VOL. 106

2006

NO. 2

THE DUNFORD-PETTIS PROPERTY, THE GELFAND-PHILLIPS PROPERTY, AND L-SETS

ВY

IOANA GHENCIU (River Falls, WI) and PAUL LEWIS (Denton, TX)

Abstract. The Dunford–Pettis property and the Gelfand–Phillips property are studied in the context of spaces of operators. The idea of *L*-sets is used to give a dual characterization of the Dunford–Pettis property.

1. Introduction. Numerous papers have investigated whether spaces of operators inherit the Dunford–Pettis property or the Gelfand–Phillips property when the co-domain and the dual of the domain have the respective property; e.g., see the introduction and Section 2 of [10], Theorem 3 through Corollary 11 of [15], and Sections 2 and 3 of [17]. In this paper weak precompactness and Schauder basis theory are used in spaces of operators to establish simple mapping results which extend and consolidate results in [10], [15], and [17]. The hereditary Dunford–Pettis property is also studied. Additionally, the Schur property is characterized in terms of Dunford–Pettis property.

2. Definitions and notation. Let each of X, Y, E, and F denote a real Banach space, let X^* denote the continuous linear dual of X, let L(X, Y) denote the space of all continuous linear operators $T : X \to Y$, and let K(X, Y) denote the compact linear maps. The w^* -w continuous operators will be denoted by $L_{w^*}(X^*, Y)$, and $K_{w^*}(X^*, Y)$ will denote the compact and w^* -w continuous operators.

DEFINITION 2.1. An operator $T : X \to Y$ is completely continuous if $(T(x_n))$ is norm convergent in Y whenever (x_n) is weakly convergent in X.

All compact operators are completely continuous. However, if weakly Cauchy sequences in X are norm convergent, then all operators with domain X are completely continuous. We say that X has the *Schur property* if every weakly Cauchy sequence in X is norm convergent.

²⁰⁰⁰ Mathematics Subject Classification: 46B20, 46B25, 46B28.

Key words and phrases: Dunford–Pettis property, Gelfand–Phillips property, L-sets, w^* -w continuity, completely continuous operator.

A combination of classical results of Dunford and Pettis [11] and Grothendieck [22] shows that if X is a C(K)-space or an L_1 -space, then every weakly compact operator $T: X \to Y$ is completely continuous. (See the introduction to Section 4 of this paper for a quick proof.) Grothendieck suggested the following terminology.

DEFINITION 2.2. The Banach space X has the Dunford-Pettis property, DPP for short, if every weakly compact operator $T: X \to Y$ is completely continuous.

We note that some authors call completely continuous operators Dunford-Pettis operators. The survey article [7] by Diestel is an excellent source of information about classical contributions to the study of the DPP. Theorem 1 of [7] shows that X has the DPP iff $x_n^*(x_n) \to 0$ whenever (x_n^*) is weakly null in X^* and (x_n) is weakly null in X. Kevin Andrews localized this idea in [1].

DEFINITION 2.3. A bounded subset S of X is called a Dunford-Pettis subset of X if every weakly null sequence (x_n^*) in X^* tends to 0 uniformly on S, that is,

$$\lim_{n} \sup\{|x_{n}^{*}(x)| : x \in S\} = 0.$$

Every DP subset of X is weakly precompact, i.e., if S is a DP subset of X and (x_n) is a sequence from S, then (x_n) has a weakly Cauchy subsequence. See [1] and [26, p. 377] for proofs.

Diestel [7] modified Definition 2.1 and Emmanuele [15] modified Definition 2.3 to produce the next concepts.

Definition 2.4.

- (i) The Banach space X has the *hereditary* DPP if each closed linear subspace of X has the DPP.
- (ii) The Banach space X has the Dunford-Pettis relatively compact property, DPrcP for short, if every Dunford-Pettis subset of X is relatively compact.

Note that ℓ_1 and c_0 have the hereditary DPP (cf. [7]) and every Schur space has the DPrcP.

DEFINITION 2.5. A bounded subset S of X is called a *limited* subset of X if each w^* -null sequence (x_n^*) in X^* tends to 0 uniformly on S, and X is said to have the *Gelfand-Phillips property* if every limited subset of X is relatively compact.

All separable Banach spaces have the Gelfand–Phillips property, but nonseparable spaces need not have this property. See Bourgain and Diestel [6], Drewnowski and Emmanuele [10], and especially Schlumprecht [28] for discussions of limited sets. Specifically, note that every limited subset of X is a DP subset of X. If \mathcal{P} is one of the properties we have defined, we sometimes indicate that X has property \mathcal{P} by writing $X \in (\mathcal{P})$; e.g., the assertion that X has the Gelfand-Phillips property may appear as $X \in (\text{GP})$.

DEFINITION 2.6. A bounded subset S of X^* is called an L-subset of X^* if every null sequence (x_n) in X tends to 0 uniformly on S.

We remark that Bator [2] showed that $\ell_1 \nleftrightarrow X$ iff X^* has the DPrcP, and Emmanuele [13] showed that $\ell_1 \nleftrightarrow X$ iff every *L*-subset of X^* is relatively compact.

