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THE DUNFORD�PETTIS PROPERTY,THE GELFAND�PHILLIPS PROPERTY, AND L-SETSBYIOANA GHENCIU (River Falls, WI) and PAUL LEWIS (Denton, TX)Abstrat. The Dunford�Pettis property and the Gelfand�Phillips property are stud-ied in the ontext of spaes of operators. The idea of L-sets is used to give a dual hara-terization of the Dunford�Pettis property.1. Introdution. Numerous papers have investigated whether spaesof operators inherit the Dunford�Pettis property or the Gelfand�Phillipsproperty when the o-domain and the dual of the domain have the respe-tive property; e.g., see the introdution and Setion 2 of [10℄, Theorem 3through Corollary 11 of [15℄, and Setions 2 and 3 of [17℄. In this paperweak preompatness and Shauder basis theory are used in spaes of op-erators to establish simple mapping results whih extend and onsolidateresults in [10℄, [15℄, and [17℄. The hereditary Dunford�Pettis property isalso studied. Additionally, the Shur property is haraterized in terms ofDunford�Pettis properties, and L-sets are used in a dual haraterization ofthe Dunford�Pettis property.2. De�nitions and notation. Let eah of X, Y, E, and F denote a realBanah spae, let X∗ denote the ontinuous linear dual of X, let L(X, Y )denote the spae of all ontinuous linear operators T : X → Y , and let
K(X, Y ) denote the ompat linear maps. The w∗-w ontinuous operatorswill be denoted by Lw∗(X∗, Y ), and Kw∗(X∗, Y ) will denote the ompatand w∗-w ontinuous operators.Definition 2.1. An operator T : X → Y is ompletely ontinuous if
(T (xn)) is norm onvergent in Y whenever (xn) is weakly onvergent in X.All ompat operators are ompletely ontinuous. However, if weaklyCauhy sequenes in X are norm onvergent, then all operators with do-main X are ompletely ontinuous. We say that X has the Shur propertyif every weakly Cauhy sequene in X is norm onvergent.2000 Mathematis Subjet Classi�ation: 46B20, 46B25, 46B28.Key words and phrases: Dunford�Pettis property, Gelfand�Phillips property, L-sets,
w∗-w ontinuity, ompletely ontinuous operator.[311℄
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A ombination of lassial results of Dunford and Pettis [11℄ and Grothen-diek [22℄ shows that if X is a C(K)-spae or an L1-spae, then every weaklyompat operator T : X → Y is ompletely ontinuous. (See the introdutionto Setion 4 of this paper for a quik proof.) Grothendiek suggested thefollowing terminology.Definition 2.2. The Banah spae X has the Dunford�Pettis property ,DPP for short, if every weakly ompat operator T : X → Y is ompletelyontinuous.We note that some authors all ompletely ontinuous operators Dun-ford�Pettis operators. The survey artile [7℄ by Diestel is an exellent soureof information about lassial ontributions to the study of the DPP. The-orem 1 of [7℄ shows that X has the DPP i� x∗

n(xn) → 0 whenever (x∗
n) isweakly null in X∗ and (xn) is weakly null in X. Kevin Andrews loalizedthis idea in [1℄.Definition 2.3. A bounded subset S of X is alled a Dunford�Pettissubset of X if every weakly null sequene (x∗

n) in X∗ tends to 0 uniformlyon S, that is,
lim
n

sup{|x∗
n(x)| : x ∈ S} = 0.Every DP subset of X is weakly preompat , i.e., if S is a DP subset of Xand (xn) is a sequene from S, then (xn) has a weakly Cauhy subsequene.See [1℄ and [26, p. 377℄ for proofs.Diestel [7℄ modi�ed De�nition 2.1 and Emmanuele [15℄ modi�ed De�ni-tion 2.3 to produe the next onepts.Definition 2.4.(i) The Banah spae X has the hereditary DPP if eah losed linearsubspae of X has the DPP.(ii) The Banah spae X has the Dunford�Pettis relatively ompat prop-erty , DPrP for short, if every Dunford�Pettis subset of X is rela-tively ompat.Note that ℓ1 and c0 have the hereditary DPP (f. [7℄) and every Shurspae has the DPrP.Definition 2.5. A bounded subset S of X is alled a limited subset of

