κ(λ) for δ, λ ≥ 0,with C depending on κ only. To obtain (4.5), �rst note that(4.6) ln(2 + δλ) ≤ C ln(2 + δ) ln(2 + λ),with C independent of δ and λ. Indeed, if δ ≤ λ, then the left hand side isnot greater than ln(2 + λ2) ∼ ln(2 + λ). Also, ln(2 + δ) ≥ ln 2 > 0, whihompletes the proof of (4.6).Now (4.5) follows immediately from (4.6) when κ ≥ 0, while for negative

κ we have
Ms,κ(δλ) = δs

(
ln(2 + δλ)

ln(2 + λ)

)κ

Ms,κ(λ) ≤ δs

(
sup
λ>0

ln(2 + λ)

ln(2 + δλ)

)−κ

Ms,κ(λ)

≤ δs

(
sup
λ>0

ln(2 + λδ−1)

ln(2 + λ)

)−κ

Ms,κ(λ)

≤ Cκδs(ln(2 + δ−1))−κMs,κ(λ),where for the last inequality we have used (4.6).This gives (4.2). To derive (4.3) and (4.4) we observe that limδ→0 hs,κ(δ)
= 0, so we an �nd δ suh that Chp,β(δ) = ε (for (4.3)) or Chr,γ(δ−1) = ε(for (4.4)).Now we will derive multipliative variants of inequality (1.6) in Theo-rem 1.2, involving not Orliz norms, but Orliz funtionals. Consequently,inequalities (1.4) and (1.8) will also have multipliative ounterparts involv-ing Orliz funtionals.
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The result presented below is restrited to the ase β, γ ≥ 0. If β < 0 or

γ < 0, then a similar statement holds, but with the third and fourth fatorsin (4.7) di�erent.Theorem 4.2. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B), β, γ ≥ 0, and let Φ1, Φ2, w1, w2 and f be as in Theorem 4.1.Then there exists a onstant C = C(p, r, β, γ) > 0 suh that
(4.7)

(\
Mq,α(|∇f(x)|) dx

)2/q

≤ C
(\

Mp,β(w1(x)) dx
)1/p(\

Mr,γ(w2(x)) dx
)1/r

×
(

ln

(
2 +

T
Mp,β(w1(x)) dxT
Mr,γ(w2(x)) dx

))γ/r(
ln

(
2 +

T
Mr,γ(w2(x)) dxT
Mp,β(w1(x)) dx

))β/p

.Proof. Set
a :=

\
Mq,α(|∇f(x)|) dx, b := C

\
Mp,β(w1(x)) dx, c := C

\
Mr,γ(w2(x)) dx,where C is the onstant from (4.2). Then (4.2) reads(4.8) a ≤ Mp,β(δ)b + Mr,γ(δ−1)c,where δ > 0 an be taken arbitrary.Now observe that M ′

s,κ(λ) ∼ Ms,κ(λ)/λ, and so the minimum of the righthand side of (4.8) with respet to δ > 0 is ahieved at a point δ0 for whih(4.9) C1
c

b
≤ R(δ0) ≤ C2

c

b
, where R(λ) :=

Mp,β(λ)

Mr,γ(λ−1)
,with onstants C1, C2 independent of c and b. As

R(λ) ∼ λp+r

|lnλ|γ =
1

(1/λ)p+r(ln(1/λ))γ
for λ lose to 0,and R(λ) ∼ λp+r(lnλ)β for λ large, and (λ|lnλ|)−1 ∼ λ/|lnλ| for both smalland large values of λ (here φ−1 denotes the inverse funtion to φ), we verifythat the inverse funtion to R satis�es(4.10) R−1(λ) ∼

(
λ

(ln(2 + λ−1))γ

(ln(2 + λ))β

)1/(p+r)

.Using (4.6) and (4.9) we establish that(4.11) C̃1R
−1(c/b) ≤ δ0 ≤ C̃2R

−1(c/b),with C̃1, C̃2 independent of b and c. Moreover, we have(4.12) Mp,β ◦ R−1(λ) ∼ λ
p

p+r (ln(2 + λ−1))
γp

p+r (ln(2 + λ))
βr

p+r .
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On the other hand, aording to (4.11), and using the fat that Mp,β satis�esthe ∆2-ondition, we get(4.13) Mp,β(δ0)b ≤ Mp,β(C̃2R
−1(c/b))b ≤ C3(Mp,β ◦ R−1(c/b))b := A,and by (4.9),(4.14) Mr,γ(δ−1