We refer the reader to [8] and [25] for undefined terminology and notation. In particular, (e_n) will denote the canonical unit vector basis of c_0 , and (e_n^*) the canonical unit vector basis of ℓ_1 .

3. Spaces of operators

THEOREM 3.1.

- (i) Suppose that H is a weakly precompact subset of L(E, F). If H is not compact and ||A_n^{*}(y^{*}) − B_n^{*}(y^{*})|| → 0 whenever y^{*} ∈ F^{*} and (A_n−B_n) is a weakly null sequence in H−H, then there is a separable linear subspace X of F and an operator A : X → c₀ which is not completely continuous.
- (ii) Suppose that H is a weakly precompact subset of L_{w*}(E*, F). If H is not compact and ||A_n(x*) B_n(x*)|| → 0 whenever x* ∈ E* and (A_n B_n) is a weakly null sequence in H H, then there is a separable subspace X of E and an operator A : X → c₀ which is not completely continuous.

Proof. (i) Suppose that H is not compact. Choose $\varepsilon > 0$ and sequences (A_n) , (B_n) from H so that $A_n - B_n \xrightarrow{w} 0$ and $||A_n - B_n|| > \varepsilon$ for each n. Choose a normalized sequence (x_n) from E so that $||A_n(x_n) - B_n(x_n)|| > \varepsilon$ for each n. Since $||A_n^*(y^*) - B_n^*(y^*)|| \to 0$ for all $y^* \in F^*$, we have $A_n(x_n) - B_n(x_n) \xrightarrow{w} 0$.

By the Bessaga–Pełczyński selection principle ([8], [5]), we may (and do) assume that $(y_k)_{k=1}^{\infty} := (A_k(x_k) - B_k(x_k))_{k=1}^{\infty}$ is a seminormalized weakly null basic sequence in F. Let $X = [\{y_k : k \in \mathbb{N}\}]$, let (y_k^*) be the sequence of coefficient functionals associated with (y_k) , and define $A : X \to c_0$ by $A(x) = (y_k^*(x))$. Then A is a bounded linear operator defined on a separable space, and A is not completely continuous.

(ii) Suppose that $(A_n), (B_n)$, and ε are as in (i). Choose a normalized sequence (y_n^*) in F^* so that $||A_n^*(y_n^*) - B_n^*(y_n^*)|| > \varepsilon$ for each n. Since $||A_n(x^*) - B_n(x^*)|| \to 0$ for each $x^* \in E^*$, the w^* -w continuity of the operators ensures that $(A_n^*(y_n^*) - B_n^*(y_n^*)) =: (z_n)$ is a weakly null sequence in E.

Thus we may assume that (z_n) is a weakly null and seminormalized basic sequence in E. We finish the argument as in (i).

COROLLARY 3.2 ([17, Theorem 2]). If $E^* \in (GP)$ and F has the Schur property, then $L(E, F) \in (GP)$.

Proof. Deny the conclusion. Apply part (i) of Theorem 3.1 to obtain a non-completely continuous operator defined on a closed linear subspace X of F. This is a clear contradiction since X also has the Schur property.

COROLLARY 3.3. Suppose that $F \in (DPrcP)$ and S is a closed linear subspace of $L_{w^*}(E^*, F)$. If $S \notin (DPrcP)$, then there is a separable subspace X of E and a non-completely continuous operator $T: X \to c_0$.

Proof. Let H be a DP subset of S which is not relatively compact. Apply (ii) of 3.1.

Corollary 3.3 significantly extends Theorem 7 of [15]: Let E have the Schur property and F the DPrcP. Then the Banach space $K_{w^*}(E^*, F)$ has the DPrcP.

COROLLARY 3.4. If $E^* \in (DPrcP)$ and F has the Schur property, then $L(E, F) \in (DPrcP).$

The next three corollaries follow from the proof of 3.1.

COROLLARY 3.5 ([10, Theorem 2.1]). If E and F belong to (GP), then $K_{-}(E^*, E) \in (CD)$

 $K_{w^*}(E^*, F) \in (GP).$

Proof. Suppose not and let $(z_n) = (A_n^*(y_n^*) - B_n^*(y_n^*))$ be as in (ii) above. Then (z_n) is a seminormalized and weakly null basic sequence in E. If (x_n^*) is w^* -null in E^* , $T \in K_{w^*}(E^*, F)$ and $x_n^* \otimes y_n^*(T)$ is defined to be $\langle T(x_n^*), y_n^* \rangle$, then $x_n^* \otimes y_n^*(T) \to 0$; that is, $(x_n^* \otimes y_n^*)$ is w^* -null as a sequence of continuous linear functionals defined on $K_{w^*}(E^*, F)$. Combine this observation with the fact that $(A_n - B_n)$ is a limited sequence to see that (z_n) is also a limited sequence. Thus, since $E \in (GP)$, $||z_n|| \to 0$, and we have a contradiction.

A Banach space X has the Grothendieck property, or X is a Grothendieck space [9], if w^* -null sequences (x_n^*) in X^* are weakly null. If X is a Grothendieck space, then the limited and DP subsets of X coincide.