X if eah w∗-null sequene (x∗
n) in X∗ tends to 0 uniformly on S, and Xis said to have the Gelfand�Phillips property if every limited subset of X isrelatively ompat.All separable Banah spaes have the Gelfand�Phillips property, but non-separable spaes need not have this property. See Bourgain and Diestel [6℄,Drewnowski and Emmanuele [10℄, and espeially Shlumpreht [28℄ for dis-ussions of limited sets. Spei�ally, note that every limited subset of X is a
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DP subset of X. If P is one of the properties we have de�ned, we sometimesindiate that X has property P by writing X ∈ (P); e.g., the assertion that
X has the Gelfand�Phillips property may appear as X ∈ (GP).Definition 2.6. A bounded subset S of X∗ is alled an L-subset of X∗if every null sequene (xn) in X tends to 0 uniformly on S.We remark that Bator [2℄ showed that ℓ1 6 →֒ X i� X∗ has the DPrP, andEmmanuele [13℄ showed that ℓ1 6 →֒ X i� every L-subset of X∗ is relativelyompat.We refer the reader to [8℄ and [25℄ for unde�ned terminology and notation.In partiular, (en) will denote the anonial unit vetor basis of c0, and (e∗n)the anonial unit vetor basis of ℓ1.3. Spaes of operatorsTheorem 3.1.(i) Suppose that H is a weakly preompat subset of L(E, F ). If His not ompat and ‖A∗

n(y∗) − B∗
n(y∗)‖ → 0 whenever y∗ ∈ F ∗ and

(An−Bn) is a weakly null sequene in H−H, then there is a separablelinear subspae X of F and an operator A : X → c0 whih is notompletely ontinuous.(ii) Suppose that H is a weakly preompat subset of Lw∗(E∗, F ). If His not ompat and ‖An(x∗) − Bn(x∗)‖ → 0 whenever x∗ ∈ E∗and (An − Bn) is a weakly null sequene in H − H, then there is aseparable subspae X of E and an operator A : X → c0 whih is notompletely ontinuous.Proof. (i) Suppose that H is not ompat. Choose ε > 0 and sequen-es (An), (Bn) from H so that An − Bn
w
→ 0 and ‖An − Bn‖ > ε foreah n. Choose a normalized sequene (xn) from E so that ‖An(xn)−Bn(xn)‖

> ε for eah n. Sine ‖A∗
n(y∗) − B∗

n(y∗)‖ → 0 for all y∗ ∈ F ∗, we have
An(xn) − Bn(xn)

w
→ 0.By the Bessaga�Peªzy«ski seletion priniple ([8℄, [5℄), we may (and do)assume that (yk)
∞
k=1

:= (Ak(xk) − Bk(xk))
∞
k=1

is a seminormalized weaklynull basi sequene in F . Let X = [{yk : k ∈ N}], let (y∗k) be the sequeneof oe�ient funtionals assoiated with (yk), and de�ne A : X → c0 by
A(x) = (y∗k(x)). Then A is a bounded linear operator de�ned on a separablespae, and A is not ompletely ontinuous.(ii) Suppose that (An), (Bn), and ε are as in (i). Choose a normalizedsequene (y∗n) in F ∗ so that ‖A∗

n(y∗n) − B∗
n(y∗n)‖ > ε for eah n. Sine

‖An(x∗)−Bn(x∗)‖ → 0 for eah x∗ ∈ E∗, the w∗-w ontinuity of the opera-tors ensures that (A∗
n(y∗n) − B∗

n(y∗n)) =: (zn) is a weakly null sequene in E.
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Thus we may assume that (zn) is a weakly null and seminormalized basisequene in E. We �nish the argument as in (i).Corollary 3.2 ([17, Theorem 2℄). If E∗ ∈ (GP) and F has the Shurproperty , then L(E, F ) ∈ (GP).Proof. Deny the onlusion. Apply part (i) of Theorem 3.1 to obtain anon-ompletely ontinuous operator de�ned on a losed linear subspae Xof F . This is a lear ontradition sine X also has the Shur property.Corollary 3.3. Suppose that F ∈ (DPrcP) and S is a losed linearsubspae of Lw∗(E∗, F ). If S 6∈ (DPrcP), then there is a separable subspae
X of E and a non-ompletely ontinuous operator T : X → c0.Proof. Let H be a DP subset of S whih is not relatively ompat.Apply (ii) of 3.1.Corollary 3.3 signi�antly extends Theorem 7 of [15℄: Let E have theShur property and F the DPrP. Then the Banah spae Kw∗(E∗, F ) hasthe DPrP.Corollary 3.4. If E∗ ∈ (DPrcP) and F has the Shur property , then