0 )c ≤ C−1
1 Mp,β(δ0)b ≤ C−1

1 A.Now we apply (4.8) with δ = δ0, and also (4.13), (4.14) and (4.12), to get
a ≤ Mp,β(δ0)b + Mr,γ(δ−1

0 )c ≤ C4A

≤ C5 b
r

p+r c
p

p+r (ln(2 + b/c))
γr

p+r (ln(2 + c/b))
βr

p+r ,with C5 independent of b and c, whih ompletes the proof of (4.7).Remark 4.1. Note that for β = γ = 0, (4.7) is exatly the Gagliardo�Nirenberg inequality restrited to q ≥ 2.The results of Theorem 1.1 an be iterated to higher derivatives. In par-tiular we obtain the following theorem:Theorem 4.3. Suppose that k, m ∈ Z+, 0 < k < m and p, q, r, α, β, γare real numbers suh that
1

q
=

(
1 − k

m

)
1

p
+

k

m

1

r
, p, r > 2,

α

q
≤

(
1 − k

m

)
β

p
+

k

m

γ

r
.(4.15)Then for any smooth funtion f : R

n → R with bounded support ,
(4.16)

\
Mq,α(|∇(k)f(x)|) dx

≤ C
(\

Mp,β(|f(x)|) dx +
\
Mr,γ(|∇(m)f(x)|) dx

)
,

(4.17) ‖∇(k)f(x)‖(q,α) ≤ C‖f‖1−k/m
(p,β)

‖∇(m)f‖k/m
(r,γ)

,with a onstant C independent of f .Proof. We give the proof of (4.3) only, leaving (4.17) to the reader. As
Mq,α̃ ≤ Mq,α whenever α̃ ≤ α, it su�es to prove the theorem under theondition(4.18) 1

q
=

(
1 − k

m

)
1

p
+

k

m

1

r
, p, r > 2,

α

q
=

(
1 − k

m

)
β

p
+

k

m

γ

r
.For simpliity we will use the following notation. Let D = {

(
x
y

)
: x ∈

R \ {0}, y ∈ R
} and de�ne h : D → D and Gs : R

2 × R
2 → R

2 for s ∈ [0, 1]by(4.19) h

(
x

y

)
=

(
1/x

y/x

)
, Gs(λ1, λ2) = sλ1 + (1 − s)λ2,
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where λ1, λ2 ∈ R

2. Then onditions (4.18) read(4.20) h

(
q

α

)
= Gk/m

(
h

(
p

β

)
, h

(
r

γ

))
, p, r > 2, γ, β ∈ R.We proeed by indution on m ≥ 2 and prove that for k ∈ {1, . . . , m−1},all k, m, q, p, r, α, β, γ satisfying (4.20) and arbitrary ε > 0 there exists aonstant Cε = C(ε, k, m, p, r, γ, β) > 0 suh that for all f ∈ C∞

0 (Rn),(4.21) Iq,α(|∇(k)f |) ≤ εIp,β(|f |) + CεIr,γ(|∇(m)f |),where Is,κ(g) =
T
Ms,κ(|g|) dx.If m = 2 and k = 1, then (4.21) is just (4.3) and there is nothing to prove.Suppose then that (4.21) holds for all m ∈ {2, . . . , M} and all 0 < k < m,provided that the parameters k, m, q, p, r, α, β, γ satisfy (4.20). Now we take

m = M + 1, 0 ≤ k ≤ M + 1 and set(4.22) λk :=

(
qk

αk

)
= h−1 ◦ Gk/(M+1)