COROLLARY 3.6. If E and F have the DPrcP and $K_{w^*}(E^*, F)$ is a Grothendieck space, then $K_{w^*}(E^*, F)$ has the DPrcP.

Proof. If $K_{w^*}(E^*, F)$ is a Grothendieck space, then E and F are Grothendieck spaces. Thus $E, F \in (GP)$. Apply 3.5.

COROLLARY 3.7. If $X^*, Y \in (GP)$, then $K(X, Y) \in (GP)$.

Proof. Suppose not and let $(A_n - B_n)$ be a weakly null limited sequence in K(X, Y) so that $||A_n - B_n|| > \varepsilon > 0$ for all n. Let (x_n) be a normalized sequence in X so that $||A_n(x_n) - B_n(x_n)|| > \varepsilon$ for all n. Arguing as in 3.5 above, one sees that $(A_n(x_n) - B_n(x_n))$ is weakly null and limited in Y. Thus $||A_n(x_n) - B_n(x_n)|| \to 0$, and we have a contradiction.

See [15] for results related to the next theorem.

THEOREM 3.8. If X^* and Y have the DPrcP and $L(Y^*, X^*) = K(Y^*, X^*)$, then L(X, Y) has the DPrcP.

Proof. Suppose not and let (T_n) be a weakly null DP sequence in L(X, Y) so that $||T_n|| = 1$ for each n. Let (y_n^*) be a sequence in B_{Y^*} and (x_n) be a sequence in B_X so that $y_n^*(T_n(x_n)) > 1/2$ for each n. Note that $(T_n(x_n))$ is weakly null since $||T_n^*(y^*)|| \to 0$ for $y^* \in Y^*$.

Suppose that $v_n^* \xrightarrow{w} 0$ in Y^* , and let $T \in L(X, Y^{**}) \cong (X \otimes_{\gamma} Y^*)^*$. Then $T^* \in L(Y^{***}, X^*)$ and $T^*_{|Y^*|}$ is a compact operator. Therefore $|\langle x_n \otimes v_n^*, T \rangle| \leq ||T^*(v_n^*)||$ and $(T^*(v_n^*))$ is relatively compact and weakly null. Thus $(x_n \otimes v_n^*)$ is weakly null in $X \otimes_{\gamma} Y^*$.

Now L(X, Y) embeds isometrically in $L(X, Y^{**})$ and (T_n) is a DP sequence in $L(X, Y^{**})$. Since a DP subset of a dual space is necessarily an L-subset of the dual space, $v_n^*(T_n(x_n)) \to 0$. Thus $(T_n(x_n))$ is a weakly null DP sequence in Y, $||T_n(x_n)|| \to 0$, and we have a contradiction.

The arguments in this section—particularly the proof of Theorem 3.1 also produce the next two results:

- (†) If $E^* \in (GP)$, B_{F^*} is w^* -sequentially compact, and all operators $T: F \to c_0$ are completely continuous, then $L(E, F) \in (GP)$.
- (††) If E and F have the DPrcP and all operators $T : E \to c_0$ are completely continuous, then $K_{w^*}(E^*, F)$ has the DPrcP.

We remark that if F is infinite-dimensional and all operators $T: F \to c_0$ are completely continuous, then $\ell_1 \hookrightarrow F$. To see this, begin by using the Josefson-Nissenzweig theorem to obtain a normalized and w^* -null sequence (x_n^*) , and then choose any sequence (x_n) so that $||x_n|| \leq 1$ and $x_n^*(x_n) > 1/2$ for each n. Since the map $x \mapsto (x_n^*(x))_{n=1}^{\infty}$ is completely continuous by hypothesis, (x_n) cannot have a weakly Cauchy subsequence. Rosenthal's classical ℓ_1 -theorem then puts a copy of ℓ_1 in F.

Moreover, if one assumes that all operators $T: X \to \ell_{\infty}$ are completely continuous, then it is easy to see that X has the Schur property. In fact, if S is a separable subspace of $X, A: S \to \ell_{\infty}$ is an isometrically isomorphic embedding of S into ℓ_{∞} , and $T: X \to \ell_{\infty}$ is a continuous linear extension of A, then the complete continuity of T immediately guarantees that every weakly null sequence in S is norm null. Clearly X has the Schur property iff every separable closed linear subspace of X has the Schur property.

The next result extends the observations in these two paragraphs.

THEOREM 3.9. If X is a Banach space, then the following are equivalent:

- (i) X is a Schur space.
- (ii) All operators $T: X \to \ell_{\infty}$ are completely continuous.
- (iii) Every weakly null sequence in X is limited in its closed linear span.
- (iv) $X \in (DPrcP)$ and all operators $T : X \to c_0$ are completely continuous.
- (v) $X \in (GP)$ and all operators $T: X \to c_0$ are completely continuous.

Proof. That (ii) implies (i) was noted above. Certainly (i) implies (ii). Also, since a DP subset is weakly precompact, (i) (or (ii)) implies (iv), and (iv) clearly implies (v).