L(E, F ) ∈ (DPrcP).The next three orollaries follow from the proof of 3.1.Corollary 3.5 ([10, Theorem 2.1℄). If E and F belong to (GP), then
Kw∗(E∗, F ) ∈ (GP).Proof. Suppose not and let (zn) = (A∗

n(y∗n)−B∗
n(y∗n)) be as in (ii) above.Then (zn) is a seminormalized and weakly null basi sequene in E. If (x∗

n) is
w∗-null in E∗, T ∈ Kw∗(E∗, F ) and x∗

n ⊗ y∗n(T ) is de�ned to be 〈T (x∗
n), y∗n〉,then x∗

n⊗y∗n(T ) → 0; that is, (x∗
n⊗y∗n) is w∗-null as a sequene of ontinuouslinear funtionals de�ned on Kw∗(E∗, F ). Combine this observation with thefat that (An − Bn) is a limited sequene to see that (zn) is also a limitedsequene. Thus, sine E ∈ (GP), ‖zn‖ → 0, and we have a ontradition.A Banah spae X has the Grothendiek property , or X is a Grothendiekspae [9℄, if w∗-null sequenes (x∗
n) in X∗ are weakly null. If X is a Grothen-diek spae, then the limited and DP subsets of X oinide.Corollary 3.6. If E and F have the DPrP and Kw∗(E∗, F ) is aGrothendiek spae, then Kw∗(E∗, F ) has the DPrP.Proof. If Kw∗(E∗, F ) is a Grothendiek spae, then E and F are Grothen-diek spaes. Thus E, F ∈ (GP). Apply 3.5.Corollary 3.7. If X∗, Y ∈ (GP), then K(X, Y ) ∈ (GP).
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Proof. Suppose not and let (An −Bn) be a weakly null limited sequenein K(X, Y ) so that ‖An − Bn‖ > ε > 0 for all n. Let (xn) be a normalizedsequene in X so that ‖An(xn) − Bn(xn)‖ > ε for all n. Arguing as in 3.5above, one sees that (An(xn)−Bn(xn)) is weakly null and limited in Y . Thus
‖An(xn) − Bn(xn)‖ → 0, and we have a ontradition.See [15℄ for results related to the next theorem.Theorem 3.8. If X∗ and Y have the DPrP and L(Y ∗, X∗) =
K(Y ∗, X∗), then L(X, Y ) has the DPrP .Proof. Suppose not and let (Tn) be a weakly null DP sequene in L(X, Y )so that ‖Tn‖ = 1 for eah n. Let (y∗n) be a sequene in BY ∗ and (xn) be asequene in BX so that y∗n(Tn(xn)) > 1/2 for eah n. Note that (Tn(xn)) isweakly null sine ‖T ∗

n(y∗)‖ → 0 for y∗ ∈ Y ∗.Suppose that v∗n
w
→ 0 in Y ∗, and let T ∈ L(X, Y ∗∗) ∼= (X ⊗γ Y ∗)∗. Then

T ∗ ∈ L(Y ∗∗∗, X∗) and T ∗
|Y ∗

is a ompat operator. Therefore |〈xn⊗v∗n, T 〉| ≤

‖T ∗(v∗n)‖ and (T ∗(v∗n)) is relatively ompat and weakly null. Thus (xn⊗v∗n)is weakly null in X ⊗γ Y ∗.Now L(X, Y ) embeds isometrially in L(X, Y ∗∗) and (Tn) is a DP se-quene in L(X, Y ∗∗). Sine a DP subset of a dual spae is neessarily an
L-subset of the dual spae, v∗n(Tn(xn)) → 0. Thus (Tn(xn)) is a weakly nullDP sequene in Y , ‖Tn(xn)‖ → 0, and we have a ontradition.The arguments in this setion�partiularly the proof of Theorem 3.1�also produe the next two results:

(†) If E∗ ∈ (GP), BF ∗ is w∗-sequentially ompat, and all operators
T : F → c0 are ompletely ontinuous, then L(E, F ) ∈ (GP).