(
h

(
p

β

)
, h

(
r

γ

))
.In partiular

λ0 =

(
q0

α0

)
=

(
p

β

)
, λM+1 =

(
qM+1

αM+1

)
=

(
r

γ

)
.To abbreviate, we write Ik = Iqk,αk

(|∇(k)f |). In this notation, the indutionstep redues to the proof of(4.23) Ik ≤ εI0 + CεIM+1with Cε = C(ε, k, M, p, r, β, γ) and for all k ∈ {1, . . . , M}.To get it, we �rst hek that qi > 2 for i ∈ {0, . . . , M +1}, and moreover,for all s, l, t suh that 0 ≤ s < l < t ≤ M + 1 we have
h(λl) = G l−s

t−s
(h(λs), h(λt)).By the indutive assumption, this implies that (4.21) holds true with param-eters: q = ql, α = αl, p = ps, β = αs, r = qt, γ = αt, k = l − s, m = t − s,provided 0 < t − s ≤ M . An appliation of (4.21) to all g = Dαf with

|α| = s, with this range of parameters, together with the inequality
Mql,αl

(|∇(l)f |) ≤ C
∑

α, |α|=s

Mql,αl
(|∇(l−s)Dαf |),

with C independent of f , implies that one 0 ≤ s < l < t ≤ M + 1 and
t − s ≤ M , then we have(4.24) Il ≤ εIs + CεItwith Cε = C(ε, s, t, l, p, r, α, β). This gives, for all 0 < k < M ,

Ik ≤ δI0 + CδIM ≤ δI0 + Cδ(εIk + CεIM+1)
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for every ε, δ > 0. Choosing ε = εδ suh that Cδε = 1/2 and rearrangingwe obtain (4.23) for all 0 < k < M . To get (4.23) with k = M we use theinequalities
IM ≤ εIM−1 + CεIM+1 and IM−1 ≤ δI0 + CδIM .They imply

IM ≤ εδI0 + εCδIM + CεIM+1for every ε, δ > 0. Take ε ≤ εδ, where εδ satis�es εδCδ = 1/2. After rear-ranging we obtain
IM ≤ 2εδI0 + 2CεIM+1,whih ompletes the indution argument and onludes the proof of thetheorem.Remark 4.2. In [26℄ we have shown that if M is an N-funtion satisfyingthe ∆2-ondition with M ′(t)/t bounded near zero and F is an arbitraryN-funtion, then for every f ∈ C∞

0 (Rn) we have\
M(|∇f |) dx ≤ C

(\
M(F (

√
|f |)) dx +

\
M(F ∗(

√
|∇(2)f |)) dx

)
,

‖∇f‖2
(M) ≤ C‖f‖(H)‖∇(2)f‖(J),where H(t) = M(F (

√
t)), J(t) = M(F ∗(

√
t)), and the onstant C is inde-pendent of f . Analogous results remain true for arbitrary Carathéodory fun-tions Φ1, Φ2 : R

n × R
2 → R suh that Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 and

w1(x) = Φ1(x, |f |, |∇(2)f |) and w2(x) = Φ2(x, |f |, |∇(2)f |) replaing |f(x)|and |∇(2)f(x)|. In the present paper we have shown that in the partiularase of logarithmi-type funtions M(t) = Mq,α(t) and F (t) = Mµ,κ(t), withparameters µ and κ suitably hosen, we end up with (1.4)�(1.13), illustratingthe abstrat approah of [26℄.Remark 4.3. In our previous work [25℄ we have dealt with the followinglogarithmi inequalities:
(4.25)

\
|∇f |q(ln(µ + |∇f |a))α dx

≤ C
((\

|f |p(ln(µ + |f |b))β dx
)1/p∗

‖∇(2)f‖r + ‖∇(2)f‖r
r

)
,

(4.26)
\
|∇f |q(ln(µ + |∇f |a))α dx

≤ C
((\

|∇(2)f |r(ln(µ + |∇(2)f |b))γ dx
)1/p∗

‖f‖p + ‖f‖p
p

)
,\

|∇f |q dx ≤ C
(\

| f |p(ln(µ + |f |a))β dx +
\
|∇(2)f |r(ln(µ + |∇(2)f |b))γ dx

)

where µ ∈ {1, 2}. In the partiular ase when µ = 2, a = b = 1, by thelassial Young inequality (xy ≤ xp/p + yp∗/p∗, p > 1) applied to (4.25)
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and (4.26) we see that they both imply (1.4) for β or γ equal to 0. The lastinequality in this series with a = b = 1 and µ = 2 is just (1.4) for α = 0.Note that (4.25) and (4.26) for a = b = 1 and µ = 2 are in general strongerthan the speial ase of (1.4) when β or γ equals zero. It turns out that theranges of parameters in inequalities (4.25) and (4.26) under the restritions
a = b = 1 and µ = 2 obtained in [25℄ and that in (1.4) of this paper areonsistent.
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