Now suppose that (ii) holds, and let (x_n) be a weakly null sequence in X. Suppose that $x_n^* \xrightarrow{w^*} 0$ in $[\{x_n : n \in \mathbb{N}\}]^*$, and define $A : [\{x_n\}] \to c_0$ by $A(x) = (x_n^*(x))$. Let $T : X \to \ell_\infty$ be a continuous linear extension of A. Since T is completely continuous, $x_n^*(x_n) \to 0$, and it follows that (x_n) is limited. Thus (ii) implies (iii).

Suppose that (iii) holds, $x_n \xrightarrow{w} 0$ in X, and $||x_n|| = 1$ for each n. Without loss of generality, one may assume that (x_n) is basic. Let (x_n^*) be the coefficient functionals, and observe that $x_n^* \xrightarrow{w^*} 0$ in $[\{x_n\}]^*$. Since $x_n^*(x_n) = 1$ for each n, (x_n) cannot be a limited sequence. This contradiction shows that (iii) implies (i).

Now suppose that (every) $T : X \to c_0$ is completely continuous and $X \in (GP)$. Recall that the operators from X to c_0 correspond to the w^* -null sequences in X^* . Let (x_n^*) be w^* -null in X^* so that $T(x) = (x_n^*(x))$. If $x_n \stackrel{w}{\to} 0$ in X, then $||T(x_n)|| \to 0$. Consequently, (x_n) is a limited sequence in X. Thus $\{x_n : n \in \mathbb{N}\}$ is relatively compact. Since (x_n) is weakly null, $||x_n|| \to 0$, and (v) implies (i).

This argument and the separable injectivity of c_0 immediately yield the next result.

COROLLARY 3.10. If X is separable, then the following are equivalent:

- (i) X is Schur.
- (ii) Every operator $T: X \to c_0$ is completely continuous.
- (iii) Every weakly null sequence in X is limited in X.

As a consequence of Theorem 3.9, it is clear that $(\dagger \dagger)$ is subsumed by Corollary 3.3 above.

The fact that the continuous linear image of a Dunford–Pettis (resp. limited) set is Dunford–Pettis (resp. limited) can be coupled with the Bator–

Emmanuele characterization of the DPrcP for dual spaces [2], [13] to easily produce results for quotient spaces. See [7, p. 42] and [10] for discussions of the subtleties and complexity of the general problem.

THEOREM 3.11. If $X^* \in (DPrcP)$ (respectively, $X^* \in (GP)$) and Z is a quotient of X, then $Z^* \in (DPrcP)$ (respectively, $Z^* \in (GP)$).

Proof. Let $Q : X \to Z$ be a quotient map. Then $Q^* : Z^* \to X^*$ is an isomorphism. If K is a DP (resp. limited) subset of Z^* , then $Q^*(K)$ is a DP (resp. limited) subset of X^* . Thus $Q^*(K)$ and K must be relatively compact.

COROLLARY 3.12. The following are equivalent:

(i) $\ell_1 \not\hookrightarrow X$.

(ii) If Y is a closed linear subspace of X, then $\ell_1 \nleftrightarrow Y$ and $\ell_1 \nleftrightarrow X/Y$.

Proof. Bator [2] and Emmanuele [15] showed that $X^* \in (DPrcP)$ iff $\ell_1 \not\hookrightarrow X$. This characterization and 3.11 immediately yield the corollary.

In the next theorem, $CC(X, c_0)$ denotes the space of completely continuous operators from X to c_0 .

THEOREM 3.13. If X has the DPP and $L(X, c_0) \neq CC(X, c_0)$, then $\ell_1 \hookrightarrow X^*$. If X has the hereditary DPP and $L(X, c_0) \neq CC(X, c_0)$, then ℓ_1 embeds complementably in X^* and $c_0 \hookrightarrow X$.

Proof. Choose a non-completely continuous $T \in L(X, c_0)$. Since $(T^*(e_i^*))$ is w^* -null in X^* and T is not completely continuous, there is a weakly null sequence (x_n) in X which is not limited. By a result of Schlumprecht ([28], [16, p. 126]) we may choose a w^* -null sequence (x_n^*) in X^* so that $x_m^*(x_n) = \delta_{mn}$. Now suppose that (x_n^*) has a weakly Cauchy subsequence. In fact, suppose that $x_n^* - x_{n+1}^* \xrightarrow{w} 0$. Since X has the DPP, (x_n) is a DP sequence, and $1 = \langle x_n^* - x_{n+1}^*, x_n \rangle \to 0$. This contradiction and Rosenthal's ℓ_1 -theorem finishes the first assertion.

Now suppose that X has the hereditary DPP. As in the previous paragraph, we may assume that (x_n) is weakly null and not limited in X. Thus we may (and do) assume that (x_n) is basic and normalized. Suppose that no subsequence of (x_n) is equivalent to (e_n) . By a fundamental result of J. Elton [7, pp. 27–30], we obtain a subsequence (y_n) of (x_n) so that if (w_n) is any subsequence of (y_n) and (t_n) is a non-null sequence of real numbers, then $\sup_k \|\sum_{n=1}^k t_n w_n\| = \infty$. Arguing precisely as on p. 28 of [7], one sees that the coefficient functionals (w_n^*) are weakly null. However, since (w_n) is weakly null and $W = [(w_n)]$ has the DPP, (w_n) is a DP sequence in W, $1 = w_n^*(w_n) \to 0$, and we have an obvious contradiction. Thus some subsequence of (x_n) is equivalent to the unit vector basis of c_0 . The main result of [24] ensures that ℓ_1 is complemented in X^* . COROLLARY 3.14. Suppose that X is an infinite-dimensional Banach space with the hereditary DPP. Then either

(i) c₀ → Y and Y* contains a complemented copy of l₁ whenever Y is a separable and infinite-dimensional closed linear subspace of X, or
(ii) l₁ → X.