(††) If E and F have the DPrP and all operators T : E → c0 areompletely ontinuous, then Kw∗(E∗, F ) has the DPrP.We remark that if F is in�nite-dimensional and all operators T : F → c0are ompletely ontinuous, then ℓ1 →֒ F . To see this, begin by using theJosefson�Nissenzweig theorem to obtain a normalized and w∗-null sequene
(x∗

n), and then hoose any sequene (xn) so that ‖xn‖ ≤ 1 and x∗
n(xn) > 1/2for eah n. Sine the map x 7→ (x∗

n(x))∞n=1 is ompletely ontinuous by hy-pothesis, (xn) annot have a weakly Cauhy subsequene. Rosenthal's las-sial ℓ1-theorem then puts a opy of ℓ1 in F .Moreover, if one assumes that all operators T : X → ℓ∞ are ompletelyontinuous, then it is easy to see that X has the Shur property. In fat, if
S is a separable subspae of X, A : S → ℓ∞ is an isometrially isomorphiembedding of S into ℓ∞, and T : X → ℓ∞ is a ontinuous linear extensionof A, then the omplete ontinuity of T immediately guarantees that every
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weakly null sequene in S is norm null. Clearly X has the Shur property i�every separable losed linear subspae of X has the Shur property.The next result extends the observations in these two paragraphs.Theorem 3.9. If X is a Banah spae, then the following are equivalent :(i) X is a Shur spae.(ii) All operators T : X → ℓ∞ are ompletely ontinuous.(iii) Every weakly null sequene in X is limited in its losed linear span.(iv) X ∈ (DPrcP) and all operators T : X → c0 are ompletely ontinu-ous.(v) X ∈ (GP) and all operators T : X → c0 are ompletely ontinuous.Proof. That (ii) implies (i) was noted above. Certainly (i) implies (ii).Also, sine a DP subset is weakly preompat, (i) (or (ii)) implies (iv), and(iv) learly implies (v).Now suppose that (ii) holds, and let (xn) be a weakly null sequenein X. Suppose that x∗

n
w∗

→ 0 in [{xn : n ∈ N}]∗, and de�ne A : [{xn}] → c0by A(x) = (x∗
n(x)). Let T : X → ℓ∞ be a ontinuous linear extension of A.Sine T is ompletely ontinuous, x∗

n(xn) → 0, and it follows that (xn) islimited. Thus (ii) implies (iii).Suppose that (iii) holds, xn
w
→ 0 in X, and ‖xn‖ = 1 for eah n. Withoutloss of generality, one may assume that (xn) is basi. Let (x∗

n) be the oef-�ient funtionals, and observe that x∗
n

w∗

→ 0 in [{xn}]
∗. Sine x∗

n(xn) = 1for eah n, (xn) annot be a limited sequene. This ontradition shows that(iii) implies (i).Now suppose that (every) T : X → c0 is ompletely ontinuous and
X ∈ (GP). Reall that the operators from X to c0 orrespond to the w∗-nullsequenes in X∗. Let (x∗

n) be w∗-null in X∗ so that T (x) = (x∗
n(x)). If

xn
w
→ 0 in X, then ‖T (xn)‖ → 0. Consequently, (xn) is a limited sequenein X. Thus {xn : n ∈ N} is relatively ompat. Sine (xn) is weakly null,

‖xn‖ → 0, and (v) implies (i).This argument and the separable injetivity of c0 immediately yield thenext result.Corollary 3.10. If X is separable, then the following are equivalent :(i) X is Shur.(ii) Every operator T : X → c0 is ompletely ontinuous.(iii) Every weakly null sequene in X is limited in X.As a onsequene of Theorem 3.9, it is lear that (††) is subsumed byCorollary 3.3 above.The fat that the ontinuous linear image of a Dunford�Pettis (resp.limited) set is Dunford�Pettis (resp. limited) an be oupled with the Bator�
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Emmanuele haraterization of the DPrP for dual spaes [2℄, [13℄ to easilyprodue results for quotient spaes. See [7, p. 42℄ and [10℄ for disussions ofthe subtleties and omplexity of the general problem.Theorem 3.11. If X∗ ∈ (DPrcP) (respetively , X∗ ∈ (GP)) and Z isa quotient of X, then Z∗ ∈ (DPrcP) (respetively , Z∗ ∈ (GP)).Proof. Let Q : X → Z be a quotient map. Then Q∗ : Z∗ → X∗ isan isomorphism. If K is a DP (resp. limited) subset of Z∗, then Q∗(K) isa DP (resp. limited) subset of X∗. Thus Q∗(K) and K must be relativelyompat.Corollary 3.12. The following are equivalent :(i) ℓ1 6 →֒ X.(ii) If Y is a losed linear subspae of X, then ℓ1 6 →֒ Y and ℓ1 6 →֒ X/Y .Proof. Bator [2℄ and Emmanuele [15℄ showed that X∗ ∈ (DPrcP) i�
ℓ1 6 →֒ X. This haraterization and 3.11 immediately yield the orollary.In the next theorem, CC(X, c0) denotes the spae of ompletely ontin-uous operators from X to c0.Theorem 3.13. If X has the DPP and L(X, c0) 6= CC(X, c0), then
ℓ1 →֒ X∗. If X has the hereditary DPP and L(X, c0) 6= CC(X, c0), then ℓ1embeds omplementably in X∗ and c0 →֒ X.Proof. Choose a non-ompletely ontinuous T ∈ L(X, c0). Sine (T ∗(e∗i ))is w∗-null in X∗ and T is not ompletely ontinuous, there is a weaklynull sequene (xn) in X whih is not limited. By a result of Shlumpreht([28℄, [16, p. 126℄) we may hoose a w∗-null sequene (x∗