Proof. Suppose that X is infinite-dimensional and has the hereditary DPP. Either $L(Y, c_0) = CC(Y, c_0)$ for some separable and infinite-dimensional subspace Y of X, or the equality holds for no separable and infinite-dimensional subspace of X. Apply 3.10 and 3.13.

Theorem 1 of [7] and another application of Rosenthal's ℓ_1 -theorem easily produce the following dichotomy for spaces with the DPP.

THEOREM 3.15. If the Banach space X has the DPP, then either X is a Schur space or $\ell_1 \hookrightarrow X^*$.

Proof. Suppose that X is not a Schur space, and let (x_n) be a normalized and weakly null sequence in X. Choose (x_n^*) in B_{X^*} so that $x_n^*(x_n) = 1$ for all n. By part (f) of Theorem 1 of [7], (x_n^*) has no weakly Cauchy subsequence. Rosenthal's ℓ_1 -theorem guarantees that $\ell_1 \hookrightarrow X^*$.

Since $\ell_1 \hookrightarrow X^*$ whenever $\ell_1 \hookrightarrow X$ ([8, p. 211]), it follows directly from 3.15 that if X is an infinite-dimensional space with the DPP, then $\ell_1 \hookrightarrow X^*$.

The next corollary provides a counterpoint to Corollary 3.14 above and to the comment immediately following Theorem 7 on p. 28 of [7]. Rosenthal's ℓ_1 -theorem shows that every infinite-dimensional Schur space contains ℓ_1 .

COROLLARY 3.16. If X is infinite-dimensional and $\ell_1 \nleftrightarrow X^*$, then every infinite-dimensional closed linear subspace of X fails to have the DPP.

COROLLARY 3.17. Suppose that X is a separable Banach space which has the DPP. If $c_0 \hookrightarrow Y$, then the space W(X,Y) of weakly compact operators is not complemented in L(X,Y).

Proof. Choose (x_n^*) in X^* so that $(x_n^*) \sim (e_n^*)$. Using the separability of X, one may assume that $x_n^* \xrightarrow{w^*} x^*$. Thus X^* contains a weak*-null sequence which is not weakly null. Theorem 4 of [3] ensures that W(X,Y) is not complemented in L(X,Y).

Schlumprecht's result [16, p. 126] also leads to a non-complementation result when $X \in (GP)$ but $X \notin (DPrcP)$.

THEOREM 3.18. Suppose that X fails to have the DPrcP but $X \in (GP)$. If $c_0 \hookrightarrow Y$, then W(X, Y) is not complemented in L(X, Y).

Proof. Suppose that K is a DP subset which is not relatively compact. Then there is a weakly null sequence (x_n) in K - K and a $\delta > 0$ so that $||x_n|| > \delta$ for each *n*. Therefore (x_n) is not a limited sequence. Then we can find (x_n^*) in X^* so that $x_n^* \xrightarrow{w^*} 0$ and $x_n^*(x_m) = \delta_{nm}$. Thus (x_n^*) is w^* -null and not *w*-null. Again by Theorem 4 of [3], W(X, Y) is not complemented in L(X, Y).

4. L-sets. It is well known that X must have the DPP if X^* has the DPP and that the reverse implication is false (see e.g. [7, pp. 19–23]). In this section we identify a natural property involving L-subsets of X^* which is in complete duality with the DPP.

If X is a Banach space, then we say that X^* has the *L*-property (or $X^* \in (LP)$) if every operator $T \in L_{w^*}(X^*, c_0)$ is completely continuous. See Theorem 3.1 of [4] for related ideas. Since the operators $T \in L_{w^*}(X^*, c_0)$ correspond to the weakly null sequences in X, the statement that $X^* \in (LP)$ is equivalent to the assertion that every weakly null sequence in X is a DP sequence in X. A direct application of Theorem 2.6 of [20] then shows that X has the DPP if and only if $X^* \in (LP)$.

This simple characterization provides a particularly easy way to show that C(K) (and $L_1(\mu)$) enjoy the DPP. Suppose that $T: C(K)^* \to c_0$ is a w^* -w continuous operator and let (f_n) be a w-null (and therefore bounded) sequence in C(K) so that $T(\mu) = (\int f_n d\mu)_{n=1}^{\infty}$. If (λ_n) is a weakly null sequence of regular Borel measures in $C(K)^*$, choose a non-negative regular measure λ so that $\lambda_n \ll \lambda$ uniformly in n. Now $f_n \to 0$ uniformly except on sets of arbitrarily small λ -measure. Consequently, $||T(\lambda_n)||_{c_0} \to 0$. See also pp. 113–114 of [8].

One can check that X has the DPP if and only if each of its weakly compact sets is a DP subset of X. Further, it is well known that a subset S of X is a DP subset of X iff L(S) is relatively compact whenever $L: X \to Y$ is a weakly compact operator [1]. The next two lemmas and theorems continue to emphasize the duality that exists between L-subsets of X^* and DP subsets of X.

LEMMA 4.1. If A is an L-subset of X^* , B_{Y^*} is w^* -sequentially compact, and $T \in L_{w^*}(X^*, Y)$, then T(A) is relatively compact.

Proof. Suppose that $T \in L_{w^*}(X^*, Y)$ and T(A) is not relatively compact. Since any element in $L_{w^*}(X^*, Y)$ sends *L*-sets to DP sets, we choose sequences (u_k^*) and (v_k^*) in A and $\varepsilon > 0$ so that $||T(u_k^*) - T(v_k^*)|| > \varepsilon$ for all k and $T(u_k^*) - T(v_k^*) \xrightarrow{w} 0$. Let (y_k^*) be a sequence in B_{Y^*} so that $y_k^*(T(u_k^*) - T(v_k^*)) > \varepsilon$, and, without loss of generality, suppose that $y_k^* \xrightarrow{w^*} y^*$. Consequently, $T^*(y_k^*) \xrightarrow{w} T^*(y^*)$ in X, and $\langle T^*(y_k^*) - T^*(y^*), x^* \rangle \to 0$ uniformly for $x^* \in A$. Since $\langle T^*(y^*), u_k^* - v_k^* \rangle = y^*(T(u_k^*) - T(v_k^*)) \to 0$, it follows that $\langle T^*(y_k^*), u_k^* - v_k^* \rangle \to 0$, and we have a contradiction.

LEMMA 4.2. If T(A) is relatively compact for each $T \in L_{w^*}(X^*, c_0)$, then A is an L-subset of X^* .

Proof. Suppose that $x_n \stackrel{w}{\to} 0$ in X, and define $T: X^* \to c_0$ by $T(x^*) = (x^*(x_n))_{n=1}^{\infty}$. If $\lambda = (\lambda_n) \in \ell_1$, then $T^*(\lambda) = \sum \lambda_n x_n \in X$, and T is $w^* \cdot w$ continuous. Thus T(A) is relatively compact, and $\lim_n \sup_{x^* \in A} x^*(x_n) = 0$.

REMARK. A combination of 4.1 and 4.2 directly shows that a subset A of X^* is an L-subset of X^* iff T(A) is relatively compact for each $T \in L_{w^*}(X^*, c_0)$. These two lemmas also facilitate two additional characterizations of the L-property.

THEOREM 4.3. Every weakly compact subset of X^* is an L-subset of X^* iff $X^* \in (LP)$.

Proof. If $X^* \in (LP)$ and A is a weakly compact subset of X^* , then, by the Eberlein–Shmul'yan theorem, T(A) is relatively compact whenever $T \in L_{w^*}(X^*, c_0)$. Thus A is an L-subset of X^* .

Conversely, suppose that every w-compact subset of X^* is an L-subset of X^* , and let $T \in L_{w^*}(X^*, c_0)$. If $x_n^* \xrightarrow{w} x_0^*$, then $U = \{x_n^* : n \ge 0\}$ is w-compact. Thus T(U) is relatively compact, and $||T(x_n^*) - T(x_0^*)|| \to 0$.

THEOREM 4.4. A bounded subset S of X^* is an L-subset of X^* if and only if $T^*(S)$ is relatively compact whenever Y is a Banach space and T : $Y \to X$ is weakly compact.

Proof. Suppose that $T: Y \to X$ is a weakly compact operator and let R be a reflexive space and $A: Y \to R$ and $B: R \to X$ be operators so that T = BA ([8, p. 237]). Suppose that S is an L-subset of X^* and $T^*(S)$ is not relatively compact. Then $B^*(S)$ is an L-subset of R^* , and $B^*(S)$ is not relatively compact. Consequently, we may assume that Y itself is reflexive.

Now choose a sequence (x_n^*) in $S, \delta > 0$, and $y^* \in Y^*$ so that $T^*(x_n^*) \xrightarrow{w} y^*$ and $||T^*(x_n^*) - y^*|| > \delta$ for each n. Choose $y_n \in B_Y$ so that

$$y_n(T^*(x_n^*) - y^*) > \delta, \quad n \in \mathbb{N}.$$

Without loss of generality, suppose that $y_n \xrightarrow{w} y \in B_Y$ (Y is reflexive). Therefore $\langle y_n - y, T^*(x_n^*) \rangle \to 0$ since $T^*(S)$ is an L-subset of Y^{*}. Since $\langle y, T^*(x_n^*) - y^* \rangle \xrightarrow{n} 0$ and $y^*(y_n - y) \xrightarrow{n} 0$, it follows that $y_n(T^*(x_n^*) - y^*) \xrightarrow{n} 0$, and we have a clear contradiction.