n) in X∗ so that
x∗

m(xn) = δmn. Now suppose that (x∗
n) has a weakly Cauhy subsequene.In fat, suppose that x∗

n − x∗
n+1

w
→ 0. Sine X has the DPP, (xn) is a DPsequene, and 1 = 〈x∗

n − x∗
n+1, xn〉 → 0. This ontradition and Rosenthal's

ℓ1-theorem �nishes the �rst assertion.Now suppose that X has the hereditary DPP. As in the previous para-graph, we may assume that (xn) is weakly null and not limited in X. Thuswe may (and do) assume that (xn) is basi and normalized. Suppose thatno subsequene of (xn) is equivalent to (en). By a fundamental result ofJ. Elton [7, pp. 27�30℄, we obtain a subsequene (yn) of (xn) so that if (wn)is any subsequene of (yn) and (tn) is a non-null sequene of real numbers,then supk ‖
∑k

n=1
tnwn‖ = ∞. Arguing preisely as on p. 28 of [7℄, one seesthat the oe�ient funtionals (w∗

n) are weakly null. However, sine (wn) isweakly null and W = [(wn)] has the DPP, (wn) is a DP sequene in W ,
1 = w∗

n(wn) → 0, and we have an obvious ontradition. Thus some subse-quene of (xn) is equivalent to the unit vetor basis of c0. The main resultof [24℄ ensures that ℓ1 is omplemented in X∗.
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Corollary 3.14. Suppose that X is an in�nite-dimensional Banahspae with the hereditary DPP. Then either(i) c0 →֒ Y and Y ∗ ontains a omplemented opy of ℓ1 whenever Y isa separable and in�nite-dimensional losed linear subspae of X, or(ii) ℓ1 →֒ X.Proof. Suppose that X is in�nite-dimensional and has the heredi-tary DPP. Either L(Y, c0) = CC(Y, c0) for some separable and in�nite-dimensional subspae Y of X, or the equality holds for no separable andin�nite-dimensional subspae of X. Apply 3.10 and 3.13.Theorem 1 of [7℄ and another appliation of Rosenthal's ℓ1-theorem easilyprodue the following dihotomy for spaes with the DPP.Theorem 3.15. If the Banah spae X has the DPP, then either X is aShur spae or ℓ1 →֒ X∗.Proof. Suppose that X is not a Shur spae, and let (xn) be a normalizedand weakly null sequene in X. Choose (x∗

n) in BX∗ so that x∗
n(xn) = 1 forall n. By part (f) of Theorem 1 of [7℄, (x∗

n) has no weakly Cauhy subse-quene. Rosenthal's ℓ1-theorem guarantees that ℓ1 →֒ X∗.Sine ℓ1 →֒ X∗ whenever ℓ1 →֒ X ([8, p. 211℄), it follows diretly from3.15 that if X is an in�nite-dimensional spae with the DPP, then ℓ1 →֒ X∗.The next orollary provides a ounterpoint to Corollary 3.14 above andto the omment immediately following Theorem 7 on p. 28 of [7℄. Rosenthal's
ℓ1-theorem shows that every in�nite-dimensional Shur spae ontains ℓ1.Corollary 3.16. If X is in�nite-dimensional and ℓ1 6 →֒ X∗, then everyin�nite-dimensional losed linear subspae of X fails to have the DPP.Corollary 3.17. Suppose that X is a separable Banah spae whih hasthe DPP. If c0 →֒ Y , then the spae W (X, Y ) of weakly ompat operatorsis not omplemented in L(X, Y ).Proof. Choose (x∗

n) in X∗ so that (x∗
n) ∼ (e∗n). Using the separabilityof X, one may assume that x∗

n
w∗

→ x∗. Thus X∗ ontains a weak∗-null sequenewhih is not weakly null. Theorem 4 of [3℄ ensures that W (X, Y ) is notomplemented in L(X, Y ).Shlumpreht's result [16, p. 126℄ also leads to a non-omplementationresult when X ∈ (GP) but X 6∈ (DPrcP).Theorem 3.18. Suppose that X fails to have the DPrP but X ∈ (GP).If c0 →֒ Y , then W (X, Y ) is not omplemented in L(X, Y ).Proof. Suppose that K is a DP subset whih is not relatively ompat.Then there is a weakly null sequene (xn) in K − K and a δ > 0 so that
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‖xn‖ > δ for eah n. Therefore (xn) is not a limited sequene. Then we an�nd (x∗
n) in X∗ so that x∗

n
w∗

→ 0 and x∗
n(xm) = δnm. Thus (x∗

n) is w∗-nulland not w-null. Again by Theorem 4 of [3℄, W (X, Y ) is not omplementedin L(X, Y ).4. L-sets. It is well known that X must have the DPP if X∗ has theDPP and that the reverse impliation is false (see e.g. [7, pp. 19�23℄). In thissetion we identify a natural property involving L-subsets of X∗ whih is inomplete duality with the DPP.If X is a Banah spae, then we say that X∗ has the L-property (or
X∗ ∈ (LP)) if every operator T ∈ Lw∗(X∗, c0) is ompletely ontinuous. SeeTheorem 3.1 of [4℄ for related ideas. Sine the operators T ∈ Lw∗(X∗, c0)orrespond to the weakly null sequenes in X, the statement that X∗ ∈ (LP)is equivalent to the assertion that every weakly null sequene in X is a DPsequene in X. A diret appliation of Theorem 2.6 of [20℄ then shows that
X has the DPP if and only if X∗ ∈ (LP).This simple haraterization provides a partiularly easy way to showthat C(K) (and L1(µ)) enjoy the DPP. Suppose that T : C(K)∗ → c0 is a
w∗-w ontinuous operator and let (fn) be a w-null (and therefore bounded)sequene in C(K) so that T (µ) = (

T
fndµ)∞n=1. If (λn) is a weakly null se-quene of regular Borel measures in C(K)∗, hoose a non-negative regularmeasure λ so that λn ≪ λ uniformly in n. Now fn → 0 uniformly exept onsets of arbitrarily small λ-measure. Consequently, ‖T (λn)‖c0 → 0. See alsopp. 113�114 of [8℄.One an hek that X has the DPP if and only if eah of its weaklyompat sets is a DP subset of X. Further, it is well known that a subset S of

X is a DP subset of X i� L(S) is relatively ompat whenever L : X → Y isa weakly ompat operator [1℄. The next two lemmas and theorems ontinueto emphasize the duality that exists between L-subsets of X∗ and DP subsetsof X.Lemma 4.1. If A is an L-subset of X∗, BY ∗ is w∗-sequentially ompat ,and T ∈ Lw∗(X∗, Y ), then T (A) is relatively ompat.Proof. Suppose that T ∈ Lw∗(X∗, Y ) and T (A) is not relatively om-pat. Sine any element in Lw∗(X∗, Y ) sends L-sets to DP sets, we hoosesequenes (u∗
k) and (v∗k) in A and ε > 0 so that ‖T (u∗

k) − T (v∗k)‖ > εfor all k and T (u∗
k) − T (v∗k)

w
→ 0. Let (y∗k) be a sequene in BY ∗ so that

y∗k(T (u∗
k)−T (v∗k)) > ε, and, without loss of generality, suppose that y∗k

w∗

→ y∗.Consequently, T ∗(y∗k)
w
→ T ∗(y∗) in X, and 〈T ∗(y∗k) − T ∗(y∗), x∗〉 → 0 uni-formly for x∗ ∈ A. Sine 〈T ∗(y∗), u∗

k − v∗k〉 = y∗(T (u∗
k) − T (v∗k)) → 0, itfollows that 〈T ∗(y∗k), u

∗
k − v∗k〉 → 0, and we have a ontradition.
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Lemma 4.2. If T (A) is relatively ompat for eah T ∈ Lw∗(X∗, c0),then A is an L-subset of X∗.Proof. Suppose that xn

w
→ 0 in X, and de�ne T : X∗ → c0 by T (x∗) =

(x∗(xn))∞n=1. If λ = (λn) ∈ ℓ1, then T ∗(λ) =
∑

λnxn ∈ X, and T is w∗-wontinuous. Thus T (A) is relatively ompat, and limn supx∗∈A x∗(xn) = 0.
Remark. A ombination of 4.1 and 4.2 diretly shows that a subset