Conversely, suppose that if $T: Y \to X$ is weakly compact, then $T^*(S)$ is relatively compact. Let (x_n) be weakly null in X, and let (x_n^*) be a sequence in S. Define $L: X^* \to c_0$ by $L(x^*) = (x^*(x_n))$. If $\lambda = (\lambda_n) \in \ell_1$, then $L^*(\lambda) = \sum \lambda_n x_n$, and $L^*(B_{\ell_1})$ is contained in the closed and absolutely convex hull of $\{x_n : n \in \mathbb{N}\}$. Thus L^* and L are weakly compact. Moreover, it is clear that L itself is an adjoint. Therefore L(S) is relatively compact in c_0 , $\lim_n x_n^*(x_n) = 0$, and S is an L-subset of X^* . COROLLARY 4.5. The bounded subset S of X^* is an L-subset of X^* if and only if $T^*(S)$ is relatively compact in R^* whenever R is reflexive and $T: R \to X$ is an operator.

Our next result gives an extension of Theorem 3 of [15]. An operator $T: X \to Y$ is called *limited* if $T(B_X)$ is limited in Y, and the set of all limited operators from X to Y is denoted by $\operatorname{ltd}(X,Y)$. Certainly every compact operator is limited. If $T: X \to Y$ is a limited operator and $y_n^* \xrightarrow{w^*} y^*$, note that

$$\lim_{n} \sup\{\langle y_n^* - y^*, T(x)\rangle : \|x\| \le 1\} \mapsto 0.$$

That is, $||T^*(y_n^*) - T^*(y^*)|| \to 0.$

THEOREM 4.6. Suppose that every operator $T : X \to Y^*$ is limited. If (x_n) is bounded and (y_n) is weakly null in Y, then $(x_n \otimes y_n)$ is weakly null in $X \otimes_{\gamma} Y$. Consequently, if (T_n) is a DP sequence in $L(X, Y^*)$, then $\{T_n(x_n) : n \in \mathbb{N}\}$ is an L-subset of Y^* .

Proof. Recall that $(X \otimes_{\gamma} Y)^* \cong L(X, Y^*)$ ([9, p. 229]), and let $T \in L(X, Y^*)$. Since $L(X, Y^*) = \operatorname{ltd}(X, Y^*)$, $||T^*(u_n^{**})|| \to 0$ if $u_n^{**} \xrightarrow{w^*} 0$ in Y^{**} . Therefore $|\langle T, x_n \otimes y_n \rangle| = |\langle T(x_n), y_n \rangle| = |\langle x_n, T^*(y_n) \rangle| \to 0$. Consequently, if (T_n) is a DP sequence in $L(X, Y^*)$, then $|\langle x_n \otimes y_n, T_n \rangle| \to 0$.

In Section 3 of this paper, compactness properties of Dunford-Pettis sets and limited sets were repeatedly used. Compactness questions involving *L*-sets naturally arise in this context. As noted in Section 2 above, Emmanuele [13] showed that *L*-subsets of X^* are relatively compact iff $\ell_1 \nleftrightarrow X$. In fact, if $\ell_1 \hookrightarrow X$, then *L*-subsets of X^* may well fail to be even weakly precompact. Specifically, if X is any infinite-dimensional Schur space, then all bounded subsets of X^* are *L*-subsets, and thus there are *L*-subsets of X^* which fail to be weakly precompact. The next theorem presents a simple operator-theoretic characterization of weak precompactness, relative weak compactness, and relative norm compactness for *L*-sets. An operator $T: X \to Y$ is said to be almost weakly compact [7, pp. 17–18] if $T(B_X)$ is weakly precompact in Y.

THEOREM 4.7. Suppose that X is a Banach space.

- (I) The following are equivalent:
 - I(i) If $T: Y \to X^*$ is an operator and $T^*_{|X}$ is completely continuous, then T is almost weakly compact.
 - I(ii) If $T: \ell_1 \to X^*$ is an operator and $T^*_{|X}$ is completely continuous, then T is almost weakly compact.
 - I(iii) Any L-subset of X^* is weakly precompact.

- (II) The following are equivalent:
 - II(i) If $T: Y \to X^*$ is an operator and $T^*_{|X}$ is completely continuous, then T is weakly compact.
 - II(ii) If $T : \ell_1 \to X^*$ is an operator and $T^*_{|X}$ is completely continuous, then T is weakly compact.
 - II(iii) Any L-subset of X^* is relatively weakly compact.
- (III) The following are equivalent:
 - III(i) If $T : Y \to X^*$ is an operator and $T^*_{|X} : X \to Y^*$ is completely continuous, then T is compact.
 - III(ii) If $T : \ell_1 \to X^*$ is an operator and $T^*_{|X} : X \to \ell_{\infty}$ is completely continuous, then T is compact.
 - III(iii) Every L-subset of X^* is relatively compact.

Proof. Since the proofs of (I), (II), and (III) are essentially the same, we present the argument for (III) only. Suppose that (iii) holds and $T_1 = T_{|X}^*$ is completely continuous. Let (x_n) be a *w*-null sequence in X. If (y_n) is a sequence in B_Y , then $|x_n(T(y_n))| = |T_1(x_n)(y_n)| \le ||T_1(x_n)|| \to 0$, and $T(B_Y)$ is an L-subset of X^{*}. Therefore T is compact and (iii) implies (i).