A of X∗ is an L-subset of X∗ i� T (A) is relatively ompat for eah T ∈
Lw∗(X∗, c0). These two lemmas also failitate two additional harateriza-tions of the L-property.Theorem 4.3. Every weakly ompat subset of X∗ is an L-subset of X∗i� X∗ ∈ (LP).Proof. If X∗ ∈ (LP) and A is a weakly ompat subset of X∗, then,by the Eberlein�Shmul'yan theorem, T (A) is relatively ompat whenever
T ∈ Lw∗(X∗, c0). Thus A is an L-subset of X∗.Conversely, suppose that every w-ompat subset of X∗ is an L-subsetof X∗, and let T ∈ Lw∗(X∗, c0). If x∗

n
w
→ x∗

0, then U = {x∗
n : n ≥ 0} is

w-ompat. Thus T (U) is relatively ompat, and ‖T (x∗
n) − T (x∗

0)‖ → 0.Theorem 4.4. A bounded subset S of X∗ is an L-subset of X∗ if andonly if T ∗(S) is relatively ompat whenever Y is a Banah spae and T :
Y → X is weakly ompat.Proof. Suppose that T : Y → X is a weakly ompat operator and let
R be a re�exive spae and A : Y → R and B : R → X be operators so that
T = BA ([8, p. 237℄). Suppose that S is an L-subset of X∗ and T ∗(S) isnot relatively ompat. Then B∗(S) is an L-subset of R∗, and B∗(S) is notrelatively ompat. Consequently, we may assume that Y itself is re�exive.Now hoose a sequene (x∗

n) in S, δ > 0, and y∗∈Y ∗ so that T ∗(x∗
n)

w
→ y∗and ‖T ∗(x∗

n) − y∗‖ > δ for eah n. Choose yn ∈ BY so that
yn(T ∗(x∗

n) − y∗) > δ, n ∈ N.Without loss of generality, suppose that yn
w
→ y ∈ BY (Y is re�exive).Therefore 〈yn − y, T ∗(x∗

n)〉 → 0 sine T ∗(S) is an L-subset of Y ∗. Sine
〈y, T ∗(x∗

n)−y∗〉
n
→ 0 and y∗(yn−y)

n
→ 0, it follows that yn(T ∗(x∗

n)−y∗)
n
→ 0,and we have a lear ontradition.Conversely, suppose that if T : Y → X is weakly ompat, then T ∗(S) isrelatively ompat. Let (xn) be weakly null in X, and let (x∗

n) be a sequenein S. De�ne L : X∗ → c0 by L(x∗) = (x∗(xn)). If λ = (λn) ∈ ℓ1, then
L∗(λ) =

∑
λnxn, and L∗(Bℓ1) is ontained in the losed and absolutelyonvex hull of {xn : n ∈ N}. Thus L∗ and L are weakly ompat. Moreover,it is lear that L itself is an adjoint. Therefore L(S) is relatively ompatin c0, limn x∗
n(xn) = 0, and S is an L-subset of X∗.
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Corollary 4.5. The bounded subset S of X∗ is an L-subset of X∗ ifand only if T ∗(S) is relatively ompat in R∗ whenever R is re�exive and
T : R → X is an operator.Our next result gives an extension of Theorem 3 of [15℄. An operator
T : X → Y is alled limited if T (BX) is limited in Y , and the set of alllimited operators from X to Y is denoted by ltd(X, Y ). Certainly everyompat operator is limited. If T : X → Y is a limited operator and y∗n

w∗

→ y∗,note that
lim
n

sup{〈y∗n − y∗, T (x)〉 : ‖x‖ ≤ 1} 7→ 0.That is, ‖T ∗(y∗n) − T ∗(y∗)‖ → 0.Theorem 4.6. Suppose that every operator T : X → Y ∗ is limited.If (xn) is bounded and (yn) is weakly null in Y , then (xn ⊗ yn) is weaklynull in X ⊗γ Y . Consequently , if (Tn) is a DP sequene in L(X, Y ∗), then
{Tn(xn) : n ∈ N} is an L-subset of Y ∗.Proof. Reall that (X ⊗γ Y )∗ ∼= L(X, Y ∗) ([9, p. 229℄), and let T ∈