Certainly (i) implies (ii). Now suppose (ii) holds, and let (x_n^*) be a sequence from the *L*-subset *A* of X^* . Define $T : \ell_1 \to X^*$ by $T(\lambda) = \sum_{i=1}^{\infty} \lambda_i x_i^*$. Now suppose that (x_n) is weakly null in *X*. Since *A* is an *L*-subset of *X*,

$$\lim_{n} \sup_{i} |x_i^*(x_n)| = 0,$$

and (ii) ensures that T is compact. Since $T(e_i^*) = x_i^*$ for each i, the set $\{x_n^* : n \in \mathbb{N}\}$ is relatively compact.

The Banach space X has the reciprocal Dunford-Pettis property (RDPP) ([14], [4]) provided that every completely continuous operator $T: X \to Y$ is weakly compact.

COROLLARY 4.8 ([14, Theorem 1]; [23]). The Banach space X has the RDPP iff every L-subset of X^* is relatively weakly compact.

COROLLARY 4.9. The Banach space X has the RDPP iff every completely continuous operator $T: X \to \ell_{\infty}$ is weakly compact.

Proof. Every L-subset of X^* is relatively weakly compact iff every completely continuous operator $T: X \to \ell_{\infty}$ is weakly compact.

COROLLARY 4.10. If X is a Banach space, then the following are equivalent:

- (i) Every L-subset of X^* is relatively compact.
- (ii) Every completely continuous operator with domain X is compact.

Proof. The operator $T: X \to Y$ is completely continuous iff $T^*(B_{Y^*})$ is an L-subset of X^* . Therefore (i) certainly yields (ii).

Now suppose that $T : \ell_1 \to X^*$ is an operator and $T^*_{|X}$ is completely continuous. By (ii) this restriction is compact and thus T itself is compact. The preceding theorem then applies, and (i) follows.

COROLLARY 4.11 ([7, Theorem 3]). If X has the DPP and $\ell_1 \nleftrightarrow X$, then X^* has the Schur property.

Proof. If $x_n^* \xrightarrow{w} x^*$ in X^* and X has the DPP, then $A = \{x_n^* : n \in \mathbb{N}\}$ is an L-subset of X^* . Thus A is relatively compact by 4.10, and $||x_n^* - x^*|| \to 0$.

REFERENCES

- K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
- E. M. Bator, Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1989), 409-413.
- [3] E. Bator and P. Lewis, *Complemented spaces of operators*, ibid. 50 (2002), 413–416.
- [4] E. Bator, P. Lewis, and J. Ochoa, Evaluation maps, restriction maps, and compactness, Colloq. Math. 78 (1998), 1–17.
- [5] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174.
- [6] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
- [7] J. Diestel, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., Providence, RI, 1980, 15-60.
- [8] —, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [10] L. Drewnowski and G. Emmanuele, On Banach spaces with the Gelfand-Phillips property, II, Rend. Circ. Mat. Palermo 38 (1989), 377-391.
- [11] N. Dunford and B. J. Pettis, *Linear operations on summable functions*, Trans. Amer. Math. Soc. 47 (1940), 323–392.
- [12] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I, General Theory, Interscience, New York, 1958.
- [13] G. Emmanuele, A dual characterization of Banach spaces not containing ℓ^1 , Bull. Polish Acad. Sci. Math. 34 (1986), 155–160.
- [14] —, The reciprocal Dunford-Pettis property and projective tensor products, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161–166.
- [15] —, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485.
- [16] —, Some remarks on the uncomplemented space W(E, F), J. Funct. Anal. 99 (1991), 125–130.
- [17] —, On Banach spaces with the Gelfand-Phillips property, III, J. Math. Pures Appl. 72 (1993), 327–333.
- [18] —, Limited sets and Gelfand-Phillips spaces, preprint.

[19]	Ι.	Ghenciu	and	Ρ.	Lewis,	Tensor	products	and	Dunford-Pettis	sets,	Math.	Proc.
	Cambridge Philos. Soc. 139 (2005), 361–369.											

- [20] —, —, Dunford-Pettis properties and spaces of operators, Canad. Math. Bull., to appear.
- [21] —, —, Strong Dunford-Pettis sets and spaces of operators, Monatsh. Math. 144 (2005), 275-284.
- [22] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129–173.
- [23] T. Leavelle, The reciprocal Dunford-Pettis and Radon-Nikodym properties in Banach spaces, Dissertation, Univ. of North Texas, 1984.
- [24] P. Lewis, Mapping properties of c_0 , Colloq. Math. 80 (1999), 235–244.
- [25] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
- [26] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362–377.
- [27] R. A. Ryan, The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. Math. 35 (1987), 785–792.
- [28] T. Schlumprecht, Limited sets in Banach spaces, dissertation, Munich, 1987.

Department of MathematicsDepartment of MathematicsUniversity of Wisconsin at River FallsUniversity of North TexasRiver Falls, WI 54022, U.S.A.Box 311430E-mail: ioana.ghenciu@uwrf.eduDenton, TX 76203-1430, U.S.A.E-mail: lewis@unt.eduE-mail: lewis@unt.edu

Received 18 May 2005; revised 28 February 2006

(4604)