L(X, Y ∗). Sine L(X, Y ∗) = ltd(X, Y ∗), ‖T ∗(u∗∗
n )‖ → 0 if u∗∗

n
w∗

→ 0 in Y ∗∗.Therefore |〈T, xn ⊗ yn〉| = |〈T (xn), yn〉| = |〈xn, T ∗(yn)〉| → 0. Consequently,if (Tn) is a DP sequene in L(X, Y ∗), then |〈xn ⊗ yn, Tn〉| → 0.In Setion 3 of this paper, ompatness properties of Dunford�Pettissets and limited sets were repeatedly used. Compatness questions involv-ing L-sets naturally arise in this ontext. As noted in Setion 2 above,Emmanuele [13℄ showed that L-subsets of X∗ are relatively ompat i�
ℓ1 6 →֒ X. In fat, if ℓ1 →֒ X, then L-subsets of X∗ may well fail to be evenweakly preompat. Spei�ally, if X is any in�nite-dimensional Shur spae,then all bounded subsets of X∗ are L-subsets, and thus there are L-subsetsof X∗ whih fail to be weakly preompat. The next theorem presents asimple operator-theoreti haraterization of weak preompatness, relativeweak ompatness, and relative norm ompatness for L-sets. An operator
T : X → Y is said to be almost weakly ompat [7, pp. 17�18℄ if T (BX) isweakly preompat in Y .Theorem 4.7. Suppose that X is a Banah spae.(I) The following are equivalent :I(i) If T : Y → X∗ is an operator and T ∗

|X is ompletely ontin-uous, then T is almost weakly ompat.I(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X is ompletely ontin-uous, then T is almost weakly ompat.I(iii) Any L-subset of X∗ is weakly preompat.
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(II) The following are equivalent :II(i) If T : Y → X∗ is an operator and T ∗

|X is ompletely ontin-uous, then T is weakly ompat.II(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X is ompletely ontin-uous, then T is weakly ompat.II(iii) Any L-subset of X∗ is relatively weakly ompat.(III) The following are equivalent :III(i) If T : Y → X∗ is an operator and T ∗

|X : X → Y ∗ isompletely ontinuous, then T is ompat.III(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X : X → ℓ∞ isompletely ontinuous, then T is ompat.III(iii) Every L-subset of X∗ is relatively ompat.Proof. Sine the proofs of (I), (II), and (III) are essentially the same, wepresent the argument for (III) only. Suppose that (iii) holds and T1 = T ∗

|Xis ompletely ontinuous. Let (xn) be a w-null sequene in X. If (yn) isa sequene in BY , then |xn(T (yn))| = |T1(xn)(yn)| ≤ ‖T1(xn)‖ → 0, and
T (BY ) is an L-subset of X∗. Therefore T is ompat and (iii) implies (i).Certainly (i) implies (ii). Now suppose (ii) holds, and let (x∗

n) be a se-quene from the L-subset A of X∗. De�ne T : ℓ1 → X∗ by T (λ) =
∑∞

i=1
λix

∗
i .Now suppose that (xn) is weakly null in X. Sine A is an L-subset of X,

lim
n

sup
i

|x∗
i (xn)| = 0,and (ii) ensures that T is ompat. Sine T (e∗i ) = x∗

i for eah i, the set
{x∗

n : n ∈ N} is relatively ompat.The Banah spae X has the reiproal Dunford�Pettis property (RDPP)([14℄, [4℄) provided that every ompletely ontinuous operator T : X → Y isweakly ompat.Corollary 4.8 ([14, Theorem 1℄; [23℄). The Banah spae X has theRDPP i� every L-subset of X∗ is relatively weakly ompat.Corollary 4.9. The Banah spae X has the RDPP i� every om-pletely ontinuous operator T : X → ℓ∞ is weakly ompat.Proof. Every L-subset of X∗ is relatively weakly ompat i� every om-pletely ontinuous operator T : X → ℓ∞ is weakly ompat.Corollary 4.10. If X is a Banah spae, then the following are equiv-alent :(i) Every L-subset of X∗ is relatively ompat.(ii) Every ompletely ontinuous operator with domain X is ompat.
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Proof. The operator T : X → Y is ompletely ontinuous i� T ∗(BY ∗) isan L-subset of X∗. Therefore (i) ertainly yields (ii).Now suppose that T : ℓ1 → X∗ is an operator and T ∗
|X is ompletelyontinuous. By (ii) this restrition is ompat and thus T itself is ompat.The preeding theorem then applies, and (i) follows.Corollary 4.11 ([7, Theorem 3℄). If X has the DPP and ℓ1 6 →֒ X,then X∗ has the Shur property.Proof. If x∗

n
w
→ x∗ in X∗ and X has the DPP, then A = {x∗

n : n ∈ N} is an
L-subset of X∗. Thus A is relatively ompat by 4.10, and ‖x∗

n − x∗‖ → 0.
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